
On-line identification of contact dynamics in the presence of geometric
uncertainties

Diederik Verscheure∗, Jan Swevers∗, Herman Bruyninckx∗, Joris De Schutter∗

Abstract— Robots are increasingly used to perform complex
tasks, which often involve interaction and contact with unstruc-
tured environments. By identifying geometric uncertainties and
the dynamic behavior of the environment on-line, the autonomy
of intelligent robot systems can be considerably improved. This
paper considers the 2D case of an industrial robot equipped
with a probe to explore an unknown environment. The goal is to
estimate from the measured end-effector position, velocity and
forces not only the environmental contact dynamics parameters,
but also geometric parameters such as the environment position
and orientation, and the position of the probe end-point with
respect to the robot end-effector. To this end, a Kalman
filter based algorithm is proposed, which enforces physical
constraints and which is executed in an event-triggered way
to improve convergence and robustness. Experimental results
illustrate the viability of the proposed algorithm.

I. INTRODUCTION

THE AUTONOMY of intelligent robot systems can be
considerably improved by taking into account geomet-

ric uncertainties and the dynamic behavior of the environ-
ment. Specifically, knowledge of the contact dynamics can be
used to increase the robustness of the low-level controllers,
while identification of uncertain geometric parameters can be
used to improve task execution. Extending the identification
skills of robots is essential for applications such as industrial
processes, robot surgery and space manipulation.

Initial efforts in on-line identification of contact dynamics
were motivated by the problem of identifying the environ-
ment stiffness in the context of impedance control [1]–[4],
while more recent efforts are also motivated by the need
to improve the autonomy of robots [5]–[8]. The dynamics
of the environment are typically approximated by a linear
spring, spring-damper, or mass-spring-damper model, while
the contact dynamics parameters are estimated using adaptive
control methods [2], [4], [9], (extended) Kalman filtering [1],
[5], recursive least squares [3], [6]–[8].

Most of these methods, however, consider the geometry of
the environment to be known or partially known and focus
only on identification of the contact dynamics. In contrast,
this paper considers both the environment stiffness and fric-
tion and tackles the contact dynamics identification problem
in the presence of full geometric uncertainties. Specifically,
the case of a typical industrial robot equipped with a probe to
explore an unknown environment is considered. The position
and velocity of the robot end-effector and the forces acting
on the end-effector are measured and the goal is to estimate
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not only the environmental contact dynamics parameters, but
also geometric parameters such as the environment position
and orientation, and the position of the probe end-point with
respect to the robot end-effector. The considered case is
useful in the context of autonomous environment exploration,
and it is also the archetype for a lot of tasks involving a robot
holding or manipulating in an uncertain way an unknown
object in contact with an unknown environment. This paper
focuses on a 2D case, although the methodology can be
generalized to 3D cases without drastic modifications.

The outline of this paper is as follows. Section II describes
the geometric and dynamic modeling approach. Section III
defines the nonlinear state space model and proposes a
Kalman filter based identification algorithm. Section IV dis-
cusses a number of considerations concerning the excitation
signals for the identification. Subsequently, the identification
algorithm is verified experimentally in Section V. Finally,
Section VI discusses conclusions and future work.

II. MODELING

Section II-A discusses the modeling assumptions, while
Section II-B discusses the choice of the contact dynamics
models. In Section II-C, the parameter set is chosen and the
contact dynamics equations are given.

A. Modeling assumptions

First, the compliance of the environment is modelled only
in the normal direction, such that forces tangential to the
environment are assumed to be entirely due to friction.
Furthermore, the environment geometry is assumed to be
only lightly-curved and the probe mounted on the robot is
assumed to be a rigid, sharp object ending in a single vertex.
Furthermore, the robot motions are assumed to be sufficiently
slow, such that inertial forces may be neglected, while gravity
forces are compensated for in the force measurements.

B. Contact dynamics models

Since this paper considers excitation signals that can be
executed by a typical industrial robot, it is unlikely that
identification of damping or mass parameters in the force-
deformation relation is possible, as this requires excitation
signals with frequency contents above a few Hz [8], [9].
Therefore, the force-deformation relation is described by a
simple linear spring model

Fn(δ) =
{

κδ, if δ > 0,
0, if δ ≤ 0,

(1)

where δ and κ are the environment deformation and stiffness.
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Fig. 1. The geometric parameters and variables.

For the friction model, a Coulomb model variant is chosen

Ff (vt) =
{

undefined, if |vt| < vt,m

−sgn(vt)(µFn), if |vt| ≥ vt,m,
(2)

where vt is the relative tangential velocity in the contact,
sgn(·) is defined as the signum function, µ is the coefficient
of friction, vt,m is a threshold velocity. The sticking phase is
explicitly chosen not to be modelled, and the only require-
ment for the choice of the threshold velocity vt,m is that it
needs to be large enough, such that model (2) is only used
in the sliding phase.

C. Geometric and dynamic modeling

The choice of the contact dynamics parameters follows
logically from the chosen models. In contrast, the choice of
the geometric parameters is not unique and does not nes-
sarily result in a minimal description. For the identification,
however, it is useful to use a minimal parameterisation and
to choose geometric variables that are static in the frames in
which they are defined, in other words geometric parameters,
as this avoids the need for nonlinear constraints between the
parameters and nonlinear process equations respectively.

Skipping the details concerning the choice of the parame-
ter set, the parameters describing the geometric uncertainties
are xp and yp, representing the coordinates of the probe end-
point in the end-effector frame o1 (Fig. 1), and φ and d,
representing the orientation and offset of the environment
surface with respect to the world frame w (Fig. 1). The
geometric variables describing the position of the robot with
respect to the world frame w are xr, yr and αr (Fig. 1).

Once the parameter set has been fixed, the contact dynam-
ics equations can be derived. Omitting the derivation, the
relation in the sliding phase, between the measured forces
Fx, Fy and Mz , the measured end-effector position, the
geometric and dynamic parameters, and the deformation δ
and the velocity vp

t of the probe end-point tangential to the
environment surface, can be written as

Fx = κδ(−sgn(vp
t )µC(αr−φ) + S(αr−φ)), (3)

Fy = κδ(sgn(vp
t )µS(αr−φ) + C(αr−φ)), (4)

Mz = κδ(sgn(vp
t )µ(C(αr−φ)y

p + S(αr−φ)x
p)

+ (C(αr−φ)x
p − S(αr−φ)y

p)), (5)

where C(·) and S(·) are shorthand notations for cos(·) and
sin(·) respectively. The environment deformation δ and the
tangential velocity of the contact point vp

t can also be

rewritten in terms of the measured end-effector position and
velocity and the geometric parameters, namely

δ = Sφxr − Cφyr − S(αr−φ)x
p − C(αr−φ)y

p + d, (6)
vp

t = Cφẋr + Sφẏr − (S(αr−φ)x
p + C(αr−φ)y

p)α̇r. (7)

Using equations (6) and (7), δ and vp
t can be eliminated

so that the equations (3)-(5) depend only on the force
measurements, the robot end-effector position and velocity
measurements, and the geometric and dynamic parameters.

III. IDENTIFICATION

In this section, a state space representation for the chosen
geometric and dynamic parameters and the states of the
system is constructed. The states are the dynamic variables
which describe the state of the combined system of the robot
and the environment, namely the position and velocity of
the robot. The process equation is specified in Section III-
A, and the measurement equation is defined in Section III-
B. Section III-C proposes a Kalman filter based algorithm,
which is executed in an event-triggered way as explained in
Section III-D to improve convergence and robustness.

A. Process equation for the parameters and states

Since the measured end-effector position and velocity may
be noisy and the end-effector acceleration is bounded and
usually exhibits some form of continuity, the accuracy of the
estimated position and velocity can be improved by including
the end-effector acceleration as a state variable and tracking
these quantities with a white-noise jerk process model [10] xp

k

xv
k

xa
k

 =

 1 Ts
Ts

2
0 1 Ts

0 0 1

  xp
k−1

xv
k−1

xa
k−1

 +

 εp
k−1

εv
k−1

εa
k−1

 ,

(8)

where Ts is the sample time, εp
k−1, εv

k−1 and εa
k−1 are

Gaussian noise vectors and where xp
k = (xr

k, yr
k, αr

k)T ,
xv

k = (ẋr
k, ẏr

k, α̇r
k)T and xa

k = (ẍr
k, ÿr

k, α̈r
k) represent the

end-effector position, velocity and acceleration.
For the geometric and dynamic parameters, which may be

slowly varying, very often, the process equation is chosen as

xs
k = xs

k−1 + εs
k−1, (9)

where εs
k−1 is a Gaussian noise vector and xs

k contains the
geometric and dynamic parameters at time-step k, namely
xs

k = (xp
k, yp

k, φk, dk, κk, µk)T . However, process equation
(9) implicitly assumes that the parameters vary with time,
while it is more reasonable to assume that they vary with
the position of the contact point on the environment sur-
face. Furthermore, process equation (9) is unreasonable for
physically constrained parameters, such as the environment
stiffness which is always positive, since the model expresses
that the stiffness can become negative at any time.

To solve the first problem, the uncertainty on the geometric
and dynamic parameters is increased only when the contact
point has moved by a certain threshold amount. The second
problem can be solved by a reparameterisation. Instead of
assuming κk and µk to have a Gaussian distribution for a
given κk−1 and µk−1, as expressed by model (9), they can
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be assumed to have a Johnson distribution [11]. Specifically,
if a variable x is known to have an upper bound xu and
lower bound xl and only the mean and standard deviation
are known, then the least informative distribution which
summarizes this information is the Johnson distribution

p(x) =
exp

(
−(ln( x−xl

xu−x )− γ)2/(2σ2)
)

√
2πσ(x− xl)(xu − x)

= J (x; γ, σ;xl, xu),

for x ∈ [xl, xu]. γ and σ are not actually the mean and stan-
dard deviation of x, although they determine the mean and
standard deviation. Furthermore, if x ∼ J (x; γ, σ;xl, xu)
then s = ln

(
x−xl

xu−x

)
has a Gaussian distribution

p(s) =
1√
2πσ

exp
(
− (s− γ)2

2σ2

)
= N (s; γ, σ), (10)

where s ∈ R and x = (exp(s)xu + xl)/(exp(s) + 1). Using
this knowledge, instead of estimating κk and µk directly,

κ̃k = ln
(

κk − 0
κ− κk

)
and µ̃k = ln

(
µk − 0
µ− µk

)
(11)

are estimated instead, such that κk and µk are restricted to
lie in [0, κ] and [0, µ] respectively. Because of the reparam-
eterisation, the parameter vector is changed to

xs
k = (xp

k, yp
k, φk, dk, κ̃k, µ̃k)T (12)

and process equation (9) is adopted for the modified param-
eter vector. Equation (9) correctly specifies that κ̃k and µ̃k

can evolve in an unconstrained way, implying that κk and
µk evolve in a constrained way.

B. Measurement equation

The measurement equation relates the measurements to
the geometric and dynamic parameters and the states as zw,k

zp,k

zv,k

 =

 hw(xs
k,xp

k,xv
k)

xp
k

xv
k

 + νk, (13)

where νk is a Gaussian measurement noise vector, zp,k, zv,k

and zw,k are the measured end-effector position, velocity and
force acting on the end-effector, and where hw(xs

k,xp
k,xv

k)
contains the expressions (3)-(5) in which δ and vp

t have been
replaced with equations (6) and (7) and κk and µk have
been replaced by inverting the expressions (11). Thanks to
the reparameterisation, the measurement equation indirectly
excludes negative values of the stiffness and the coefficient
of friction, such that an estimation algorithm using this
parameter set cannot converge to non-physical values.

By combining equations (8)-(9) and (13), a compound
state space model is obtained with a linear process equation
xk = Fxk−1 + εk−1 and nonlinear measurement equation
zk = h(xk) + νk, where xk = (xp

k,xv
k,xa

k,xs
k)T and

zk = (zw,k, zp,k, zv,k)T .

C. On-line hybrid estimation algorithm
For on-line estimation, techniques such as Kalman filters

[12]–[14], particle filters [15] or moving horizon estimation
[16] can be applied to the nonlinear state space model (8)-
(9),(13). This paper adopts a Kalman filter approach which
is computationally more attractive.

Unfortunately, the state space model contains an im-
portant discontinuity introduced by the signum function in
the friction model, thus causing a significant amount of
bimodality, such that a basic nonlinear Kalman filter cannot
be applied successfully. This discontinuity can be dealt with,
by considering the state space model to be that of a hybrid
system with autonomous mode transitions [17], [18], where
sgn(vp

t ) is a discrete state that depends on the continuous
states. A velocity reversal can be regarded as an autonomous
mode transition, where the sign of vp

t is the guard condition.
A number of ways exist to deal with hybrid systems with
autonomous mode transitions, including particle filtering
[15], Rao-Blackwellized particle filtering [18], hybrid mode
estimation [17] and multiple model estimation [12]. In this
paper, a multiple model approach is considered, since this is
a computationally more attractive approach.

In the multiple model approach, the nonlinear hybrid state
space model is split up into two different models. In the
measurement equation h(xk), sgn(vp

t ) is simply replaced
by 1, yielding a first model with measurement equation
h(1)(xk), while for the second model, the measurement
equation is h(2)(xk), which is equal to h(xk) except that
sgn(vp

t ) has been replaced by −1. The process equation is
the same for both models. For the estimation, two Kalman
filters are run in parallel and their estimates and covariances
are merged at every time-step using the first-order gener-
alized pseudo-Bayesian (GPB1) algorithm [12]. Assuming
a Gaussian probability with mean x̂k−1|k−1 and covariance
Pk−1|k−1 at time-step k − 1, the mean and covariance of
the predicted probability density function (PDF) can be
calculated as [12]

x̂k|k−1 = Fx̂k−1|k−1 (14)

Pk|k−1 = FPk−1|k−1FT + Qk−1. (15)

Similarly, assuming a Gaussian probability with mean x̂k|k−1

and covariance Pk|k−1, the measurement update for both
models models can be calculated as [12]

ẑ(i)
k|k−1 = E[(h(i)(xk) + νk)|Zk−1], (16)

P(i)
zz,k|k−1 = E[(h(i)(xk) + νk − ẑk|k−1)

× (h(i)(xk) + νk − ẑk|k−1)T |Zk−1], (17)

P(i)
zx,k|k−1 = E[(h(i)(xk) + νk − ẑk|k−1)

× (xk − x̂k|k−1)T |Zk−1], (18)

K(i)
k = (P(i)

zx,k|k−1)
T (P(i)

zz,k|k−1)
−1, (19)

P(i)
k|k = Pk|k−1 −K(i)

k P(i)
zz,k|k−1(K

(i)
k )T , (20)

x̂(i)
k|k = x̂k|k−1 + (K(i)

k )(zk − ẑ(i)
k|k−1), (21)

for i = 1, 2. To evaluate the expectations (16)-(21), different
approaches exist, yielding different Kalman filter variants.
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This paper uses an exact monomial integration rule of degree
seven [19], yielding a higher-order variant of the unscented
Kalman filter. After the measurement update, the estimates
are merged as [12]

x̂k|k =
2∑

i=1

x̂(i)
k|kν

(i)
k (22)

Pk|k =
2∑

i=1

(P(i)
k|k + (x̂k|k − x̂(i)

k|k)(x̂k|k − x̂(i)
k|k)T )ν(i)

k|k, (23)

where ν
(i)
k|k =

ν
(i)
k|k−1L

(i)
k∑2

j=1 ν
(j)
k|k−1L

(j)
k

. (24)

L(i)
k is the likelihood calculated in the measurement update

of model i. L(i)
k is defined for an n-dimensional state as

L(i)
k =

exp
(
− 1

2 (zk − ẑ(i)
k|k−1)

T (P(i)
zz,k|k−1)

−1(zk − ẑ(i)
k|k−1)

)
|(2π)nP(i)

zz,k|k−1|1/2

and ν
(1)
k|k−1 = P ((sgn(vp

t,k) = 1)|Zk−1) is the predicted
probability that sgn(vp

t ) will be 1 at time-step k and
ν

(2)
k|k−1 = P ((sgn(vp

t,k) = −1)|Zk−1) = 1− ν
(1)
k|k−1.

ν
(1)
k|k−1 can be calculated by drawing samples x̂(j)

k|k−1 from
the multivariate Gaussian distribution with mean x̂k|k−1 and
covariance Pk|k−1 and calculating the proportion of samples
for which vp

t (x̂(j)
k|k−1) > 1.

D. Event-triggered estimation

Instead of running the estimation algorithm in a time-
triggered fashion, an event-triggered approach is adopted,
which is motivated by three important considerations. First,
the estimation algorithm chosen in Section III-C is only
approximate, because Kalman filters for nonlinear systems
are always approximate, and the multiple model approach
adopted in Section III-C is also only approximate. Because
of the approximate nature of the algorithm, it is only useful
to process measurements when they are informative, while
processing uninformative measurements does not yield any
new information and can even result in information loss.
Measurements can only contain significant new information
if the robot has moved while remaining in contact, either
normal or tangential to the environment surface or a combi-
nation of both.

Second, as mentioned in Section III-A, the geometric
and dynamic parameters do not vary with time, but instead
with the position of the probe end-point on the environment
surface. Hence, it is reasonable to increase the uncertainty
on the parameters at time T + ∆t only when the probe end-
point has moved by a certain threshold amount ∆st,m since
time T . In other words if ∆sp

t =
∫ T+∆t

T
vp

t (t)dt > ∆st,m.
Third, the chosen friction model is not able to account

for the frictional behavior in the sticking phase. Neither the
evolution of the coefficient of friction, nor the behavior as
a function of the tangential velocity is correctly modelled
by process model (9) and model (2). Therefore, it is only

Algorithm 1 The event-triggered estimation algorithm.
if ∆sp

t > ∆st,m then
Process update: Increase uncertainty on states and parameters
and calculate x̂k|k−1, Pk|k−1

Reset ∆sp
t

else
Reduced process update: Increase uncertainty only on states
and calculate x̂k|k−1, Pk|k−1

∆sp
t = ∆sp

t + v̂p
t Ts

end if
Sample x̂

(j)

k|k−1 and calculate vp
t (x̂

(j)

k|k−1)

Calculate ν
(1)

k|k−1, ν
(2)

k|k−1 and v̂p
t

if v̂p
t > vt,m then

Measurement update 1: Calculate x̂
(1)

k−1|k−1, P
(1)

k−1|k−1

Measurement update 2: Calculate x̂
(2)

k−1|k−1, P
(2)

k−1|k−1

Merge estimates: Calculate x̂k−1|k−1, Pk−1|k−1

else
Reduced measurement update: Calculate x̂k−1|k−1, Pk−1|k−1

using only zp,k, zv,k

end if

reasonable to process force measurements when the tangen-
tial velocity of the probe end-point along the environment
surface is sufficiently high. In other words, if vp

t > vt,m.
The above considerations give rise to Algorithm 1, which

is executed at a fixed frequency, but where the process and
measurement updates are executed in an event-triggered way.
Due to the choice of the sampling approach to calculate
ν

(i)
k|k−1, a set of samples vp

t (x̂(j)
k|k−1), is available, from which

a nominal estimate v̂p
t can be obtained as the mean. ∆sp

t is
calculated by integrating v̂p

t . Increasing the uncertainty on
the parameters in an event-triggered way is beneficial for
convergence and reduces the need for persistent excitation,
while processing the force measurements only in the sliding
phase increases the robustness because the estimation algo-
rithm is not confronted with measurements that cannot be
explained by the measurement equations.

IV. EXCITATION

This section discusses some heuristic considerations re-
garding excitation signals. Determining sufficiently exciting
signals by solving an optimization problem, is known as
active sensing [20]. In [20], it is found that excitation signals
for geometric parameter estimation, determined by active
sensing, do not seem to differ greatly from heuristically
conceived signals. Therefore, this paper limits itself to an
intuitive choice of excitation signals.

A number of considerations to improve the observability
of the geometric and dynamic parameters are given below:

Fig. 2. The excitation used to explore an unknown environment.
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• the probe vertex coordinates xp, yp: the moment acting
on the end-effector reveals information about the coor-
dinates of the probe vertex (equation (5)). By varying
the moment by rotating around the probe vertex, these
parameters can be estimated more accurately.

• the environment orientation φ and the coefficient of
friction µ: the forces acting on the end-effector provide
information about the orientation of the environment,
but this information is disturbed by friction forces.
By changing the sign of the tangential velocity of
the probe vertex, the force direction wil vary almost
discontinuously, thus allowing to discern the friction
component. Velocity reversals significantly improve the
estimation accuracy of both the environment orientation
and the coefficient of friction. In fact, the friction
coefficient and the environment orientation are difficult
to observe simultaneously if no velocity reversals occur,
as a change in the direction of the measured force
may be attributed to a change in the orientation of the
environment, or a change in the coefficient of friction.

• the environment position d: the estimation accuracy
of d is affected by the estimation accuracy of xp,
yp and φ, such that excitation signals which increase
the observability of xp, yp and φ will also indirectly
improve the observability of d.

• the environment stiffness κ: the stiffness can be esti-
mated accurately by varying the environment deforma-
tion. Hence, increasing and decreasing the deformation
of the environment improves the stiffness estimation.

Based on these considerations, excitation signals as shown
schematically in Fig. 2 are applied. The motion corresponds
largely to what humans usually do when exploring an
unknown surface with a probe, namely sliding back and
forth, while orienting the probe in the opposite direction
of the sliding direction. During the sliding motions, the
environment is deformed in a sinusoidal way.

V. EXPERIMENTAL RESULTS

The approach explained in Section III is validated experi-
mentally on the setup shown in Fig. 3. The absolute accuracy
of the end-effector position calculated from the encoder
measurements is not satisfactory due to errors in the forward
kinematics. Therefore, a tool with markers is mounted on the
robot end-effector, such that the end-effector position can be
measured directly, using a Metris K600 camera system. The

Fig. 3. A robot using a probe to explore an unknown environment.

0 5 10 15 20 25 30 35 40 45

−0.5

0

0.5

1

time (s)

p
o
s
it
io

n
 (

m
)

 

 

actual x
p

estimated x
p

95% bounds

0 5 10 15 20 25 30 35 40 45

−0.5

0

0.5

time (s)

p
o
s
it
io

n
 (

m
)

 

 

actual y
p

estimated y
p

95% bounds

Fig. 4. Estimated x- and y-coordinate x̂p and ŷp of the probe vertex.

probe is mounted on the tool and is brought into contact with
the environment, which consists of a thick layer of rubber.
A position trajectory, that satisfies the heuristic requirements
discussed in Section IV, is applied to the robot to excite the
environment. The applied trajectory is calculated beforehand
based on a first rough estimate of the values of the geometric
and the dynamic parameters, such that contact between the
robot and the environment is maintained and in such a way
that interaction forces do not exceed 50 N .

The estimation starts when contact is made and mea-
surements are processed at 25Hz. In Fig. 4, the estimated
coordinates x̂p and ŷp of the probe end-point are shown. In
Fig. 5, the estimated environment orientation φ̂ and offset
d̂ are shown. In Fig. 6, the estimated stiffness κ̂ and coef-
ficient of friction µ̂ are shown, which are calculated using
numerical integration as the expected values of (exp(κ̃k)κ+
0)/(exp(κ̃k) + 1) and (exp(µ̃k)µ + 0)/(exp(µ̃k) + 1) re-
spectively. In Fig. 7, the estimated tangential velocity v̂p

t

of the probe end-point is shown. Initially, the tangential
velocity is not accurately estimated. As the accuracy of
the geometric parameters increases, however, the tangential
velocity is estimated more accurately and the estimates of
the environment stiffness and friction coefficient converge
to the reference values. The convergence of the parameters
is strongly linked to the excitation. The accuracy of the
geometric parameters improves considerably, when the probe
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Fig. 5. Estimated environment surface orientation φ̂ and offset d̂.
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Fig. 6. Estimated environment stiffness κ̂ and coefficient of friction µ̂.

is rotated for the first time at t = 2.5 s, while the stiffness
estimates κ̂ are only updated significantly when the envi-
ronment is deformed during the sliding phase. The reference
values for the geometric parameters were measured while the
values for the dynamic parameters were calculated off-line
from the gathered measurements using the reference values
for the geometric parameters. The parameter estimates are
not updated when the tangential velocity is low. Therefore,
the estimated coefficient of friction is not shown at these
instances. The accuracy of the parameters estimated by the
algorithm is of the same order of magnitude as the confidence
in the reference values, namely 2 · 10−3 m and 3 · 10−2 rad
for the geometric parameters and 500N

m and 3 · 10−3 for the
stiffness and the coefficient of friction respectively. Since the
end-effector position and velocity are measured directly, the
estimation accuracy is naturally quite good. Therefore, the
figures of the estimated end-effector position, velocity and
acceleration are omitted.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a Kalman filter based identification algorithm
is proposed to simultaneously estimate contact dynamics pa-
rameters and geometric uncertainties on-line, which is able to
deal with the discontinuity introduced by the friction model.
In addition, physical constraints on the dynamic parameters
are enforced by a reparameterisation, and convergence and
robustness are improved by running the algorithm in an
event-triggered fashion. Experimental results are presented,
which illustrate the viability of the approach.

Future work consists of integrating the identification algo-
rithm with a control algorithm and path planning algorithm
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to allow fully autonomous environment exploration, and
extension of the proposed approach to 3D cases, with single
or multiple contact points.
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