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Abstract— Experimental validation of absolute orientation
estimation solutions is displayed for the dynamical stable five-
link biped robot Rabbit during a walking gait. The objective
is to prove the technical feasibility of posture online software
estimation in order to remove sensors. Finally, this paper
presents the first experimental results of walking biped robot
posture estimation.

I. INTRODUCTION

Walking biped robots belong to the family of robots which

use their environment to move and to accomplish their tasks.

For this reason, the knowledge of several variable (positions

in the environment, altitude of the swing leg tip) is crucial in

order to predict and to control their motions. This problem

is not trivial and is usually solved using sensors such as

accelerometers, gyrometers, inertials units . . . (for details,

see [5], [16], [18], [24], [30]). In order to limit concep-

tion/maintenance costs, and to remove technological features

such as noise, bandwidth limits of the sensor w.r.t. dynamics

of the walking biped, an exciting challenge consists in

using alternative solutions such as observers to estimate the

orientation of the walking biped robot in imbalance phases.

The dynamical behavior of a biped robot is described by

a nonlinear model which implies that observability property

depends on state and input [13], [17], [28]. A consequence is

that, over one step, by supposing that only articular positions

are measured, and for given trajectories, observability feature

can be lost [22]. In this latter reference, an original strategy

has been proposed in order to “cross” this singularity by

using two observers based on different structures, each

structure having different observability singular points.

Many observers strategies have been proposed for nonlinear

systems. In [11], [32], observers based on linearization by

input-output injection have been proposed: this approach

consists in transforming the nonlinear system into a linear

one via a state coordinates transformation and an input-

output injection and in designing a classical Luenberger

observer for this linear system. Unfortunately, this kind of

observers can be applied only to a small subset of systems.

In [10], high gain observers with an asymptotic convergence

are proposed: their design is based on a canonical form [19]

and concerns a large class of systems. In [14], [15], [25],

[27], observers based on sliding mode are proposed with

the objective to get robust estimation and finite time conver-
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gence. However, the main drawback of sliding mode being

the “chattering” (high frequency oscillation), observers based

on high order sliding mode (which ensures better features on

robustness and accuracy by decreasing the chattering) have

been proposed by [3], [7]. As high gain observers, this latter

class of observers can be applied to a large class of physical

systems including biped robots. However, to authors’ best

knowledge, previous works on observers design for biped

robots have been mainly done for velocities estimation (in

order to noiseless differentiation) by supposing that all an-

gular variables are available [12], [26], [31]. The originality

of authors’ previous works consists in designing posture and

velocities observers which is a hard but more realistic (by

a practical point-of-view) task. In [21], [22], the estimation

of posture during imbalance phases for three-link/five-link

biped robots has been done in simulation by using high gain

observers (with asymptotical time convergence) and high

order sliding mode observers (with finite time convergence).

Furthermore, the proof of the walking gait stability of the

biped under an observer-based control has been established

in [22].

The main purpose of the current paper consists in evaluat-

ing the behavior of different observers on the biped robot

experimental platform Rabbit [6]. Previously, the absolute

orientation of the experimental platform SemiQuad has been

successfully estimated by using an extended Kalman filter

[2]. However, SemiQuad has no available orientation mea-

surement. Then, it was only possible to analyze the quality

of this estimation at the end of the single support and at the

beginning of the double support, by comparing the estimated

posture with the posture given by the joint measurements

results and the geometrical model of SemiQuad. This is not

the case of Rabbit, viewed that it is equipped by an absolute

encoder to measure its torso orientation (see Figure 2). In

the current paper, experimental results of the application of

nonlinear observers are displayed, through the comparison

of the posture estimation and its real value given by an

encoder. Note that the main contribution and originality of

this paper consist in presenting the first experimental results

of posture estimation of a walking biped robot: to authors’

best knowledge, this kind of experimentations has never been

previously done. From [1], [29], desired motions are given,

and a PID controller with a friction compensation is locally

implemented on each actuated joint. Only the measurements

of the joint variables and the torques are injected in the

observers.

The paper is organized as follows: technological details on

Rabbit are recalled in Section II. The dynamic 2D model of
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Fig. 1. Left. Photo of 5-link biped robot Rabbit. Right. Rabbit’s mechanical
structure scheme.

Fig. 2. Details of Rabbit’s hips, equipped with encoders.

Rabbit during a single support is presented in Section III.

Section IV gives some details on the planning motion and

the PID controller. Section V displays the three designed

observers. Experimental results are shown in Section VI.

Section VII contains our conclusion and perspectives.

II. DESCRIPTION OF RABBIT

The Rabbit testbed was conceived to be the simplest

mechanical structure still representative of human walking

and running (Figure 1). It is composed of a torso and two

identical double-link legs with knees. The legs have no feet.

Rabbit walks in a circle and its motion is restricted to the

sagittal plane with lateral stabilization: then, only 2D motion

in the sagittal plane is considered. There are four electrical

DC motors with gearbox reducers to actuate the hip joints

(between the platform and the thighs) and the knee joints. To

minimize the inertia of both legs, the actuators are located in

the torso (Figure 2). The parameters of the five-links biped

prototype “Rabbit” [6] are used to design the observers. The

masses and lengths of the links (Indices 31, 41, 32, 42, 1:

swing leg (femur, tibia), stance leg (femur, tibia), torso, resp.)

are m31 = m32 = 3.2 kg, m41 = m42 = 6.8 kg, m1 =
17.0528 kg, l31 = l32 = l41 = l42 = 0.4 m, l1 = 0.625 m.

The distances between the joint and the mass center of each

link are s31 = s32 = 0.127 m, s41 = s42 = 0.163 m,

s1 = 0.1434 m. The inertia moments around the mass center

of each link are I31 = I32 = 0.0484 kg.m2, I41 = I42 =
0.0693 kg.m2, I1 = 1.8694 kg.m2. The inertia of the rotor

for each DC motor is I = 3.32 10−4 kg.m2.

Friction effects in actuated joints are estimated with

Coulomb coefficient fs = 18 N.m and Kinematic coefficient

fv = 8 N.m/s. The maximal value of the torque in the

output shaft of each motor gearbox is 150 N · m. The total

mass of the biped is 37 kg approximately. Each actuated joint

is equipped with two encoders measuring angular position.

The first encoder, which has 250 counts/rev, is attached

directly to the motor shaft, while the second, an absolute en-

coder which has 8192 count/rev, is attached to the shaft of

the gear-reducer. This configuration allows any compliance

between the motor and the joint angle to be detected. The

angular velocities are calculated, using the angular positions

given by the encoder attached directly to the motor shaft.

An encoder measures the angle of the torso with respect

to a vertical axis established by the central column around

which Rabbit walks. In the sequel of the paper, this latter

measurement is compared to the estimated torso orientation.

In the case of Rabbit, one has approximately a 16 Hz
bandwidth in the joints mechanical part and approximately

1.7 kHz for the amplifiers. The contact between the leg tip

and the ground is detected with a contact switch.

In order to get measurement data and to implement the con-

trol algorithm, a dSPACE system has been selected as real-

time control platform. The low-level computation, digital-

to-analog and analog-to-digital conversion, as well as the

user interface are provided by the dSPACE package. The

control computations are performed with a sampling period

of 1.5 ms (667 Hz).

III. MODEL OF A PLANAR FIVE-LINK BIPED ROBOT

In the sequel, observers are tested with data recorded during

a single support phase of Rabbit’s experimental walking

gait. For this reason, only the dynamic model of the single

support phase in the sagittal plane of Rabbit is presented

in this section. The considered biped is walking on a rigid

and horizontal surface. Rabbit is modeled as a planar biped

with a torso and two legs with knees but no actuated ankles

(Figure 3). The walking cycle takes place in the sagittal plane

and consists of successive single support phases and impact

events. The complete model of the biped robot consists of

two parts: differential equations describing dynamics of the

robot during the swing phase, and an impulse model of the

contact event [29]. The dynamic model of the biped in single

support phase between successive impacts is derived from the

Lagrange formalism

D(qrel)q̈ + H(q, q̇)q̇ + G(q) + F (q̇rel) = BΓ (1)

with q = [q31 q41 q32 q42 q1]
T , qrel := [q31 q32 q41 q42]

T , the

vector joint angles vector, Γ = [Γ1 Γ2 Γ3 Γ4]
T (see Figure 3)

the control torques 1, D the inertia matrix, H the centrifugal

and Coriolis effects matrix and G the vector tacking into

account the gravity effects. For the design of observers a

friction term F (q̇rel) are considered in the actuated joint

with the Coulomb coefficient fs and Kinematic coefficient

fv defined in Section II. The torques Γ are applied between

the torso and the stance leg, the torso and the swing leg, at

1Leg 1 is the stance one, leg 2 the swing one.
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the knee of the stance leg, and at the knee of the swing leg,

respectively. Then, the model can be written in state space

form by defining

ẋ =

[

q̇
D−1(−Hq̇ − G − F (q̇rel) + BΓ)

]

= f(x) + g(qrel) · Γ

(2)

with x = [qT q̇T ]T , where q = [q31, q32, q41, q42, q1].
The state space is taken such that x ∈ X ⊂ IR10 = {x =
[qT q̇T ]T | q̇ ∈ N , q ∈ M}, where N = {q̇ ∈ IR5 | |q̇| <
q̇M < ∞} and M = (−π, π)5. The walking surface is

taken as x ∈ S = {x ∈ X | z2(q) = 0, ż2(q) < 0} with

z2(q) the altitude of the swing leg tip and its time derivative

ż2(q). Note that input term of system (2), g(qrel)·Γ, depends

q1

q32q31

q42 q41

O ~X

~Z θ

Fig. 3. Schematic of biped robot: absolute and relative angles.

on available data only, i.e. control input and measurements.

This property allows to simplify the synthesis of observers

through a more simple canonical form as it has been detailed

in [21].

IV. CONTROLLER

The planning motion is based on the virtual constraints

[1], [6], [29] using the absolute orientation θ of the virtual

stance leg (Figure 3) to define the polynomial functions of

the reference trajectory for the actuated joint variables. The

coefficients of each polynomial functions have been obtained

by optimization [8]. The control law is a PID controller

associated to a friction compensation [4], [31].

V. OBSERVERS DESIGN

This section is divided in two parts: the first one consists

in analyzing the observability of system (2), which has

consequences on the observation strategy. The second part

displays the three observation algorithms implemented on

Rabbit.

A. Observability analysis

Consider system (2) with y the vector composed of

the measured variables y := [y1 y2 y3 y4]
T =

[q31 q32 q41 q42]
T = qrel

ẋ = f(x) + g(y)Γ

y = [I4×4 04×6] x = Cx
(3)

Observers are designed in the sequel for this latter system.

Let T denote an open set of X such that the condition of

the following definition is fulfilled.

Definition 1: System (3) is observable if there exist T ⊂
X and 4 integers {k1, k2, k3, k4}, called observability in-

dexes, such that
∑4

i=1 ki = 10 and the transformation
[

y1 · · · y
(k1−1)
1 · · · y4 · · · y

(k4−1)
4

]T

= Φ(x) is a diffeo-

morphism for x ∈ T , which is equivalent to

Det
[

∂Φ(x)
∂x

]

6= 0 for x ∈ T .

Proposition 1 ( [21]): There exist T ⊂ X and observ-

ability indexes vector [k1 k2 k3 k4]
T such that system (3) is

observable for x ∈ T .

Suppose that Proposition 1 is fulfilled; then, the following

associated state coordinates transformation is invertible

z = Φ(x) =
[

y1 · · · y
(k1−1)
1 · · · y4 · · · y

(k4−1)
4

]T

(4)

Under this state transformation (4), system (3) is equivalent

to the canonical form,

ż = Az + ϕ(z, Γ)
y = Cz

(5)

with A = diag [A1 · · · A4]10×10, C = [C1 · · · C4]
T
4×10,

ϕ(z) = [ϕT
1 · · · ϕT

4 ]T , Ai and Ci being under

Brunovsky’s form. Function z = Φ(x) is a

diffeomorphism from T onto Z = Φ(T ) ⊂ IR10. Let

zi = [zi1 · · · ziki
]T :=

[

yi · · · y
(ki−1)
i

]T

∈ Zi ⊂ IRki .

During the swing phase, along the nominal trajectories,

for each observability indices possibilities, there is loss of

observability (see Figure 4 for [k1 k2 k3 k4]
T = [3 3 2 2]T :

determinant of
∂Φ(x)

∂x is crossing zero). Of course, it

induces a problem for the observer design. A solution

consists in designing observers for several combinations of

observability indices, for which the observability singularity

appears for different articular positions. As a matter of

fact, [k1 k2 k3 k4]
T = [3 2 2 3]T is also eligible: the

evolution for a half step of Det
[

∂Φ(x)
∂x

]

is displayed in

Figure 4 (dotted line). There is no clear physical explanation

why this determinant crosses the abscissa 0. Then an

intuitive solution has been proposed, which consists in

designing, over one step, two observers based on two

different observability indexes vectors trajectories. There

is a switching in one chosen time between the two observers.

Observation algorithm [21]. During the swing phase,

along the nominal trajectories, for each observability in-

dices possibilities, there is loss of observability (see Figure

4 for [k1 k2 k3 k4]
T = [3 3 2 2]T : determinant of
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∂Φ(x)
∂x is crossing zero). Of course, it induces a problem

for the observer design. A solution consists in designing

observers for several combinations of observability indices,

for which the observability singularity appears for different

articular positions. As a matter of fact, [k1 k2 k3 k4]
T =

[3 2 2 3]T is also eligible: the variation of determinant of
∂Φ(x)

∂x is displayed in Figure 4 (dotted line). Then, there

exists T ′ ⊂ X such that, ∀x ∈ T ′, the function z =
Φ(x) =

[

y1 ẏ1 ÿ1 y2 ẏ2 y3 ẏ3 y4 ẏ4 ÿ4

]T
is a

state transformation. Let T and T ′ defined such that

T =

{

x ∈ X | rank

[

∂Φ1

∂x

]

= 10

}

Φ1(x) =
[

y1 ẏ1 ÿ1 y2 ẏ2 ÿ2 y3 ẏ3 y4 ẏ4

]T

T ′ =

{

x ∈ X | rank

[

∂Φ2

∂x

]

= 10

}

Φ2(x) =
[

y1 ẏ1 ÿ1 y2 ẏ2 y3 ẏ3 y4 ẏ4 ÿ4

]T

Note that Φ1 (resp. Φ2) corresponds to [k1 k2 k3 k4]
T =

[3 3 2 2]T (resp. [k1 k2 k3 k4]
T = [3 2 2 3]T ). Define

T i
I (resp. T i+1

I ) the initial (resp. final) impact time of the

step i. Let TSW := Min(t) such that t ∈ [T i
I , T

i+1
I [ and

Det
[

∂Φ1(x)
∂x

]

(t) = 0).

Proposition 2 ( [21]): An observer for system (3) can be

written as
˙̂x = f(x̂) + g(y)Γ + M(x̂, y) (6)

with

M =



















[

∂Φ1(x̂)

∂x̂

]

−1

γ1(x̂, y) for t ∈ [T i
I , TSW [

[

∂Φ2(x̂)

∂x̂

]

−1

γ2(x̂, y) for t ∈ [TSW , T i+1
I [

where γ1(·) and γ2(·) are appropriate-dimensional correction

matrices.

B. Observers design

In this part, three observers are displayed: high gain observer

[10], step-by-step sliding mode observer [3], and observer

based on high order sliding mode differentiation [7]. All

these observers read as (6), their differences being in the

definition of terms γ1 and γ2. Whereas high-gain observer

ensures an asymptotic convergence of the estimation error,

a feature of the both sliding mode ones is their finite time

convergence; this latter point greatly simplifies the proof of

stability [21].

High gain observer. Suppose that function ϕ of system

(5) is globally Lipschitzian with respect to z. Then, system

(5) is locally uniformly observable [9]. Let K denote a

matrix of appropriate dimensions, such that A − KC is

Hurwitz, and Λ(T ) = diag[Λ1 Λ2 · · · Λp]
′ with Λi =

diag[τi τ2
i · · · τki−1

i ], with τi > 0. Then, the system

˙̂z = Aẑ + ϕ(ẑ) + Λ−1K(y − Cẑ) (7)

with ẑ ∈ IRn, is an asymptotic observer for (5). Furthermore,

the dynamics of this observer can be made arbitrarily fast.

Then, with respect to system (6), matrices γ1 and γ2 read as

(with adequate dimensions, symbol “*” being 1 or 2)

γ∗ = Λ−1
∗

K∗(y − Cx̂)

Step-by-step sliding mode observer. The observer is based

on triangular form one [3] and its main property is the finite

time convergence to zero of the estimation error. System (5)

is still on (particular) triangular form. A such observer of (5)

can be written as [3]

˙̂z = Aẑ + ϕ(ẑ) + E(t)χ(·) (8)

with ẑ ∈ Z the estimated vector of z. Knowing that the

principle of this class of observers consists in forcing, each

in turn, estimated state variables to corresponding real ones,

in finite time, this latter property is based on an adequate

choice of E(t) and χ(·), i.e. E(t) and χ are defined such

that the estimation error e = ẑ−z converges to zero in finite

time. The originality in the following is the use of the super

twisting algorithm [23] in order to ensure the finite time

algorithm: this allows to not use time derivative of estimation

error in the computation of the observer.

Finite time convergence observer In a sake of clarity, and

without loss of generality, only the observer design for a

third order system is fully displayed in the sequel, i.e. z ∈
Z ∈ IR3. Then, in this case, system (5) reads as

ż1 = z2

ż2 = z3

ż3 = f3(z)
y = z1

(9)

with z = [z1 z2 z3]
T . Then, an observer for (9) reads as

˙̂z1 = ẑ2 + E1(t)χ1(·)
˙̂z2 = ẑ3 + E2(t)χ2(·)
˙̂z3 = f3(ẑ) + E3(t)χ3(·)

(10)
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with Ei(t) and χi (1 ≤ i ≤ 3) defined such that each

estimation error ei = ẑi − zi converges to zero. To ensure

a finite time convergence, the function χi(·) is based on the

super twisting algorithm [23] and reads as

χi = ςi + λi |Si|1/2 sign(Si), ς̇i = αi sign(Si) (11)

with

Si =

{

y − Cz for i = 1
z̃i − ẑi for i > 1

(12)

and z̃j = ẑj + Ej−1(t)χj−1 for j ∈ {2, 3}.

Determination of Ei and sketch of proof of finite time

convergence From (9)-(10), the dynamics of estimation

error, ei = ẑi − zi, reads as

ė1 = e2 + E1(t)χ1(·)
ė2 = e3 + E2(t)χ2(·)
ė3 = f3(ẑ) − f3(z) + E3(t)χ3(·).

(13)

Step 1. Suppose that e1(0) 6= 0, and observer (10) is

initialized such that E1 = 1 and E2 = E3 = 0. The error

dynamics reads as

ė1 = e2 + χ1, ė2 = e3, ė3 = f3(ẑ) − f3(z) (14)

As χ1 is based on the super twisting algorithm with appro-

priate gain value, e1 reaches zero in finite time at t = t1.

Then, ∀ t ≥ t1, e1(t) = ė1(t) = 0, i.e.

e1 = 0, ė1 = e2 + χ1 = ẑ2 − z2 + χ1 = 0 (15)

From (15), one gets ẑ2 + χ1 = z2 and z2 = z̃2.

Steps 2 and 3. The proof takes the same way than step 1.

Observer based on high order sliding mode differentia-

tion. The observer proposed in the sequel is based on high

order sliding mode differentiation. As previously, viewed that

observability indexes equal 2 or 3, for a sake of clarity and

without loss of generality, the observer design for a second

(i.e. ki = 2) order system and third (i.e. ki = 3) is fully

displayed in the sequel. Then, in the second order case,

subsystem takes the form as [7]

żi1 = zi2

żi2 = ϕii(z)
yi = zi1

(16)

with ‖ϕii(·)‖ ≤ L2
ii. Then, an observer for (16) reads as [7]

˙̂zi1 = ẑi2 + 1.5 L
1/2
ii |zi1 − ẑi1|

1/2sign(zi1 − ẑi1)
= vi1

˙̂zi2 = ϕi2(ẑi) + 1.1 Liisign(vi1 − ẑi1)
(17)

with [ẑi1 ẑi2]
T

the estimation of [zi1 zi2]
T

. In the third order

case, subsystem reads as

żi1 = zi2

żi2 = zi3

żi3 = ϕii(z)
yi = zi1

(18)

with ‖ϕii(·)‖ ≤ Lii. Let us propose an observer for the jerk

observation based on a third order differentiator [20]

˙̂zi1 = ẑi2 + 2 L
1/3
ii |zi1 − ẑi1|2/3sign(zi1 − ẑi1)

= vi1

˙̂zi2 = ẑi3 + 1.5 L
1/2
ii |vi1 − ẑi2|1/2sign(vi1 − ẑi2)

= vi2

˙̂zi3 = ϕi3(ẑi) + 1.1 Liisign(vi2 − ẑi3)
(19)

with [ẑi1 ẑi2 ẑi3]
T

the estimation of [zi1 zi2 zi3]
T

. Then,

correction terms of observer (6), γ1 and γ2, are composed

of correction terms of (17)-(19) written in x-state space

coordinates.

VI. EXPERIMENTAL RESULTS

A walking gait of several steps has been made. All

experimental data are recorded with a sampling period of

1.5 ms. Only actuated joint positions (single measurements)

and torques (control inputs) are injected in (6). For high gain

observer, A − KC-eigenvalues equal −1 and −2. Its gains

are such that τi = 0.3, i = 1, 2, 3, 4. Considering the step-

by-step sliding mode observer, for subsystems corresponding

to observability indice equal to 2 (resp. 3), parameters are

α1 = λ1 = 1, α2 = λ2 = 4 (resp. α1 = λ1 = 1, α2 = λ2 =
4, α3 = λ3 = 20). For the observer based on high order

sliding mode differentiation the gains are L = 3. In Figure 5,

the orientation estimation error and its velocity are presented

for the three observers from an impact (at the initial time)

to the next impact (at the final time) (note that the robot is

still walking with a stable periodic motion). The estimation

error module for the angular value is less than 2 degrees

at the end of the step. The estimation error module for its

velocity is less than 0.65 rad.s−1. These results prove the

practical feasibility of the proposed solution. Furthermore,

robustness of the estimation has been evaluated through the

following test: a mass of 5.0 kg has been added to the

torso of Rabbit during the walking gait, without changing

this parameter in the observers. For this kind of disturbance,

Figure 6 shows that the three observers are not very sensitive

viewed that the estimation error at the end of the step is

still reasonable. Furthermore at the end with the swing leg-

touch, in double support it is always possible to update the

observer by calculating the orientation of the torso, using the

geometrical model.

VII. CONCLUSION

In this paper, three nonlinear observers have been designed

and experimentally tested on the biped robot Rabbit, in order

to estimate its posture. The experimental results show that the

orientation estimation is feasible and is a good alternative to

sensors. Next step of this work consists, first, in associating

a nonlinear dynamic control law (based on the model of

Rabbit) with posture observers, in order to get stable walking

gait. Secondly, impact effects could be taken into account in

the observers design in order to improve their performances.

Finally, a major perspective is to extend this strategy for

walking 3D-biped robots.
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[5] N. Chaillet. Etude et réalisation d’une commande position-force d’un
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