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Abstract— A wavelet network (WN) friction model has been
developed for robots where the friction is coupled, such that
it is a function of the velocity of multiple joints. Wavelets
have the ability to estimate random friction maps without
any prior modeling while preserving linearity in the model
parameters. The WN friction model was compared against
the Coulomb+viscous (CV) model through experiments with
the PHANTOM Omni haptic device (SensAble Technologies,
MA, USA); however, the theory is valid for any serial-chain
robotic manipulator. Ability to estimate applied motor torques
was used as the performance metric, quantified using relative
RMS values. During training of the WN model it outperformed
the CV model in all cases, with an improvement in relative
RMS ranging from 0.4 to 7.5 percentage points, illustrating the
potential of the WN friction model. However, during testing of
the WN model on an independent data set results were mixed,
highlighting the challenge of achieving sufficient training.

I. INTRODUCTION

When building the dynamic model of a robot the joint

friction presents a difficult challenge. Our goal is to utilize

the knowledge of the dynamic model to estimate the contact

forces when a robot is interacting with soft tissue during

teleoperated surgery. In this case the robot will operate

at low velocities, where friction effects are dominant. The

most common friction model used in engineering is the

Coulomb+viscous (CV) model [1], [2]. Several useful fric-

tion models also exist that can capture more complex phe-

nomena such as hysteresis, pre-sliding displacement, varying

break-away force and the Stribeck effect [3], [4], [5], [6].

When the friction in a joint of the robot is coupled, in the

sense that it depends on the velocity in multiple joints and/or

actuators, friction modeling is complicated further. Prisco

and Bergamasco [7] modeled viscous friction in a class

of tendon-driven manipulators by employing a dissipation

function. Kobayashi and Ozawa [8] proposed to use neural

networks to model tendon-driven mechanisms, thus also

attempting to capture the inherent joint friction.

The ideal dynamic equation of a robot—computed using

for instance the Lagrangian—is linear in the model pa-

rameters. For that reason it is desirable to use a friction

model that preserves this property, like the CV model, to

simplify analysis and implementation. De Wit et al. [9]

proposed a linear-in-parameter extension to the CV model to

approximate the Stribeck effect. Jatta et al. [10] performed

contour tracking with a robot whose friction was modeled

with a polynomial function. Non-classical techniques like

wavelets, neural networks and fuzzy systems have also been

proposed for friction modeling. Huang et al. [11] performed

simulations with a single mass system where the Stribeck

effect was compensated for using a radial basis function

(RBF) network; Du and Nair [12] presented a method to

compensate for friction in a DC motor at low velocities using

wavelets; Santibañez et al. [13] proposed a fuzzy controller

where the steady-state position error could be arbitrarily

reduced even in the presence of static friction; and Gomes

et al. [14] applied a neuro-fuzzy system to compensate for

friction where the friction was allowed to drift over time.

A finite-size expansion (network) of wavelets can approxi-

mate random non-linear functions such as a friction map to a

desired accuracy, as long as one can assume that the friction

is sufficiently described as a static function of one or more

variables, such as velocity. In addition to being linear in the

parameters a wavelet network (WN) friction model does not

make a priori assumptions about the shape of the friction

map. In this paper a general WN friction model is developed

for a robot with d degrees of freedom (DOF), where the

friction in each joint can be a function of the velocity of

one or more joints. The best fit wavelets are automatically

selected with a thresholding procedure, and a Lyapunov

approach is used to prove the stability and convergence

properties of the parameter adaptation law. The model is

compared against the CV model, and it is hypothesized that

because of its function approximation ability the WN model

will perform better. It is not attempted to compete with the

more advanced dynamic friction models, the intention is

rather to build a model which is conceptually as simple as the

CV model, but with improved performance. The experiments

are performed using the PHANTOM Omni haptic device

from SensAble Technologies, Massachusetts, USA.

II. PROBLEM STATEMENT

The dynamics of a d-DOF robot can be described as

M(q)q̈ + C(q, q̇)q̇ + N(q) + τ f (q̇) = τ (1)

where q ∈ R
d is the angle vector, M ∈ R

d×d is the

manipulator inertia matrix, C ∈ R
d×d is the Coriolis matrix,

N ∈ R
d is the gravity vector, τ f ∈ R

d is the joint friction

vector and τ ∈ R
d is the motor torque vector. The problem

to be solved can be stated as follows.

Friction estimation problem: Given M , C, N , q and τ ,

compute an estimate of the robot’s joint friction τ f . The
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friction model should be linear in the parameters, and it

should be able to take coupled friction into account.

Two main (and independent) assumptions are made.

Assumption 1: The friction in the joints of the robot is

sufficiently described with a static map from velocity to

force. Dynamic friction phenomena are neglected, in order

to have a friction model which is linear in its parameters.

Assumption 2: The angular velocity q̇ remains small. In

particular, it is confined to a bounded subset Xr ⊂ R
d, and

the approximation Ṁ ≈ 0 can be justified.

Initially the matrices M , C and N are not given either.

Hence, for the purpose of parameter identification (1) is

rewritten (without the friction term τ f ) so that the unknown

parameters occur linearly as:

Y (q̈, q̇, q)α = τ (2)

where Y ∈ R
d×p is the regressor matrix, α ∈ R

p is the

parameter vector, and p is the number of unknown parame-

ters. Acceleration measurements are often not available and

must be obtained via numerical differentiation of the velocity,

thereby producing noisy signals. In order to eliminate the

dependency of acceleration from the regressor matrix, both

sides of (2) are run through a first order low-pass filter

ω/(s+ ω) [15]. The dynamic equation becomes

Y L(q̇, q)α = τL (3)

where Y L and τL are the filtered versions of Y and τ ,

respectively. A linear optimization method can be used with

(3) to identify the values of the elements in α.

III. FRICTION ESTIMATION WITH WAVELET NETWORKS

Below, a friction model based on wavelet theory is pre-

sented as a solution to the friction estimation problem stated

in Section II. First, wavelets are presented as a general

tool for function reconstruction, before adapting the general

theory to the case of friction estimation.

A. Wavelets for Function Reconstruction

The discrete wavelet transform of a function f(x)∈L2(R)
(f is square-integrable) is defined by

Wm,n = 〈f, ψm,n〉 = a
−m/2
0

∫ ∞

−∞

f(x)ψ(a−m
0 x− nb0)dx

where m,n ∈ Z, a0 > 1 and b0 > 0. The functions

ψm,n(x) = a
−m/2
0 ψ(a−m

0 x− nb0) (4)

are called wavelets, and they are all generated by dilating

(changing m) and translating (changing n) a mother wavelet

ψ(x). Wavelet theory states that f can be exactly recon-

structed by the infinite expansion

f(x) =
∑

m,n

cm,nψm,n(x) (5)

under the condition that the ψm,n constitute a frame, and

where the parameters cm,n represent the wavelet transforms

x

ψ
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)
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Fig. 1. The Mexican hat wavelet.

of the dual frame. The notion of wavelet frames is not

explained in this paper, but for a comprehensive discussion

of wavelet theory see for example Daubechies [16].

The Mexican hat function, shown in Fig. 1, is used as the

mother wavelet in the proposed friction estimation algorithm.

Mathematically it is given by

ψ(x) = (1 − x2)e−x2/2,

and with a0 = 2 and b0 = 1 the corresponding ψm,n satisfy

the requirement for a frame. For higher dimensions where

x ∈ R
d the wavelets (4) become

ψm,n(x) = a
−dm/2
0 ψ(a−m

0 x − nb0); m ∈ Z,n ∈ Z
d.

The Mexican hat is extended by inserting the norm of x, like

ψ(x) = (1 − ‖x‖
2
)e−‖x‖2/2.

Notice that the dilated wavelet becomes narrower or more

‘high frequent’ as m decreases. Intuitively high frequent

wavelets can be used where f is changing rapidly, while

low frequent wavelets can be used where f is changing more

slowly. For friction estimation it is possible to think that it

is best to use an odd mother wavelet since friction is dis-

continuous around zero. However, high frequency Mexican

hats can approximate this discontinuity while low frequency

ones can approximate smoother regions of the friction map,

where it is logical to use an even mother wavelet.

Wavelet theory requires that the function to be recon-

structed is in L2. While in general this is not the case with the

friction τ f , it can be said to be in L2 by using Assumption 2.

Friction is only approximated within Xr. Outside Xr friction

is regarded to be zero, even though that is not the case. It

does not matter as long as the velocity of the robot never

leaves Xr.

B. Wavelet Network Friction Model

With wavelets no modeling is required. One only needs to

identify, for each joint, which velocities affect the friction.

The proposed friction model uses the multi-dimensional

version of (5), but with a finite number of elements. One

expansion is used for each joint, for a total of d expansions.

Let the friction in joint i be a function of di velocities,

where di ∈ Z and 1 ≤ di ≤ d. Furthermore let Ki ⊂ Z
1+di
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be the index set containing the Ki indices ki = [mi,ni]
T of

the wavelets that may potentially be included in the expan-

sion for joint i (the selection of the appropriate wavelets to

be included in the expansions is explained in Section III-D).

For the moment assume that all wavelets in Ki are included.

The friction estimate τ̂f,i can then be written as

τ̂f,i(q̇aff,i) =
∑

ki∈Ki

ĉki
ψki

(q̇aff,i), i = 1, ..., d (6)

where q̇aff,i ∈ R
di contains the velocities that affect the

friction in joint i, and the parameters ĉki
are estimates of

the wavelet transforms. The friction model can be regarded

as d wavelet networks with one layer, each with di inputs,

one output, nodes ψki
and corresponding weights ĉki

.

C. Lyapunov-based Adaptation Law Design

The WN friction model is linear in the parameters, which

can readily be seen by rewriting (6) as

τ̂ f (q̇) = Ψ(q̇)ĉf

where

Ψ=







{ψk1
}k1∈K1

· · · 0

...
. . .

...

0 · · · {ψkd
}kd∈Kd






,

ĉf =
[

{ĉk1
}k1∈K1

· · · {ĉkd
}kd∈Kd

]T
.

Let c∗f denote the optimal value of ĉf for given index sets

Ki. An adaptation law must be found to drive c̃f = c∗f − ĉf

towards zero.

Define ǫ ∈ R
d to be the modeling error, given by

ǫ = τ f (q̇) − Ψ(q̇)c∗f .

The modeling error is bounded by ǫmax = supt≥0||ǫ(t)||,
which is a finite number provided that q̇ is bounded. To avoid

parameter drift in the presence of ǫ we require ||ĉf || ≤ B,

where B>0 is a constant. Furthermore, define e= q̇−˙̂q∈R
d

to be the prediction error, where ˙̂q ∈ R
d is estimated angular

velocity.

Proposition 1: In the presence of the modeling error ǫ,

the series-parallel identification model

¨̂q = A ˙̂q − Aq̇ + M−1(τ − Cq̇ − N − τ̂ f ) (7)

where A ∈ R
d×d is a designer-chosen Hurwitz matrix, and

the parameter adaptation law

˙̂cf =− ˙̃cf =























−ΓΨ
T e, if ||ĉf || ≤ B

or ||ĉf || = B and eT
ΨΓĉf ≥ 0

−ΓΨ
T e +

eTΨΓĉf

||ĉf ||2
ĉf ,

if ||ĉf || = B and eT
ΨΓĉf < 0

(8)

where Γ ∈ R
(K1+...+Kd)×(K1+...+Kd) is a designer-chosen

positive definite diagonal matrix whose entries correspond

to the adaptation gain of each parameter, ensure that ||e||
and ||c̃f || are bounded. If ǫmax = 0, limt→∞ e(t) = 0 and

limt→∞
˙̃cf (t) = 0. If in addition Ψ is persistently exciting,

then limt→∞ c̃f (t)=0.

Partial proof: With (7) the prediction error dynamics become

ė = q̈ − ¨̂q = Ae − M−1(Ψc̃f + ǫ). (9)

Consider the candidate Lyapunov function

V (e, c̃f ) =
1

2
eT Me +

1

2
c̃T

f Γ
−1c̃f .

Recall that Ṁ ≈ 0 by Assumption 2. Let Q ∈ R
d×d be

a positive definite matrix such that the Lyapunov equation

AT M + MA = −Q is satisfied. Differentiating V with

respect to time, using (8) and (9), yields (after some cal-

culation)

V̇ ≤ −
1

2
eT Qe − eT ǫ ≤ −

1

2
eT Qe + ||e||ǫmax.

Hence if ǫmax = 0, V̇ is negative semi-definite. If ǫmax 6= 0,

then V̇ > 0 for ||e|| < emin where emin is a constant that

depends on Q and ǫmax, thus implying the boundedness of

||e||. The proof of the boundedness of ||c̃f || and the validity

of the limit properties are shown in [17] for an analogous

problem and is omitted here.

D. Dynamic Wavelet Network Structure

A strategy is adopted from [18] to automatically select the

wavelets with the best dilations mi and translations ni as the

robot travels within Xr, in order to estimate the friction as

accurately as possible using a minimum number of elements

(wavelets) in (6). Before adaptation starts, a pool of wavelets

is generated for each joint, corresponding to an allowed

dilation range and wavelet centers inside Xr. The pools

are equivalent to the Ki. During adaptation wavelets are

considered for inclusion or exclusion based on a thresholding

procedure. This procedure determines whether a wavelet ψki

is allowed to be in the network or not, depending on the value

of the corresponding parameter ĉki
(t) at time t.

Initially there are 2di wavelets in the network1. The

inclusion of wavelets is based on the assumption that ad-

jacent wavelets in space and frequency are correlated. Thus,

whenever the parameter ĉki
becomes greater than a threshold

µ > 0 in absolute value, all adjacent wavelets in Z
1+di are

included in the network. Likewise, when the parameter ĉki

becomes smaller than a threshold θ > µ in absolute value,

and if it is still decreasing, the wavelet ψki
is excluded

from the network. The thresholds µ and θ are chosen by

the designer and influence the accuracy of the estimation.

In the preceding Lyapunov analysis the network sizes

were assumed to be constant. Inclusion of a new wavelet

does not represent a problem since its parameter is initially

set to 0. However, when excluding a wavelet its parameter

suddenly jumps from a nonzero value to zero, which causes

a discontinuity that may render the algorithm unstable. The

problem is avoided by gradually setting the parameter to 0.

1For instance, if q̇aff,i∈R
2 a wavelet is placed in each quadrant of the

2-dimensional velocity plane.
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Fig. 2. Side view of the PHANTOM Omni robot.

IV. EXPERIMENTS

The PHANTOM Omni haptic device from Sensable Tech-

nologies (see Fig. 2) was used to verify the WN friction

model. The Omni is equipped with 6 angular position en-

coders, but the 3 wrist joints are not actuated, and so it

is effectively a 3-DOF robot. Since the motor of joint 3

is located at the base, torque must be transmitted through

cables inside link l1 via a pulley at joint 2. The stiffness

of the cables is assumed to be high enough for the position

(and velocity) at the joint and base to be considered equal.

However, this assumption may not hold whenever the robot

is interacting with a stiff environment. Angular velocity q̇ has

to be approximated from the joint angle q, as only position

encoder data are available. As the friction estimation theory

was presented for continuous-time systems, all differential

equations were integrated using Euler’s method at 1 kHz for

discrete-time implementation. As a performance metric the

ability to compute the applied joint torque τ in a reverse

manner was used, i.e. according to

τ̂L = Y L(q̇, q)α + τ̂ f,L (10)

where the same low-pass filtering technique as in Section II

is used to avoid acceleration measurements. Performance was

quantified using relative root-mean-square (RMS) values,

which for a signal x(t) and its estimate x̂(t) is given by

RMSrel(x, x̂) =
RMS(x− x̂)

RMS(x)
.

A. Basic Dynamic Model

Building the dynamic model (2) for the Omni robot results

in a Y ∈ R
3×9 regressor matrix and a α ∈ R

9 parameter

vector. To model the spring-like gravity compensation mech-

anism of the Omni a torsional spring τspring = α10(q2−π/2)
is added to joint 2, where α10 is the spring constant. The final

model is still linear in the parameters, with Y ∈ R
3×10 and

α ∈ R
10.

TABLE I

STEADY-STATE α VALUES (MEAN VALUE ± STANDARD DEVIATION).

α Value α Value

α1 (1.178 ± 0.034) · 10−3 α6 (2.088 ± 0.028) · 10−3

α2 (6.395 ± 0.240) · 10−4 α7 (5.320 ± 0.168) · 10−4

α3 (−3.582 ± 2.696) · 10−5 α8 (2.043 ± 0.078) · 10−1

α4 (2.130 ± 0.068) · 10−3 α9 (7.015 ± 0.025) · 10−2

α5 (9.968 ± 0.910) · 10−5 α10 (1.493 ± 0.068) · 10−1

A least-squares method [15] was used to identify the

elements of α. A PID controller was implemented for angu-

lar position control, with the 3 joint reference trajectories

generated as sums of 4 sinusoids each for a total of 12

different frequencies, to ensure a high degree of excitation.

The frequencies of the sinusoids were chosen to be relatively

high2, between 0.5Hz and 2Hz, for inertial effects to be

dominant over friction. The low-pass filter cut-off frequency

ω was set to 8Hz, in an attempt to place it between the

system bandwidth and noise frequencies. Data were collected

for 4 minutes, and the steady-state values of α are shown

in Table I. A basic CV model was used, but here only to

absorb friction ‘noise’.

B. Friction Estimation with Wavelet Networks

Only the friction in joint 1 of the Omni robot can be

modeled individually as a function of q̇1. Because of the

cable transmission friction in joints 2 and 3 is a function

not only of q̇2 and q̇3, respectively, but also of the relative

velocity q̇23 = q̇2 − q̇3 between the joints. Hence, for the

implementation of the WN friction model let q̇aff,1 = q̇1
and q̇aff,2 = q̇aff,3 = [q̇2, q̇3]

T
in (6).

Three experiments were carried out in order to compare

the performance of the CV friction model with the WN

friction model. In experiments 1 and 2 the following protocol

was adhered to. The data were collected by having the

Omni robot follow sinusoidal trajectories, using the same

PID controller as in the previous section, but for frequencies

no higher than 0.7Hz. Each data series had a duration of

4 minutes. The data were analyzed off-line to estimate

friction, using both the CV model and the proposed WN

model, followed by the reverse torque computation with

the adaptation turned off. Experiment 3 was for testing the

trained WN friction model on an independent data set.

1) Experiment 1: In experiment 1 the effect of changing

the relative velocity q̇23 between joints 2 and 3 on friction

estimation was investigated. The purpose of the experiment

was to show that the basic CV model

τ̂f,i(q̇i) = αc,isgn(q̇i) + αv,iq̇i, i = 1, ..., 3,

which does not take the coupled friction into account, will

fail when compared to the WN friction model. Two data

series were collected, one in which the reference trajectories

for joints 2 and 3 were equal in order to minimize q̇23,

and one in which the reference trajectories were equal but

2Assumption 2 (low velocity) is only relevant for friction estimation.
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TABLE II

RELATIVE RMS VALUES FOR EXPERIMENT 1.

Small relative velocity Large relative velocity
RMS % CV WN Diff. CV WN Diff.

Joint 1 30.94 29.54 1.40 30.82 30.24 0.58
Joint 2 29.28 21.79 7.49 20.61 17.60 3.01
Joint 3 8.21 6.77 1.44 11.99 10.36 1.63

TABLE III

ESTIMATED COULOMB+VISCOUS PARAMETERS, EXPERIMENT 1.

Small relative velocity Large relative velocity

α Value α Value

αc,1 (1.980 ± 0.015) · 10−2 αc,1 (2.004 ± 0.013) · 10−2

αv,1 (1.849 ± 0.189) · 10−3 αv,1 (1.552 ± 0.167) · 10−3

αc,2 (2.011 ± 0.042) · 10−2 αc,2 (2.381 ± 0.321) · 10−2

αv,2 (5.323 ± 0.548) · 10−3 αv,2 (1.187 ± 0.034) · 10−2

αc,3 (1.689 ± 0.017) · 10−2 αc,3 (2.003 ± 0.020) · 10−2

αv,3 (5.987 ± 0.172) · 10−3 αv,3 (1.097 ± 0.032) · 10−2

TABLE IV

WAVELET NETWORK THRESHOLDS AND DILATION RANGES.

µ θ m

Joint 1 4.0 · 10−6 5.0 · 10−6 -5, ..., 0

Joint 2 5.0 · 10−5 6.0 · 10−5 -4, ..., 0

Joint 3 5.0 · 10−5 6.0 · 10−5 -4, ..., 0

with opposite signs in order to maximize q̇23. Each reference

trajectory consisted of 4 different sinusoids.

The relative RMS values of the WN model were all lower

than the CV model, as shown in Table II. Furthermore, note

that when looking at the estimated parameters of the CV

model in Table III, it can be seen that the Coulomb friction

of joints 2 and 3 increased between the two data series. The

basic CV model was fooled into perceiving greater friction

when q̇23 was large. With the WN model, containing 2-

dimensional wavelets, this was not a problem, since for the

two data series we simply trained two different regions of the

q̇2-q̇3 plane. These two regions corresponded to two straight

lines through the origin at ±45◦, representing equal—or

equal with opposite signs—reference velocities.

The matrices A and Γ, the thresholds µ and θ, and the

allowed range of dilations m were chosen on the basis of

trial and error. For instance, µ and θ have a direct influence

on the size of the networks, which in these experiments could

reach several hundred wavelets. The matrix A was chosen

to give a fast convergence of the prediction error dynamics.

The dilation range m determines how well the discontinuity

around zero can be estimated. In experiment 1 A was set to

A = −300 · I3×3 and the elements of Γ were set to be the

same for all parameters in the same network, namely 0.08

for joint 1, 0.05 for joint 2 and 0.05 for joint 3. The values

of µ, θ and m are shown in Table IV. For the second part of

experiment 1, where the desired q̇23 was large, µ and θ had

different, but similar values. In the experiments the constant

B was only used as an indicator of instability (for example,

caused by the choice of A), and was set to a large number.

No parameter drift was observed.

TABLE V

RELATIVE RMS VALUES FOR EXPERIMENT 2.

RMS % CV WN Difference

Joint 1 30.18 29.76 0.42
Joint 2 21.00 20.50 0.50
Joint 3 12.97 9.02 3.95
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Fig. 3. Comparing low-pass filtered applied torque and its estimate.

2) Experiment 2: To show that a modified CV model that

does take coupled friction into account will also fail against

the WN friction model a second experiment was performed.

For experiment 2 the CV model

τ̂f,2 = αc,2sgn(q̇2) + αv,2q̇2 + αcr,2sgn(q̇23) + αvr,2q̇23

was used for joint 2, and analogously for joint 3. Joint 1 was

modeled as before. The training trajectories still consisted

of 4 sinusoids for each joint, but in order to have a better

training than in experiment 1 the sinusoids of joints 2 and 3

were independent. One series of data was obtained from the

Omni, and the resulting RMS values are shown in Table V.

As in the first experiment all RMS values of the WN model

were lower than the CV model. The same values were used

for A, Γ, m as in experiment 1, while similar values were

used for µ and θ.

3) Experiment 3: In order to validate the model param-

eters found during training on an independent data series,

the Omni was used as a slave robot in a teleoperation

setup, and a random position trajectory was generated as the

slave followed the master during manual manipulation. The

reverse torque computation was performed on an extract of

10 seconds from the collected data series, using the model

parameters found in experiment 2. A visual clue of the

reverse torque computation performance of the WN model

is provided in Fig. 3, showing the low-pass filtered applied

torque and the estimated torque, as computed in (10).

Relative RMS values are shown in Table VI. The WN

model still outperformed the CV model for joint 1. When

testing 1-dimensional WNs one only needs to stay within
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TABLE VI

RELATIVE RMS VALUES FOR EXPERIMENT 3.

RMS % CV WN Difference

Joint 1 33.80 31.55 2.25
Joint 2 23.92 32.54 -8.62
Joint 3 16.59 20.10 -3.51
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Fig. 4. Comparing trained and tested trajectories in the q̇2-q̇3 plane.

the trained velocity interval along the real line. However,

for joints 2 and 3 the WN model performed worse than

the CV model. These results indicate that the training of

the 2-dimensional WNs in experiment 2 was not sufficient.

Fig. 4 shows the velocity trajectory in the q̇2-q̇3 plane from

training as a dotted line, while the trajectory from testing is

shown as a thick, solid line. It is seen that the velocity during

testing often found itself on untrained ground, especially at

the bottom and to the left. It is emphasized that no optimal

training sequence was sought in experiment 2, and in this

way experiment 3 could serve as a good example of the

unfortunate outcome of that.

V. CONCLUSION

A WN friction model has been proposed as a solution to

the problem of finding a linear-in-parameter friction model

for robots with coupled friction. The best fit wavelets were

automatically selected with a thresholding procedure, and a

Lyapunov approach was taken to design an adaptation law

that drives the model parameters to the optimal values.

The performance of the WN model was tested and com-

pared with the CV model through experiments with the

PHANTOM Omni haptic device. During training the relative

RMS values were found to be lower for the WN model

than for the CV model in all cases, with an improvement

ranging from 0.4 to 7.5 percentage points. At the same

time insufficient training was also identified as one of the

issues with our approach, implying that the price of avoiding

friction modeling is a training challenge that requires careful

attention.

The comparison of the proposed approach with other

approaches with similar properties, such as neural or fuzzy

techniques, will be considered in future works. The aim is to

obtain a suitable friction model as part of the dynamic model

to estimate contact forces when the robot is interacting with

its environment.
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model for control of systems with friction,” IEEE Trans. Automat.

Contr., vol. 40, no. 3, pp. 419–425, Mar. 1995.
[5] J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Prajogo, “An

integrated friction model structure with improved presliding behavior
for accurate friction compensation,” IEEE Trans. Automat. Contr.,
vol. 45, no. 4, pp. 675–686, Apr. 2000.

[6] P. Dupont, V. Hayward, B. Armstrong, and F. Altpeter, “Single state
elastoplastic friction models,” IEEE Trans. Automat. Contr., vol. 47,
no. 5, pp. 787–792, May 2002.

[7] G. M. Prisco and M. Bergamasco, “Dynamic modelling of a class
of tendon driven manipulators,” in Proc. 8th IEEE International

Conference on Advanced Robotics, Monterey, USA, Jul. 1997, pp.
893–899.

[8] H. Kobayashi and R. Ozawa, “Adaptive neural network control of
tendon-driven mechanisms with elastic tendons,” Automatica, vol. 39,
no. 9, pp. 1509–1519, Sep. 2003.

[9] C. C. de Wit, P. Noel, A. Aubin, B. Brogliato, and P. Drevet,
“Adaptive friction compensation in robot manipulators: low velocities,”
in Proc. IEEE International Conference on Robotics and Automation,
Scottsdale, USA, May 1989, pp. 1352–1357.

[10] F. Jatta, R. Adamini, A. Visioli, and G. Legnani, “Hybrid force/velocity
robot contour tracking: an experimental analysis of friction compensa-
tion strategies,” in Proc. IEEE International Conference on Robotics

and Automation, Washington, DC, USA, May 2002, pp. 1723–1728.
[11] S. N. Huang, K. K. Tan, and T. H. Lee, “Adaptive friction compensa-

tion using neural network approximations,” IEEE Trans. Syst., Man,

Cybern. C, vol. 30, no. 4, pp. 551–557, Nov. 2000.
[12] H. Du and S. S. Nair, “Identification of friction at low velocities

using wavelet basis function network,” in Proc. American Control

Conference, vol. 3, Philadelphia, USA, Jun. 1998, pp. 1918–1922.
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