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Abstract—In this paper, a semi-active biped which combines
the merits of both powered and passive bipeds is proposed.
The semi-activeness of the biped is due to the fact that, during
most of a walking cycle, only half of the joints are actuated,
and the other half remain unactuated, but have passive joint
springs to induce their motions. To devise a systematic design
methodology for the biped, its dynamics as well as the walking
constraints are carefully studied. Furthermore, an optimization
procedure is proposed to compute the optimal trajectories for
the actuated joints and spring constants which can lead to
minimum energy consumption. The feasibility of the proposed
biped is verified by hardware implementation. Experiments
indicate that the semi-active biped consumes 80% less the
electrical power of the powered biped that performs the same
gait and is more energy-efficient than several state-of-the-art
bipeds.

I. INTRODUCTION

Depending on whether power sources are needed, bipedal

walkers can be divided into two categories: powered bipeds

and passive bipeds. Powered bipeds heavily rely on active

control to determine when and how the external power

should be activated [1]. Regardless of the fact that powered

bipeds can produce dexterous motions, these systems often

consume excessive power [2]. On the other hand, the passive

bipeds, as proposed firstly by McGeer [3], demand neither

external power nor active control. Although passive bipeds

consume absolutely zero power, their stability and reliability

are usually the main sources of concerns [4]. Moreover, the

walking is limited on a slope.

In this research, we intend to integrate the merits of both

the powered and passive bipeds by developing a semi-active

biped from the viewpoint of energy and natural dynamics.

The basic design and control philosophy of the proposed

biped can be best understood by examining the principle of

energy conservation for each walking cycle. Assuming that

the biped performs stable and periodic walking on a level

ground, then we have:

0 =Z+ �Z� ��Horvw> (1)

where Z+ and Z� are respectively the positive work and

the negative work done by the actuators, and �Horvw denotes
the energy loss due to foot-ground friction and impact. The

right side of the equation equals zero because it corresponds

to the change of internal energy in one cycle and should
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vanish by the periodicity assumption. It should be noted

that most actuators used in bipeds are non-regenerative, so

negative work is not recoverable. This indicates that positive

work alone contributes the energy consumption of the biped.

Since (1) equivalently gives Z+=�Horvw+Z�, it is clear

that minimizing the energy consumption amounts to keep the

energy loss and nonrecoverable negative work to minimum.

Intuitively, one can reduce the energy consumption by

incorporating mechanical springs to joints of the biped. This

is because that springs are a natural means of energy storage

and the negative work absorbed by them is recoverable.

Besides, the torques resulted from spring deformations can

support the weight of the biped, so the actuator torques

needed to counteract the gravity can be relieved. Another

intuitive way to reduce the energy consumption is activating

only part of the actuators and leaving the others unactuated.

By doing so, not only is the total number of actuators

performing the work reduced, but also the passive dynamics

of the biped is less interfered so that it can be better

exploited for energy efficiency purposes. Following this line

of thought, in the proposed biped, at each joint there is a

torsional spring in parallel with the actuator and the biped

walks based on a semi-active control strategy, that is, only

the actuators in one leg are in actuation and the actuators

in the other leg are in relaxation. The rest of the paper is

devoted to optimal design and implementation of this semi-

active biped.

II. DYNAMICS FOR THE SEMI-ACTIVE WALKING

The biped considered has 12 degrees of freedom and its
photo and simplified schematic configuration are shown in

Fig. 1. Each leg of the biped contains 6 revolute joints with

two at the ankle, one at the knee, and three at the hip. At

each revolute joint, there is a parallel combination of a rotary

actuator and a torsional spring. Therefore, if the actuator is

not powered, the corresponding joint is completely passive

and the joint motion is only dictated by the spring. In the

following discussion, the leg in actuation will be referred to

as the active leg, and the leg in relaxation will be referred

to as the passive leg.

In Fig. 2, the stick diagrams of the biped in one semi-active

walking step are shown respectively in the sagittal and the

frontal views. In the diagrams, the active leg is depicted by

bold line segments and the passive leg by thin line segments.

One walking step consists of five consecutive postures 1˜5: at
posture 1, both feet of the biped are in contact with ground.

However, the rear (right, passive) foot is about to be lifted off

the ground that the biped is completely supported by the left
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Fig. 1. The experimental semi-active biped and its 12 DOF schematic
model.
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Fig. 2. The schematic figures of the semi-active walking in a step

(front, active) leg. At posture 2, the right foot has already

been lifted and is swinging toward the front. At posture

3, the right foot just lands on the ground and becomes the

front foot. At posture 4, the projection of pelvis is around

the middle of the two feet and the front (right) leg becomes

the active leg at this instant. Finally, at posture 5, the biped

resumes the same posture as posture 1 except that the legs

are exchanged. Let wl denote the time instant when the l
wk

posture occurs. From w+1 to w
�

3 , the biped is in single support

phase (SSP) and from w3 to w5 the biped is in double support
phase (DSP). Moreover, from w1 to w

�

4 the left leg is active

and the right leg is passive; and from w4 to w5 the right leg
is active and the left leg is passive.

The model for defining crucial variables for dynamic

analysis is shown in Fig. 3. In these models, the symbols

�l>s and �l>u are the l
wk joint angles respectively in the pitch

and roll directions. For simplification, it is assumed that

the hip’s yaw and roll angles are properly regulated by the

controller so that the pelvis link is always perpendicular to

the sagittal plane and parallel to the frontal plane. With this

assumption, the dynamics in the sagittal and frontal planes

becomes decoupled and the associated dynamics therefore

can be derived independently.

When the foot of the active leg is assumed to be fixed to

the ground, the equation of motion can be formulated in the

following form:

M(�)·�̈+C(�> �̇)·�̇+g(�)+d(�̇)+K·(���̄)=�+J(�)W ·fS .
(2)

In this equation, � equals1 [�1>s �2>s �3>s �4>s �5>s]
W , M

1In the following, only the sagittal dynamics will be studied, but the
analysis and synthesis procedures illustrated can be applied to the frontal
dynamics with no difficulties.

is the inertia matrix, C is a matrix related to the Coriolis

and centrifugal effects, g is the gravitational torque vector,

d is the torque vector associated joint damping, K·(� � �̄)
is the torque vector generated by the passive springs at the

joints that K=diag[n1>s n2>s n3>s n4>s n5>s]
2 and �̄ is the

vector corresponding to springs’ relaxed angles, � is a vector
corresponding to actuation torques at the joints and due to the

semi-active nature of the actuation, �=[�1>s �2>s �3>s 0 0]
W ,

and finally fS is the vector which represents the interaction

force/moment between the passive foot and the ground with

J(�) being the associated Jacobian matrix. It should be noted
that in the formulation, to further simplify the problem, the

size and the weight of the foot are assumed to be negligible,

so the influence of the spring toque n6>�(�6>���̄6>�) can be
lumped into the interaction force/moment vector fS .

By the special structure in � , (2) can be partitioned as
follows:

�d=Md(�)·�̈+Cd(�>�̇)·�̇+gd(�)+Kd·(�d � �̄d)

+dd(�̇d)�Jd(�)
W
·fS . (3)

0=Mx(�)·�̈+Cx(�> �̇)·�̇+gx(�)+Kx·(�x � �̄x)

+dx(�̇x)�Jx(�)
W ·fS . (4)

In the two equations, the subscripts d and x respectively
denote the actuated and unactuated part of the vector/matrix.

During the SSP, if the passive/unactuated leg swings with-

out foot-ground contact, then fS=0. Therefore, given Kx

and �d(w), Runge-Kutta method can be applied to integrate
(4) to numerically solve for �x(w). Here an operator �VVS
is used to denote the functional dependency between �x(w)
and �d(w), Kx or

�x(w) = �VVS (�d(w)>Kx) . (5)

On the other hand, during the DSP, both feet of the biped

are in contact with the ground that the two legs and the

ground form a closed-loop chain. By kinematic analysis,

�x(w) can be derived as an algebraic function of �d(w).
Denoting such an algebraic function by �GVS (�d(w)), then

�x(w) = �GVS (�d(w)) . (6)

Substituting this algebraic relation into (4) and assuming that

Jx(�) is nonsingular, one can directly solve for fS . Another
operator �fS is used to denote the functional dependency

between fS and �d(w), Kx or

fS = �fS (�d(w)>Kx) . (7)

Once �d(w), �x(w), and fS are known and Kd are given, one

can compute the actuation torque �d using (3). This, together
with (5) (in SSP) or (6) and (7) (in DSP), implies that �d is
dictated by �d(w) and K, or �d can be succinctly written as

�d = ��d(�d(w)>K) , (8)

where ��d is the operator denoting the functional depen-

dency. Furthermore, by treating the biped as a system

2The symbol nW>W represents the spring constant. Its subscripts deonte
which joint the spring is attached to.
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Fig. 3. Definitions of crucial variables for dynamic analysis.

of particles (with the lwk link modeled as a point mass
pl), assuming the knowledge of fS (= 0 for SSP, =(7)
for DSP), and �d(w), �x(w) (consequently the acceleration
of each point mass), and then applying Newton’s equations

of motion to the whole biped, the interaction force/moment

vector between the active foot and the ground can be solved.

Again by (5) (in SSP) or (6) and (7) (in DSP), �d(w) and Kx

alone determine fD. Denoting the functional dependency by

�fD , we have

fD = �fD(�d(w)>Kx) (9)

III. CONSTRAINTS FOR ACHIEVING STABLE,

PERIODICAL, SEMI-ACTIVE WALKING

One main purpose of the paper is to devise an optimal

solution for �d(w) and K so that the biped can perform

stable, periodical, semi-active walking in an energy-efficient

manner. To do so, constraints on the joint trajectories are

investigated. Basically, there are four types of constraints.

1) Constraints for continuity: From the discussion in Fig.

2, transitions between SSP and DSP occur at postures

1, 3, 5, and control authority transfers from the left leg
to the right leg at posture 4. At these four postures, the
biped experiences drastic dynamic change. Regardless

of the dynamic change, both the joint angles and

the angular velocities should be continuous at the

associated time instants. In other words,

�(w�l ) = �(wl) = �(w
+
l ) , for l = 1> 3> 4 and 5 (10)

and

�̇(w�l ) = �̇(wl) = �̇(w
+
l ) , for l = 1> 3> 4 and 5= (11)

2) Constraints for quasi-static postures: In order for the

biped to walk similar to a human being, the joint angles

at postures 1, 3 and 5 are specified appropriately. The
corresponding constraints are written explicitly as:

�(wm) = �
m
g and �̇(wm) = 0 , for m = 1> 3 and 5 (12)

where �mg is the specified joint angle vector at posture m.
Notice that the choice of �mg’s is not arbitrary but needs
to meet three conditions. First of all, the actuated and

unactuated parts in �mg’s should satisfy the algebraic
equation in (6). The second condition is that �1g = �

5
g

so as to establish the walking periodicity. Finally, the

three �mg’s should lead to a consistent step length ovwhs.
3) Constraints for foot-ground clearance: During the

entire SSP it is crucial that the swing foot should

maintain a certain clearance from the ground to avoid

the foot-ground interference. Such a constraint is given

by

}fohdudqfh(�(w)) A 0 , for w 5
£
w+1 , w

�

3

¤
. (13)

where }fohdudqfh denotes the clearance between the
passive foot and the ground. By the configuration and

the quasi-static property of posture 3, }fohdudqfh|w=w3 =
0 and the landing velocity of the swing foot also
vanishes. Therefore, foot-ground impact is eliminated

in this case.

4) Constraints for stability: Two more constraints need

to be satisfied in order for the biped to walk in a

stable manner. One is that sliding should not occur

for the foot (feet) in contact with the ground. Such

a constraint is relevant to fD and fS . In the sagittal

dynamics, both fD and fS have three components: a

force in | direction, a force in } direction, and a
moment in { direction. The |-force, which also acts
in the tangential direction, is denoted by (f(·))w. The
}-force, which also acts in the normal direction, is
denoted by (f(·))q. Finally, the moment component is
denoted by (f(·))p. To prevent the foot from sliding,
we should have

|(fD)w| � �v(fD)q and |(fS )w| � �v(fS )q (14)

where �v is the coefficient of static friction.
The other stability constraint is that during walking the

biped should be in dynamic equilibrium so that it does

not fall down. This constraint is equivalent to limiting

the total zero moment point (ZMP) associated fD and

fS to be in the support polygon spanned by the foot

(feet) contacting the ground [1]. The ZMP can be eas-

ily derived as a function of the components in fD and

fS . Take the sagittal dynamics for example, when the

passive (active) foot is in front of the active (passive)

foot, the ZMP is located at
(fD)p+(fS )p+(fS )q·ovwhs

(fD)q+(fS )q

(
(fD)p+(fS )p�(fS )q·ovwhs

(fD)q+(fS )q
) with respect to the ankle of

the active foot. Notice that in SSP, fS = 0, so the
expression for ZMP location is reduced to

(fD)p
(fD)q

.

IV. AN OPTIMIZATION PROCEDURE FOR DETERMINING

OPTIMAL JOINT TRAJECTORIES AND SPRING

CONSTANTS

In order to minimize the control energy in one walking

cycle, the following performance index

M =

Z w5

w1

k�d(w)k
2 gw . (15)

is defined. By (8), the performance index indeed is dictated

by �d(w) and K. In this section, an optimization procedure
is proposed to determine optimal �d(w) and K to minimize
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such a performance index. Because the biped experiences

drastic dynamic change at postures 1, 3, 4 and 5 in the
optimization, �d(w) is assumed to be a concatenation of three
vectorial, polynomial trajectories �d VVS (w), �d GVS1(w) and
�d GVS2(w) respectively defined in [w1> w3], [w3> w4] and [w4> w5]
and parameterized as follows:

�d VVS (w) = AVVSh(w)> for w 5 [w1> w3]
�d GVS1(w) = AGVS1h(w)> for w 5 [w3> w4]
�d GVS2(w) = AGVS2h(w)> for w 5 [w4> w5]

(16)

where h(w) = [1 w w2 · · · wp]W with p being the order of

polynomials, and A(·)’s are matrices of suitable dimensions

and contain parameters of the polynomial trajectories for the

joints in the active leg. The optimization problem can now

be posed as

min
DVVS ,DGVS1,DGVS2,N

(

Z w3

w1

k��d(AVVSh(w)>K)k
2 gw

+

Z w4

w3

k��d(AGVS1h(w)>K)k
2 gw

+

Z w5

w4

k��d(AGVS2h(w)>K)k
2 gw)

subjected to (10) ˜(14) and the ZMP stability constraint, (17)

in which the constraints can be alternatively expressed in

terms of �d(w) and K by (5), (6), (7) and (9).

To solve the optimization problem numerically, we dis-

cretize the interval [w1> w5] into Q equal-spaced time instants

(with Q sufficiently large and w3, w4 being two of the time
instants) and approximate each of the integrals in (17) by a

summation of k��d(·> ·)k
2
evaluated at all the time instants

at the respective interval. Furthermore, the continuous

inequalities in (13), (14) and the ZMP stability constraint

are also evaluated at all the time instants at the respective

interval(s) to construct a set of discretized inequalities.

The discrete form of the problem is in a standard format

for nonlinear, constrained optimization in MATLABr Opti-

mization Toolbox, so the function fmincon in this package

[6] is used to solve the problem numerically. When the

fmincon function is used to solve for the optimal A(·)’s and

K, it is found that due to the vast numbers of parameters and

constraints involved, convergence of the numerical iteration

is not easy to achieve. In order to obtain a convergent

solution for the relevant parameters but still maintain their

optimality to certain degree, four modifications are made to

the optimization problem.

First of all, it is assumed that the bounds for each of the

diagonal components ofK are given. Rather than finding K

directly using the fmincon function, the solution space of K

is divided into a grid and the optimization problem is solved

repeatedly for each grid point in a brute force manner. The

solution which results in the lowest performance index is

adopted as the optimal one.

Secondly, the constraint associated with ZMP stability

is relaxed when solving the optimization problem. Such

a stability condition is examined after an optimal solution

is reached. If ZMP stability does not hold, depending on

which phase(s) it is violated, the respective time duration(s)

(w1�w3 for SSP, and w3�w5 for DSP) is (are) lengthened. By
lengthening the time duration(s), the speed, consequently the

dynamic effect, of the biped are reduced and it is easier to

make the ZMP stable.

Thirdly, instead of solving for all the three A(·) matrices

simultaneously, the three integrals in (17) are minimized sep-

arately in a sequential manner. The sequential optimization

is conducted in the way that �d VVS (w3) (= AVVSh(w3))
and �̇d VVS (w3) (= AVVS ḣ(w3)) obtained from minimizing

the first integral are substituted as initial conditions for the

optimization of the second integral, and �d GVS1(w4) (=
AGVS1h(w4)) and �̇d GVS1(w4) (= AGVS1ḣ(w4)) obtained
from minimizing the second integral are substituted as initial

conditions for the optimization of the third integral. With

such a modification, the set of the A(·) matrices resulted is

considered to be only a suboptimal solution.

Finally, in the simulation for computing the optimalAVVS

that minimizes the first integral in (17), it is found that

numerical convergence still can not be achieved. The

failure in convergence is attributed to the strict constraints,

particularly the foot-ground clearance constraint. To bypass

the convergence issue, one observes from the kinematics of

the biped that its step-size is mainly dictated by the hip

joint motion. Based on this reasoning, the AVVS matrix

is decomposed as AVVS = [Ā
W
VVS a]

W in which the vector

a contains parameters of the polynomial trajectories for the

hip joint, and ĀVVS contains parameters for the rest of the

joint. Then the optimization problem is divided into two

parts. The first part assumes a given ĀVVS and computes

the optimal a which satisfies only the posture constraint

and the nonsliding constraint. The second part assumes a

given a and computes the optimal ĀVVS which satisfies

only the foot-ground clearance constraint and the nonsliding

constraint. These two optimizations are cross-iterated until

the 2-norm of the difference between two �d VVS (w)’s from
the two optimizations converges to within a preset tolerance

(say, 10�5).
The flow chart of the final optimization procedure which

incorporates the four modifications is depicted in Fig. 4.

V. SIMULATION RESULTS

The optimization procedure is applied to the bipedal model

in Fig. 3 with parameters listed in Table I. The assumed

actuated joint angles at postures 1 and 3 are listed in Table

II and the postures lead to ovwhs = 8fp. It is also assumed
that w1=0v, w3=0=5v, w4=1v, w5=1=5v, so the average speed
is

ovwhs
2(w5�w1)

=2=67 fp
v
. The relaxed spring angles for the ankle,

knee, and hip are taken as the averages of the associated joint

angles at posture 1 and 3. The viscous damping coefficient

for each joint and the coefficient of static friction (�v)
between the foot and the ground are respectively adopted3

to be 0=488Q ·p·v
udg

and 1=05.
In the optimization, the joint trajectories of the active leg

are chosen as 7wk order polynomials. Using the flow chart in

3The two coefficients are obtained by performing identification experi-
ments on the bipedal prototype presented in the next section.
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TABLE I

KINEMATIC PARAMETERS OF THE BIPEDAL MODEL

shank
(l = 1)

thigh
(l = 2)

pelvis
(l = 3)

Length ol (p) 0=1 0=1 0=09
Mass pl (nj) 0=25 0=24 0=19

Center of mass uf{>l (p) 0 0 0=045
Center of mass uf|>l (p) 30=01 30=01 30=01
Center of mass uf}>l (p) 0=01 0=085 0=025

Fig. 4, the optimal A(·)’s and K are successfully computed.

Notice that although the control energy is minimized in

this case, it is under the assumption that all the springs

obey linear constitutive relations. Apparently, if one relaxes

this assumption or makes the springs nonlinear, the control

energy can be further reduced. In this research, in addition to

the original linear spring, we also consider appending another

spring to the joint that one end of the spring is attached to

the link, and the other end is free but is set at a designated

angle. When the joint rotation is small, this appended spring

is in idle state. However, when the joint rotation exceeds

the designated angle, the free end is compressed by the

other link and restoring torque is generated by the spring.

Here the two-spring combination at each joint is referred to

as the composite spring. The constitutive relationship for

the composite spring at the lwk joint can be written in a

TABLE II

ASSIGNED CONFIGURATIONS AT POSTURES 1 AND 3

�1>s �2>s �3>s �1>u �3>u

Posture 1 18=0
180

� 33=1
180

� 320=0
180

� 22=5
180

� 22=5
180

�

Posture 3 13=9
180

� 30=8
180

� 30=65
180

� 22=5
180

� 22=5
180

�

(Unit : radian)
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Fig. 5. The consecutive stick figures of the walking gait in sagittal and
frontal views.

piecewise-linear manner:

�nl (�l>s) =

½
nl>s·(�l>s � �̄l>s) , if � � �̄

0

l>s

nl>s·(�l>s � �̄l>s) + n
0

l>s·(� � �̄
0

l>s) , else .
(18)

in which �nl is the composite spring torque, nl>s and n
0

l>s are

respectively the constants of the original linear spring and

the appended spring, �̄l>s is the relaxed angle of nl>s, �̄
0

l>s is

the activation angle for n0l>s.
The torques of the composite springs replace K·(�� �̄) in

(2) and the optimization is reconducted using the modified

dynamic equation. The optimization assumes that n0l>s’s and
�̄0l>s’s are given and they are determined as follows. Because
from Fig. 2 it is seen that joints of either leg are bent

mostly when it is the active leg at posture 3, in order for the
the appended springs to support the biped’s weight without

hindering the swinging motion, the free-end angles (�̄0l>s) are
set close to the corresponding joint angles at posture 3. By
doing so, the appended springs are only activated for the

active leg near posture 3. As for determining the appropriate
n0l>s value, in order for the composite springs to support the
biped at posture 3, one simply sets

n0l>s =
jdl(�(w3)) + nl>s·(�l>s(w3)� �̄l>s)

(�̄0l>s � �l>s(w3))
, l = 1> 2> 3 (19)

where jdl(�(w3)) is the l
wk component of gravitational torque

vector in (3) evaluated at w = w3. Once the n
0

l>s’s and �̄
0

l>s’s

for one leg are determined, the corresponding values for the

other leg can be obtained by symmetry.

Optimization with the assigned properties for the appended

springs generates a new set of optimal �d(w) and K. The
corresponding stick diagrams of the walking gait in the

sagittal and frontal views are plotted in Fig. 5. Notice that

in the simulation of the optimal gait, the ZMP always stays

in the stable polygons spanned by the supporting foot (feet)

during SSP or DSP. Consequently, the biped is dynamically

stable.

VI. HARDWARE IMPLEMENTATION AND EXPERIMENTAL

RESULTS

In the actual biped in Fig. 1, DC motors with gear reduc-

tion are used as actuators and the mechanical links are made

of light aluminum alloy. Torsional coil(s) is (are) attached to

each joint to implement the linear (composite) spring design

in the model. There is also a potentiometer at each joint

to measure the joint angle. The reference trajectory and the
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Fig. 6. The electrical and mechanical powers for the biped in the semi-
active mode and the powered mode.

control algorithm (PD + feedforward) are carried out on a

real-time digital signal processor (dSPACEWP DS1103).

The �d(w) and springs’ constitutive relations adopted in the
experiments are similar to those obtained from optimization.

In experiments, the biped walks with 1=5 seconds per step.
The video demonstration of the experiment can be found

in http://ldsc.pme.nthu.edu.tw/files/Robot/SABW.wmv.4 In

the experiment, instead of switching the control actuation

instantly in middle of DSP as in simulation, the control gains

of the active (passive) leg are changed smoothly from 100%
(0%) to 0% (100%) within 1=5% of a walking cycle. By

doing so, the jerky motion caused by instantaneous control

authority transfer can be avoided.

A. Experimental Power Analysis

In Fig. 6, the histories of total electrical and absolute

value of mechanical powers consumed in a walking cycle

are recorded. For the purpose of comparing the energy

efficiency of semi-active walking to powered walking, the

torsional coils are removed and the biped walks in the

powered mode. Although by the lower half of Fig. 6, the

total mechanical powers of the two modes of walking are

about the same, calculation on the upper half of the figure

indicates that the powered walking mode consumes about

five times the average electrical power of the semi-active

mode. Such a phenomenon could be attributed to the fact that

in powered walking, some motors perform much negative

mechanical work. The negative electrical work associated

with the negative mechanical work is not recoverable, so

the total electrical power consumption is increased.

Here we also compare the energy efficiency of our semi-

active biped with humans and other bipeds. To do so, a

dimensionless energetic cost of transport Fhw = (electrical
energy)@(weight×traveled distance) is defined. This cost

allows one to make fair comparison on the electrical energy

efficiency regardless of the weights and the speeds of the

walkers. Table III lists the Fhw values for the human being,
our biped, and other bipeds [5]. According to this table,

4A second prototype with on-board microprocessor, batteries, and
interfacing circuitry is also constructed. The prototype is operated
without umbilical cords, but its motion is less smooth because the
on-board microcomputer has much less computing power than the
digital signal processor. Its video demonstration can be found in
http://ldsc.pme.nthu.edu.tw/files/Robot/SABW2.wmv.

TABLE III

THE Cet COMPARISION FOR THE SEMI-ACTIVE BIPED AND OTHER

BIPEDS

Walking Object Fhw
Human 0=2

Our semi-active biped 1=81
T.U. Delft’s Denise 5=3
Honda’s Asimo 3=2

Cornell’s powered biped 0=2

although our biped is about an order of magnitude less

efficient than the human walking, it is more efficient than the

bipeds except Cornell’s. Particularly, it is 43% more efficient
than Honda Asimo, which uses electrical motors with high

conversion efficiency to perform powered walking. Clearly,

it is the semi-active nature of our biped that allows it to

outperform Asimo in the energy efficiency aspect. It should

be noted that although Cornell’s powered biped achieves

the same walking efficiency as the human being, it has

curved feet and only has two actuators (at the ankle) thus it

could suffer stability problems. Furthermore, it also can not

perform as dexterous motions as our biped which is equipped

with 12 actuators.

VII. CONCLUSIONS

In this paper, a biped which combines the merits of

both powered and passive bipeds is proposed. The biped

is referred to as semi-active because during the walking

cycle, only half of the motors are actuated. In order to fully

exploit the semi-activeness for energy saving, the trajecto-

ries for the actuated joints and joints’ spring constants are

computed by an optimization procedure. The feasibility of

the proposed biped, including the system design and the

control performance, is verified by hardware implementation.

Experiments indicate that the semi-active biped is indeed

more energy-efficient than several state-of-the-art bipeds.

On-going research is focused on incorporating more ad-

vanced control schemes to the biped so that it can learn the

optimal trajectories through experiments.
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