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Abstract— In order to reduce computational burden of identi-
fication methods for multivariable systems, a hierarchical least
squares (HLS) algorithm is developed. The basic idea is to
use the hierarchical identification principle to decompose the
identification model of the multivariable system into several
submodels with smaller dimensions and fewer variables, and
then to identify the parameter vector of each submodel. The
analysis indicates that the parameter estimation error given by
the proposed algorithm converges to zero under the persistent
excitation. Also, the algorithm has much less computational
efforts than the recursive least squares algorithm and is easy to
implement on computer. Finally, we test the proposed algorithm
by an example.

Index Terms: Least squares identification; parameter estima-
tion; convergence properties; hierarchical identification princi-
ple; multivariable systems.

I. PROBLEM FORMULATION

Consider a multivariable system described by the follow-

ing state-space model,

x(t +1) = Ax(t)+Bu(t), (1)

y(t) = Cx(t)+Du(t), (2)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

r the system

input vector, y(t) ∈ R
m the system output vector, (A,B,C,D)

the system matrices of appropriate sizes. Although many

identification algorithms can be used to estimate the pa-

rameters of this state space model [13], [10], the transfer

matrix representation with the input-output relationship is

very useful in practice [5]. Thus the state-space model is

transformed into the transfer matrix model to be identified.

The details are as follows. Let z−1 be the unit delay operator:

zx(t) = x(t +1). From (1)-(2), we can get

y(t) = [C(zI −A)−1B+D]u(t)

=

[

C adj[zI −A]B

det[zI −A]
+D

]

u(t)

=

[

z−nC adj[zI −A]B

z−n det[zI −A]
+D

]

u(t)

=:
Q(z)

α(z)
u(t), (3)
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where α(z) is the characteristic polynomial in z−1 of the

system (of degree n), Q(z) is the polynomial matrix in z−1,

and they can be represented as

α(z) = z−n det[zI −A]

= 1+α1z−1 +α2z−2 + · · ·+αnz−n ∈ R
1,

Q(z) = z−nC adj[zI −A]B+ z−n det[zI −A]D

= Q0 +Q1z−1 + · · ·+Qnz−n ∈ R
m×r,

Qi ∈ R
m×r, i = 0,1, · · · ,n.

Equation (3) can also be written as

y(t)+
n

∑
i=1

αiy(t − i) =
n

∑
i=0

Qiu(t − i).

Define the parameter matrix θ , parameter vector α , infor-

mation vector ϕ(t) and information matrix ψ(t) as

θ T = [Q0,Q1, · · · ,Qn] ∈ R
m×n0 , n0 := (n+1)r,

α =











α1

α2

...

αn











∈ R
n, ϕ(t) =











u(t)
u(t −1)

...

u(t −n)











∈ R
n0 ,

ψ(t) = [y(t −1),y(t −2), · · · ,y(t −n)] ∈ R
m×n.

Taking into account that there exist disturbances in the

physical systems and introducing a noise vector v(t) in (3)

yield

y(t)+ψ(t)α = θ Tϕ(t)+ v(t). (4)

Because the system in (4) contains both a parameter matrix

θ and a parameter vector α , Model (4) is transformed by

re-parameterization into a form which can be identified by

the standard recursive least squares (RLS) algorithm.

Let us introduce some notation first. The symbol Im is an

m×m identity matrix; the norm of the matrix X is defined by

‖X‖2 = tr[XX T]; ⊗ denotes the Kronecker product or direct

product, if A = [ai j] ∈ R
m×n, B = [bi j] ∈ R

p×q, then A⊗B =
[ai jB] ∈ R

mp×nq (in general, A⊗B 6= B⊗A); col[X ] denotes

the vector formed by the column of the matrix X , if X =
[x1,x2, · · · ,xn] ∈ R

m×n, xi ∈ R
m, i = 1,2, · · · ,n, then col[X ] =

[xT

1,x
T

2, · · · ,x
T

n]
T ∈ R

mn.

Define the parameter vector ϑ and the information matrix

Φ(t) as

ϑ =

[

α
col[θ T]

]

∈ R
n+mn0 ,

Φ(t) = [−ψ(t),ϕT(t)⊗ Im] ∈ R
m×(n+mn0).
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Based on the above definition, the system in (4) can be

written in the form:

y(t) = Φ(t)ϑ + v(t). (5)

For Model (5), Sen and Sinha used a matrix pseudo-inverse

approach [8] to give the following recursive least squares

algorithm to obtain the estimate ϑ̂(t) of ϑ ,

ϑ̂(t) = ϑ̂(t −1)+P(t)ΦT(t)[y(t)−Φ(t)ϑ̂(t −1)],(6)

P−1(t) = P−1(t −1)+ΦT(t)Φ(t). (7)

Applying the matrix inversion formula

(A+BC)−1 = A−1 −A−1B(I +CA−1B)−1CA−1

to (7) gives

P(t) = P(t −1)−P(t −1)ΦT(t)×

[Im +Φ(t)P(t −1)ΦT(t)]−1Φ(t)P(t −1).

However, the Sen and Sinha’s algorithm has large computa-

tional load since the information matrix Φ(t) ∈ R
m×(mn0+n)

in the estimation algorithm has very large sizes especially for

large m, r or n, which leads to compute the covariance matrix

P(t)∈R
(mn0+n)×(mn0+n) of large dimensions at each step, see

Table I. Therefore, the objective of this paper is, by means of

the hierarchical identification principle, to propose new and

computationally efficient identification algorithm to estimate

the unknown parameter vector ϑ and to study convergence

properties of the algorithm involved.

II. THE HIERARCHICAL LEAST SQUARES ALGORITHM

This section presents the hierarchical identification algo-

rithm with less computational efforts to estimate ϑ by us-

ing the hierarchical identification principle. The hierarchical

identification principle [3], [4] is to decompose the system in

(5) into several fictitious subsystems with smaller dimension

and fewer variables, and then the parameter vector of each

subsystem is identified, respectively[12]. However, because

there exists associated items between two subsystems, i.e.,

the ith subsystem contains the unknown parameter vector ϑ j

( j 6= i) of other subsystems, so it makes iterative calculations

difficulty. In order to settle this problem, when computing the

estimates of ϑ i in the ith subsystem at time t, we replace

the unknown parameter vectors ϑ j of other subsystems

with their estimates ϑ̂ j(t −1) at time (t −1). Now we will

derive hierarchical least squares algorithm according to the

hierarchical identification principle.

The information matrix Φ(t) in (5) is decomposed into

N information sub-matrices with dimensions m × ni, and

the parameter vector ϑ into N parameter sub-vectors with

dimensions ni, i.e.,

Φ(t) = [Φ1(t),Φ2(t), · · · ,ΦN(t)] ∈ R
m×(n+mn0),

ϑ =











ϑ 1

ϑ 2

...

ϑ N











∈ R
n+mn0 ,

Φi(t) ∈ R
m×ni , ϑ i ∈ R

ni , n1 +n2 + · · ·+nN = n+mn0.

Thus Equation (5) is decomposed into N submodels which

can be expressed as

yi(t) = Φi(t)ϑ i + v(t), i = 1,2, · · · ,N, (8)

where

yi(t) := y(t)−η i(t), (9)

η i(t) :=
N

∑
j=1, j 6=i

Φ j(t)ϑ j, i = 1,2, · · · ,N. (10)

η i(t) is called the associated items between the subsystems,

which contains the unknown parameter vector ϑ j ( j 6= i)
of other subsystems, yi(t) is a function of the associated

variables η i(t).
Let ϑ̂ i(t) denote the estimate of ϑ i at time t. According

to the least squares principle, one can get the following

recursive least squares algorithm for estimating ϑ i in (8),

ϑ̂ i(t) = ϑ̂ i(t −1)+P(t)ΦT(t)×

[yi(t)−Φi(t)ϑ̂ i(t −1)], (11)

P−1(t) = P−1(t −1)+ΦT(t)Φ(t). (12)

Substituting (9)-(10) into (11), we have

ϑ̂ i(t) = ϑ̂ i(t −1)+P(t)ΦT(t)×

[y(t)−η i(t)−Φi(t)ϑ̂ i(t −1)]

= ϑ̂ i(t −1)+P(t)ΦT(t)×
[

y(t)−
N

∑
j=1, j 6=i

Φ j(t)ϑ j −Φi(t)ϑ̂ i(t −1)

]

.

(13)

Difficulty arises in that the expression on the right-hand side

of (13) contains the unknown parameter vectors ϑ j, j =
1,2, · · · , i−1, i+1, · · · ,N; so the estimate ϑ̂ i(t) is impossible

to compute by (13). In order to compute the estimate ϑ̂ i(t),
the approach here is based on the hierarchical identification

principle: the unknown variables ϑ j ( j 6= i) in (13) are

replaced with their estimates ϑ̂ j(t − 1) at time (t − 1),
then we obtain the hierarchical least squares identification

algorithm as follows:

ϑ̂ i(t) = ϑ̂ i(t −1)+P(t)ΦT(t)×
[

y(t)−
N

∑
j=1, j 6=i

Φ j(t)ϑ̂ j(t −1)−Φi(t)ϑ̂ i(t −1)

]

= ϑ̂ i(t −1)+P(t)ΦT(t)[y(t)−Φ(t)ϑ̂(t −1)],

i = 1,2, · · · ,N, (14)

where

ϑ̂(t) =











ϑ̂ 1(t)

ϑ̂ 2(t)
...

ϑ̂ N(t)











∈ R
n+mn0 denotes the estimate of ϑ .

Equations (12) and (14) form the hierarchical least squares

identification algorithm for estimating the parameter vector
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ϑ . To initialize the algorithm, we generally take Pi(0) = p0Ini

with p0 normally a large positive number (e.g., p0 = 106)

and ϑ̂ i(0) = 1ni
/p0, i = 1,2, · · · ,N [7]. This HLS algorithm

differs not only from the ones in [1], [2] with two identifi-

cation submodels: one parameter vector and one parameter

matrix, but also from the ones in [4], [3] which decompose

the parameter vector and information vector into parameter

sub-vectors and information sub-vectors, and the parameter

matrix and information vector into parameter sub-matrices

and information sub-vectors, respectively, but the approach

decomposes the parameter vector and information matrix

into parameter sub-vectors and information sub-matrices,

So the algorithm is easy to implement on computer and

the contribution lies in reducing computational burden of

identification methods.

The computational burden of the hierarchical least squares

algorithm and the recursive least squares algorithm are

listed in Table I, where the numbers of multiplications and

additions are for each step, and the numbers in the brackets in

Table I denote the recorded numbers for a 5-input, 5-output

and 5th-order system at each step. Here, mn0 +n = 155, so

the parameter matrix Φ(t)∈R
5×155 and the parameter vector

ϑ ∈ R
155, we take N = 31, i.e., System (5) is decomposed

into N = 31 submodels and ni = 5, i = 1,2, · · · ,31. From

Table I, it is clear that the hierarchical least squares algorithm

is computationally more efficient than the RLS algorithms

[1], [2].

TABLE I

COMPARISON OF COMPUTATIONAL EFFICIENCY OF RLS AND HLS

Algorithm Number of multiplications Number of additions

2m(mn0 +n)2 2m(mn0 +n+m)×
RLS +2m(m+1)(mn0 +n) (mn0 +n)−m2 +m

[249550] [247980]
N

∑
i=1

[2mn2
i +2m(m+1)ni]

N

∑
i=1

[2m(ni +m)ni

HLS −m2 +m]
[17050] [14880]

III. CONVERGENCE OF HIERARCHICAL LEAST SQUARES

IDENTIFICATION

In order to study the convergence properties of the hier-

archical least squares algorithm, the following assumptions

and preliminary facts are required.

We assume that {v(t)} are martingale difference vector

sequences defined on a probability space (Ω,F ,P), where

{Ft} is generated by {v(t)} and including time t, i.e., Ft =
σ(y(t),u(t),y(t −1), · · · ,u(0)). The sequences {v(t)} satisfy

the noise assumptions [6]:

(A1) E[v(t)|Ft−1] = 0, a.s.

(A2) E[‖v(t)‖2|Ft−1] = σ2
v (t) ≤ σ2

v < ∞, a.s.

(A3) lim
t→∞

sup
1

t

t

∑
i=1

‖v(i)||2 ≤ σ2
v < ∞, a.s.

Lemma 1: If the symmetric matrix A = [Ai j]∈R
b×b, Ai j =

AT

ji ∈ R
ni×n j , satisfies c1I ≤ A ≤ c2I, where c1 and c2 are

positive constants, n1 +n2 + · · ·+nN = b, then

c1I ≤ diag[Aii, i = 1,2, · · · ,N] ≤ c2I, c1I ≤ Aii ≤ c2I.
Proof The proof is easy and omitted here.

Lemma 2: For the system in (5), if there exist an integer

p ≥ b := mn0 + n and constants c3 and c4 such that the

following strong persistent excitation condition holds,

(A4) c3I ≤
1

p

p−1

∑
j=0

ΦT(t − j)Φ(t − j) ≤ c4I, a.s.

According to Lemma 1 and (A4) we have

c3I ≤
1

p

p−1

∑
j=0

ΦT

i (t − j)Φi(t − j) ≤ c4I, a.s.

Then the covariance matrix Pi(t) satisfies

(t − p)c3I ≤ P−1
i (t) ≤ [c4(t + p)+1/p0]I.

Proof From (12) we have

P−1
i (t) = P−1

i (t −1)+ΦT

i (t)Φi(t)

= P−1
i (t − p)+

p−1

∑
k=0

ΦT

i (t − k)Φi(t − k).

Using Condition (A4) gives

P−1
i (t − p)+ pc3I ≤ P−1

i (t) ≤ P−1
i (t − p)+ pc4I.

Let t = p j + k, 0 ≤ k < p, so we have

P−1
i (t = p j + k) ≤ P−1

i [p( j−1)+ k]+ pc4I

≤ P−1
i [p( j−2)+ k]+2pc4I

≤ P−1
i (k)+ jpc4I

≤ P−1
i (0)+( j +1)pc4I

≤ P−1
i (0)+(t + p)c4I

= [c4(t + p)+1/p0]I.

A similar derivation leads to

P−1
i (t = p j + k) ≥ P−1

i (t)+ jpc3I ≥ jpc3I

≥ (t − p)c3I, t > p.

This completes the proof of lemma 2. ¤

Lemma 3: Assume that there exist functions f (t)≥ 0 and

g(t) ≥ 0 such that lim
t→∞

f (t) = f0, and series ∑∞
t=1 g(t) is

divergent and ∑∞
t=1 f (t)g(t) is convergent, i.e., ∑∞

t=1 g(t) = ∞
and ∑∞

t=1 f (t)g(t) < ∞, then f0 = 0.

Proof the proof is straightforward and is omitted here.

Theorem 1: For the system in (5) and the algorithm in

(12) and (14), assume that (A1)-(A4) hold, then the parame-

ter estimation error vector converges to zero, i.e., ϑ̂ i(t)→ϑ i,

or ϑ̂(t) → ϑ as t → ∞.

Proof Here, we apply martingale convergence theorem,

which is the main tools of analyzing the convergence of

recursive identification algorithms [5], [11] , to prove the

theorem above. For convergence analysis, the HLS algorithm
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in (12) and (14) needs to be transformed into an equivalent

form. From Lemma 2, we have

I

c4(t + p)+1/p0
≤ Pi(t) ≤

I

c3(t − p)
, t > p.

Thus, the algorithms (14) and (12) can be simplified as

ϑ̂ i(t) = ϑ̂ i(t −1)+ P̄i(t)Φ
T

i (t)×

[y(t)−Φ(t)ϑ̂(t −1)], (15)

P̄i(t) =







I, t ≤ p,
I

γt+c
, t > p, c > 0,

0 < c3 ≤ γ ≤ c4 < ∞.

(16)

The following is to prove lim
t→∞

ϑ̂ i(t) → ϑ i, or ϑ̂(t) → ϑ

for any γ ∈ [c3,c4]. Defined the parameter estimation error

vector,

ϑ̃ i(t) := ϑ̂ i(t)−ϑ i, (17)

and

ỹ(t) := Φ(t)ϑ̃(t −1) = Φ(t)ϑ̂(t −1)−Φ(t)ϑ

=
n

∑
i=1

Φi(t)ϑ̃ i(t −1). (18)

Substituting (15) into (17) and using (16), (5) and (18), we

have

ϑ̃ i(t) = ϑ̃ i(t −1)+
ΦT

i (t)

γt + c
[−ỹ(t)+ v(t)]. (19)

Taking the norm of both sides of (19) and the summation

from i = 1 to i = N is

‖ϑ̃(t)‖2 =
N

∑
i=1

‖ϑ̃ i(t −1)+
ΦT

i (t)

γt + c
[−ỹ(t)+ v(t)]‖2

= ‖ϑ̃(t −1)‖2 −

[

2

γt + c
−

‖Φ(t)‖2

(γt + c)2

]

‖ỹ(t)‖2

+
2

γt + c

[

1−
‖Φ(t)‖2

γt + c

]

ỹT(t)v(t)

+
‖Φ(t)‖2

(γt + c)2
‖v(t)‖2.

Taking the trace to Condition (A4) yields ‖Φ(t)‖2 ≤ c4 p. For

large t, γt + c−‖Φ(t)‖2 > 0, we have

‖ϑ̃(t)‖2 ≤ ‖ϑ̃(t −1)‖2 −
1

γt + c
‖ỹ(t)‖2 +

2

γt + c
×

[

1−
‖Φ(t)‖2

γt + c

]

ỹT(t)v(t)+
‖Φ(t)‖2

(γt + c)2
‖v(t)‖2. (20)

Using Conditions (A1)-(A3), since ϑ̃(t − 1), Φ̃(t), ỹ(t) are

uncorrelated with v(t) and are Ft−1 measurable, taking the

conditional expectation of both sides of (20) with respect to

Ft−1 gives

E[‖ϑ̃(t)‖2|Ft−1] ≤ ‖ϑ̃(t −1)‖2 −
1

γt + c
‖ỹ(t)‖2

+
c4 p

(γt + c)2
σ2

v . (21)

According to the martingale convergence theorem [6], [9],

we can draw that ‖ϑ̃(t)‖2 almost surely converges to a finite

random variable, say C0, i.e.,

‖ϑ̃(t)‖2 →C0 < ∞, a.s. (22)

and

lim
t→∞

t

∑
j=1

1

γ j + c
‖ỹ( j)‖2 < ∞, a.s. (23)

Further, from Equation (19) we have

ϑ̃ i(t + j) = ϑ̃ i(t −1)+
j

∑
k=0

ΦT

i (t + k)

γt + c
×

[−ỹ(t + k)+ v(t + k)], i = 1,2, · · · ,n,

which can be written a more compact form,

ϑ̃(t + j) = ϑ̃(t −1)+
j

∑
k=0

ΦT(t + k)

γt + c
×

[−ỹ(t + k)+ v(t + k)]

=: ϑ̃(t −1)+
j

∑
k=0

∆θ̃(t + k), (24)

where

∆θ̃(t) :=
ΦT(t)

γt + c
[−ỹ(t)+ v(t)]. (25)

From (18) we have

ỹ(t + j) = Φ(t + j)ϑ̃(t + j−1).

Substituting (24) into the above equation gives

Φ(t + j)ϑ̃(t −1) = ỹ(t + j)−Φ(t + j)
j−1

∑
k=0

∆θ̃(t + k).

Taking the norm ‖∗‖ and summing from j = 0 to j = p−1

gives

ϑ̃
T

(t −1)

[

p−1

∑
j=0

ΦT(t + j)Φ(t + j)

]

ϑ̃(t −1)

=
p−1

∑
j=0

∥

∥

∥

∥

∥

ỹ(t + j)−Φ(t + j)
j−1

∑
k=0

∆θ̃(t + k)

∥

∥

∥

∥

∥

2

.

Using Condition (A4), we have

‖ϑ̃(t −1)‖2 ≤
2

c3 p

p−1

∑
j=0

‖ỹ(t + j)‖2

+
2c4

c3

p−1

∑
j=0

j−1

∑
k=0

∥

∥∆θ̃(t + k)
∥

∥

2
.

Dividing by γl +c and the summing from l = l0 to l = t yield

t

∑
l=l0

‖ϑ̃(l −1)‖2

γl + c
≤

2

c3 p

p−1

∑
j=0

t

∑
l=l0

‖ỹ(t + j)‖2

γl + c
+

2c4

c3
×

p−1

∑
j=0

j−1

∑
k=0

t

∑
l=l0

‖∆θ̃(t + k)‖2

γl + c
. (26)
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Also, we have

lim
t→∞

t

∑
l=l0

‖∆θ̃(l + k)‖2

γl + c

=
t

∑
l=l0

1

γl + c
‖

ΦT(l + k)

γ(l + k)+ c
×

[−ỹ(l + k)+ v(l + k)]‖2

≤
t

∑
l=l0

2‖ỹ(l + k)‖2

γ(l + k)+ c

+
t

∑
l=l0

2‖v(l + k)‖2

(γl + c)[γ(l + k)+ c]
< ∞, a.s. (27)

Using (23) and (27), from (26) we have

lim
t→∞

t

∑
l=l0

‖ϑ̃(l −1)‖2

γl + c
< ∞, a.s. (28)

Since ‖ϑ̃(t)‖2 almost surely converges to a random variable

C0, using Lemma 3 leads to C0 → 0 as t → ∞. That means

that the estimate ϑ̂(t) converges to the true parameter vector

ϑ . This completes the proof of Theorem 1. ¤

IV. SIMULATION TESTS

Consider a 2-input, 2-output stochastic system,
[

y1(t)
y2(t)

]

−α1

[

y1(t −1)
y2(t −1)

]

−α2

[

y1(t −2)
y2(t −2)

]

= Q1

[

u1(t −1)
u2(t −1)

]

+Q2

[

u1(t −2)
u2(t −2)

]

+

[

v1(t)
v2(t)

]

,

where m = n = r = 2,

α =

[

α1

α2

]

=

[

0.5
0.8

]

,

θ T = Q = [Q1,Q2] = [Q(i, j)] =

[

2.0 0.6 1.3 1.0
1.0 1.2 1.5 2.0

]

.

Here {u1(t)} and {u2(t)} were taken as two persistent exci-

tation signal sequences with zero mean and unit variances,

{v1(t)} and {v2(t)} as two white noise sequences with zero

mean and variances σ2(1) and σ2(2). The system contains

mn0 + r = 10 parameters and is decomposed into N = 2

subsystem (thus n1 = n2 = 5). The proposed algorithm is

applied to estimate the parameters, the parameter estimation

error δ := ‖ϑ̂(t)−ϑ‖/‖ϑ‖ versus t is shown in Figure 1.

When the noise variances are σ2(1) = 0.202 and σ2(2) =
0.402, the noise-to-signal ratios of two output channels are

δns(1) = 8.71% and δns(2) = 15.66%; when σ2(1) = 0.602

and σ2(2) = 0.802, δns(1) = 26.13% and δns(2) = 31.32%.

From Figure 1, it is clear that the estimation errors

become generally small as the data length increasing, and the

estimation accuracy become high for smaller noise variances.

V. CONCLUSION

This paper presents the hierarchical least squares identi-

fication algorithm to reduce the computational burden for

multivariable systems according to the hierarchical identifi-

cation principle. Compared with the existing identification
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1: σ2(1) = 0.22, σ2(2) = 0.42;

2: σ2(1) = 0.62, σ2(2) = 0.82.

Fig. 1. The HLS estimation errors δ versus t with the different σ2(i)

algorithms, the proposed algorithm has small computational

load and is easy to implement on computer. The convergence

analysis of the algorithm using the martingale convergence

theorem is done only for its simplified version. Finally, we

verify the theoretical findings through simulation.
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