
  

  

Abstract—There is a real need in the robotics and wireless 
sensor network (WSN) communities for the estimation of the 
geolocation of wireless agents. The received signal strength 
indicator (RSSI), a common metric in most networking 
hardware, has been reputed as a very unreliable method for 
doing the job, due to its vulnerability to environmental factors. 
Nevertheless, it still remains as the most prevalent estimator of 
distance between agents on many research projects. Multipath 
fading, shadowing and other effects that the environment exerts 
over a signal while propagating are regarded as the main cause 
of such vulnerability. Although some success has been obtained 
using RSSI outdoors where the effects are less noticeable, indoor 
settings remain an unconquered territory. The main motivation 
of this paper is to establish whether, in real time applications, 
the use of preprocessing techniques over partial raw collected 
data helps the RSSI to be a suitable estimator of distance. We 
propose one such technique and the results suggest that its use 
may indeed assist the obtainment of more accurate distance 
estimations while using RSSI. 

I. INTRODUCTION 
OLLOWING the continuous interest in wireless sensor 

networks (WSN) and its applications, a large community 
of researchers have been working with a scenario where 
nothing is known about the environment, and the agents of 
the network must obtain as much information as possible by 
relying solely on their sensor and communication 
capabilities. The most basic information for an agent to know 
is its physical location, which in return will help other agents 
in the network, and even external elements cruising through it, 
to localize themselves. In fact, many projects on multi-robot 
motion planning [1], collaborative mapping and exploration 
[2], formation control [3], robotic localization [4] and 
communications mapping [7, 8] rely on the fact that agents 
acknowledged their positions with reference to a coordinate 
system. When applications cannot lean on external 
geolocation systems (such as GPS) or when the topology of 
the environment is not known or is very dynamic, the only 
way for an agent to localize itself is by using any of its 
embedded indicators of performance like the received signal 
strength indicator (RSSI), or by using methods such as the 
transmission time delay, that measures how long it takes for a 
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signal to go from transmitter (Tx) to receiver (Rx) at the 
expense of a high synchronization among agents. Ultimately, 
the easiness of using RSSI makes it suitable for applications 
where the agents have not much computational power just as 
those in WSN.  

The strength of a signal varies upon leaving the transmitter 
due to the multiple effects the environment exerts over it, a 
fact that is widely known. As a result, the RSSI at any given 
point in time and space could take a random value lower than 
the transmitter power. This randomness makes it hard to 
predict how much the signal strength will decrease, and 
consequently several models have been proposed to account 
for as many environmental effects as possible. Some models 
have tried to correlate the variation of signal strength with 
distance and although somehow successful in outdoor 
environments, cluttered environments such as those indoors 
still represent a challenging task. 

We propose a simple and fast technique to preprocess raw 
collected data in order to obtain fairly accurate estimations of 
distance between agents in line of sight with each other, so 
that the calculation can be performed in real time. To do so, 
we acknowledge that a received signal is the result of the 
original signal being affected by two types of fading: 
small-scale and large-scale, where the latter is the one that 
actually deals with the variation of distance from Tx to Rx. 
Consequently, if it were possible to mitigate the effects of the 
former on the collected dataset, one could be able to estimate 
distance by using any of the propagation models available. To 
this end, we propose the use of a technique that, although 
around for quite a long time, has not yet been utilized for the 
particular purpose of filtering an affected signal. The 
technique is the histogramic analysis. Furthermore, we 
propose a compensation method that will complement the job 
of the histogramic analysis, so that any posterior calculation 
will be corrected by using previous estimations. The work 
presented in this paper is intended to be the first in a series of 
works dealing with the statistical analysis of collected data 
for real-time robotics applications.  
The paper is organized as follows. Section II reviews 
previous works and gives a brief survey on signal 
propagation that would lay the foundations for section III 
where our approach to the problem is presented. Section IV 
defines a set of experiments and shows its results. Finally, 
section V presents our conclusions and discusses avenues for 
future research.  
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II. PREVIOUS WORK AND BRIEF SURVEY ON SIGNAL 
PROPAGATION 

A. Previous Work 
The estimation of link distance on unknown environments 

has been a topic of research for years because it is the 
foundation for many different applications [5, 6, 7, 8, 9, 10, 
11, 12, 13]. As a result, many recent studies have explored the 
nature of wave propagation and the viability of using RSSI as 
an estimator of distance between wireless agents. Most of 
such studies approach the problem by doing one of the 
following experiments and using either Chipcon CC1000 or 
CC2420 radio chipsets, found in most WSN platforms: 
- For a given distance, n RSSI values are collected, the mean 

(and sometimes the standard deviation) is calculated and 
the result becomes the representative RSSI for that distance 
[14, 15, 18]. The experiment is sometimes repeated many 
times using different transmission power levels. 

- An agent is moved at a constant velocity, m values are 
collected and then plotted in order to see if there is any 
correlation between RSSI and distance [15, 16, 17]. 
The results of such experiments are then compared with 

those obtained by using propagation models. The outcome 
are two roughly accepted conclusions: either the prediction of 
indoor distance by using raw RSSI and low power radios is 
seemingly impossible due to the large amount of 
characterizations needed to make it precise [18], or it may be 
possible if used under certain conditions and assumptions 
[14, 19]. The conclusions are based on results such as those 
shown in figure 1 where a clear correlation between RSSI and 
distance is not easily found.  

B. Brief Survey on Signal Propagation 
One thing that seems missing in most previous studies is 

the consideration that, when a wave propagates through a 
medium, it experiments two types of fading: large-scale and 
small-scale. Most of those studies acknowledge this but just a 
few such as [17] actually consider the two components of 
fading to analyze collected data. To gain a clear idea of what 
is missing we must take a small journey into wave 
propagation theory. A received signal can be described as the 
product of the two components [20]:  

( ) ( ) ( )trtmtr 0.=         (1) 
where m(t) is the large-scale part and r0(t) is the small-scale 
one. The signal can be pictured as shown in figure 2. 

 On one hand, large-scale fading is responsible for the 
attenuation of the signal strength due to changes in distance 
between Tx and Rx and the resultant effects exerted by the 
three basic propagation mechanisms: reflection, diffraction 
and scattering. There are two basic models for indoor 
environments: log-distance path loss and attenuation factor. 
Both models are based on the free-space propagation model 
with the difference that the former considers a normal random 
variable that quantifies for the additional losses due to the 
environment, and the latter considers an attenuation factor for 

each obstacle the signal runs into, depending on the material 
and the layout of the building. These models are simple to 
implement and can be used when accuracy is not a critical 
requirement [22], when the Tx-Rx separation is large and 
when the environment is not heavily cluttered [11]. 

On the other hand, small-scale fading is responsible for the 
rapid fluctuations on signal strength that could give rise to a 
very pronounce fading over short distances or over short 
periods of time. This kind of fading, called also multipath, is 
the result of waves arriving at different times creating wide 
variations in amplitude and phase when mixing together. In 
addition, small-scale fading is influenced by physical factors 
such as the speed of the agents (in dynamic networks), the 
speed of the objects (in dynamic environments) or the 
bandwidth of the signal [21]. Changes on the signal strength 
due to small-scale fading are usually described by stochastic 
processes, where the selection of the process depends on the 

 
Fig. 2.  Small-scale (fast changing line) and large-scale (slow changing 
line) effects in a received signal [21] 

 
(a) 

 
(b) 

Fig. 1.  (a) RSSI vs. time for a mobile receiver in a corridor [15]. (b) 
RSSI vs. distance for a 38 nodes indoor sensor network [18] 
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properties of the system and the environment: when there is a 
line-of-sight, a dominant stationary component is present and 
the fading envelope can be modeled using a Ricean 
distribution; when the dominant signal becomes weak, the 
envelope resembles a Rayleigh distribution. There are many 
other distributions derived from the previous ones like the 
log-normal fading model (used to explain large variations on 
the signal amplitude), the Suzuki model (a mix of Rayleigh 
and log-normal distributions), the Nakagami model (also 
called m-distribution, neglected for indoor spaces in favor of 
others with a better fit to measured data [23]), or the Weibull 
model (a good fit for some data at 910 MHz, but with no 
theoretical or direct empirical explanation for its use indoors 
[24]). The main drawback of all these models is that they are 
relatively cumbersome and highly time consuming [22].  

 Comparing figures 1 and 2 it is possible to observe close 
similarities that could lead to the conclusion that the plots on 
figure 1 are the result of seeing both fading components 
mixing up together. Clearly then, to apply large-scale 
propagation models to raw RSSI data will not yield 
appropriate results, as neither the calculation of a mean value 
for a number of measurements will do. The latter is because 
the mean and standard deviation assume that the dispersion of 
data for one particular Tx-Rx distance follows a 
normal-Gaussian distribution, which is not realistic [18]. 

Lastly, the estimation of distance using RSSI is approached 
basically in two ways: 
- Creating new propagation models that reflect as much as 

possible the behavior of waves on indoor settings given 
different configurations [25]. 

- Manipulating full datasets and using existing propagation 
models [26]. Results vary depending on the configuration 
of the system (position, direction of antennas) and the 
settings of the environment (clutter, dynamic, static, etc) 
In summary, estimation of distance using RSSI has been 

regarded as inaccurate, and most methods to improve such 
accuracy are complex and time consuming what makes them 
not useful for applications that require real time estimations. 

III. HISTOGRAMIC ANALYSIS AND COMPENSATION METHOD 
The need for real-time applications on both the WSN and 

robotics communities has motivated us to propose a 
technique to quickly preprocess collected RSSI data in order 
to estimate distance. The basic idea comes from the 
observation of figures 1 and 2: if it were possible to 
decompose the received signal into its two dominant 
components (small and large scale fading), dispose of the 
effects of the former and use only what is left, a better 
estimation of distance may be possible. This could be doable 
by applying stochastic models such as those mentioned in 
section II-B, but besides of what was mention there, they 
require the collection of all the data first in order to be able to 
analyze it later (not real-time).  

Another way to look at the problem is that the effects of 
small-scale fading are strong but random. Still, the dataset 

maintains certain distinctive behavior that resembles the 
propagation model defined by the large-scale fading. It also 
can be observed that in a given period of time, the 
measurements are likely to be clustered around one or more 
points.  By obtaining the frequency distribution of a dataset in 
that period of time, we will be able to determine a small and 
specific range of prevalent RSSI measurements, values that 
will then be used to calculate the Tx- Rx distance. 

There are many techniques to analyze data, e.g. scatter 
plots, histogramic analysis, linear regression, sampling, curve 
fitting, parameterized mathematical distribution, cluster 
analysis, etc. So far, correlation between distance and RSSI 
has been obtained using only scatter plots. We propose to use 
a different method: frequency distribution using histogramic 
analysis. Histograms are mainly used to obtain the shape of 
data distribution. It also gives an estimation of the frequency 
of the data in a set. In here, we are planning to use it as a tool 
to disregard the impact of small-scale fading.  

A. Histogramic Analysis 
Initially we consider an indoor environment where a Tx–Rx 

pair is placed close to one another. The distance between both 
elements is unknown, but within the communication range of 
each other. At t=0, Tx starts broadcasting packets at a fixed 
rate. Each packet contains solely the identification number of 
Tx. Each time a packet is received by Rx, a counter variable ψ 
is increased by one and the RSSI value for the packet stored. 
Once ψ reaches a certain number, Rx start estimating how 
frequent each one of the stored RSSI values appear, resetting 
the value of the counter ψ to zero, and repeating the process.  

Let define A as the set of all data stored by Rx upon 
receiving a packet. Every member an of A is an integer, and 
Min ≤ an ≤ Max, where Min and Max are also integers. The 
interval [Min, Max] is divided into many sub-intervals that 
will be called from now on as bins. Each bin will count the 
number of times a value an of A is located in that particular 
sub-interval. In order for the bins to be comparable, they 
should have the same width. Since the histogram is 
completely determined by this constant bin width, it is vital to 
determine the number of bins. To this effect, Sturges’ rule is 
widely recommended and often used as a default in many 
statistical packages [27]. Sturges’ rule establishes that:  

        g = 1 + log2(n)     (2) 
where g is the number of bins and n is the total number of 
values in the dataset. Generally, (2) applies to data with a 
normal distribution, which is not our case [9]. Nevertheless, it 
can give us a rough idea of the number of bins needed to 
quickly analyze the dataset. 

Let define now cg as a counter for each bin g in the interval 
[Min, Max], where at t=0, cg=0 for all g. Since each member 
an will belong to only one specific bin, each time a member of 
A is assigned to a bin, cg in that specific bin is increased by 1. 
At the end, some few bins will have cg with the higher value. 

Let define W as the set of bins with highest cg. A dataset A 
could then be represented by a single value µ (estimated RSSI 
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at time interval k) obtained from the bins in W. In order to 
obtain µ, the bins in W can fall in one of the next three cases: 
- When just one bin has the higher counter value, µ can be 

defined as the center value of that bin or centroid.  
- When two or more consecutive bins have the higher counter 

value, µ can be obtained by averaging the sum of the 
centroids of those bins. 

- When two or more nonconsecutive bins have the higher 
counter value, it is clear that there is not a specific region in 
the dataset A that is prevalent. To solve this we should 
change resolution of the histogram by changing the number 
of bins as follows: g’k = gk – 1. The reason for decreasing g, 
as opposed to increasing it, is that decreasing the resolution 
allows for the bin counters cg to have more elements 
assigned and consequently protruding the highest counter 
more easily. The process will be repeated until the bins in 
W fall into any of the two previous categories. 
Upon determining µ, this value will be used to estimate the 

Tx-Rx distance. Since the whole purpose of using histogramic 
analysis is to decrease the strong variations on the data 
associated with the effects of small-scale fading, the value µ, 
might be considered as a RSSI due to large-scale fading and, 
as so, one of the available models mentioned in section II will 
be applicable. The calculated value of distance (δk) will be 
stored and the process repeated again for new incoming data. 

B. Compensation Method 
The results obtained from the histogramic analysis are still 

susceptible to show strong variations on µ with time. In order 
to offset those variations we have devise a compensation 
method. The idea behind it is that the readings on signal 
strength due to Tx transmitting at a fixed high rate should not 
change radically from one measurement interval (k) to the 
other, if the measurements are taken during short intervals of 
time. That is, moderate change on distance cannot cause an 
abruptly change on the RSSI. The method aims to maintain 
the trend of the changes on µ by refreshing the present 
estimation with previous ones every time a sudden variation 
is detected. This is done while keeping close to the real 
measured values. The method can be divided into 5 steps: 

Step 1: let define εk as the difference between the current 
estimation of RSSI (µ) and previous one:  

εk = µk - µk-1       (3) 
Step 2: let define ∆k as the absolute value of the variation of 
the error between different consecutive iterations:  

∆k = |εk - εk-1|       (4) 
Step 3: let define νk as the cumulative variation of εk, for 
each iteration from the beginning: 

∑
=

=
k

i
ik

1
εν              (5) 

Step 4: let define ε*
k as the updated variation between the 

current and the previous iteration. It will be used to update 
the current estimation of µ accordingly to the average 
variation of the error as it is described in the step below. 

Step 5: if from iterations iA to iB, ∆ is bigger than a 
threshold τ, the estimation of µ during interval of iterations 
[iA, iB+1] will be calculated as: 

µk = µk-1 + ε*
k        (6) 

with,  
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IV. EXPERIMENTS AND RESULTS 
In order to show the pertinence of our proposed techniques 

in real-time tasks, we have performed a series of experiments 
considering different settings: outdoors, unobstructed indoor 
space, corridor indoor space, static and dynamic settings, 
different velocities, and different transmission rates. Due to 
space constrains we are showing here only the results of three 
experiments, all of them performed in a long and narrow 
indoor corridor (30 meters long by 1.22 meters wide). Micaz 
motes were used in all the experiments.  

The transmitted packets contained only the transmitter ID. 
At Rx, it recovered the information encapsulated in the packet 
and obtained its RSSI. Histogramic analysis and the 
compensation method were applied to the collected RSSI data 
every 100 packets. In Table 1, there is a summary of the 
different settings we use for each one of the experiments.  

Experiment #1 considers a static setting (i.e. fixed Tx-Rx 
distance) with Rx placed on the middle of the corridor. 
Experiment #2 and #3 are similar being both dynamic 
settings, but in experiment #2 Rx is moving closer to Tx at a 
constant velocity, and in experiment #3 Rx is moving away. 

 

Experiment 1 2 3 
Initial Tx-Rx distance 15 m. 30 m. 0.6 m. 
Final Tx-Rx distance 15 m. 0.6 m. 30 m. 
Approx. velocity ------ 0.68 m/s 0.62 m/s 
Transmission rate 4 packet/s 50 packet/s 50 packet/s 
Collection time 725 s. 44 s. 48 s. 
Table 1. Summary of experiment settings 
 

Figure 3 shows the raw RSSI data obtained from the first 
experiment on the background, the results from the 
histogramic analysis, and when applying the compensation 
method. For figure 4, we use the data of figure 3 to estimate 
distance by applying the log-distance path loss model for 
indoor channels [21]: 

    ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−= ση X

d
ddPLPdRSSI T

0
0 log10      (8) 

where PL is the path loss at the reference distance d0 (=1m), 
PT is the transmitted power, η is the path-loss exponent and 
Xσ is a zero-mean gaussian random variable with standard 
deviation σ. In figure 4 it is included also the indication of the 
real Tx-Rx distance obtained by using a measuring tape. The 
results for the other experiments are plotted in figures 5 and 6 
for experiment #2, and figures 7 and 8 for experiment #3. 

The plots in figures 3, 5, and 7 show typical results for raw 
RSSI data using low power radios either on indoors static or 
dynamic settings. The random variations due to small-scale 
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fading are very pronounce and not suitable for any precise 
calculation of distance. The histogramic analysis is successful 
in bringing those changes to a minimum, although it still 
exhibits some abrupt ones, like those peaks around t=150 and 
t=650s on figure 3. The compensation method takes it one 
step further. From figure 3, it is evident that when combining 
both methods, the resulting plot remains flat as expected 
when both Tx and Rx are static. For the dynamic 
configuration, the results on figures 5 and 7 show that the two 
proposed methods achieved the desired attenuation of the 
effects of small-scale fading, leaving a consistent dataset that 
is more suitable for estimation of distance using well know 
propagation models. 

The results in figures 4, 6, and 8 show that when 
preprocessing the data, RSSI becomes a feasible tool for the 
estimation of distance. This is more evident in the static case 
where the final outcome surrounds the real value closely. For 
the dynamic setting, the main result is the attenuation of the 
strong changes when calculating distance. Although not as 
close to the real value as in the static case, it still hovers the 
real value nearly enough to see a correlation between RSSI 
and distance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, it is worthy to mention that the results from our 

proposed techniques, and the estimation of distance, vary 
heavily with the change of the transmission rate, the velocity 
of the mobile agent, the threshold (τ) and the path-loss 
exponent (η). 

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Experiment #1 – RSSI for static configuration in narrow corridor. 

Fig. 4.  Experiment #1 – Estimation of distance for static configuration. 

Fig. 6. Experiment #2 – Estimation of distance for dynamic setting.  

Fig. 5.  Experiment #2 – RSSI for dynamic setting Rx moving closer to Tx. 

Fig. 8. Experiment #3 – Estimation of distance for dynamic setting.  

Fig. 7.  Experiment #3 – RSSI for dynamic setting Rx moving away of Tx. 
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That is, the change on value of any of these parameters will 
produce different results to those shown in this paper. 
Consequently a tuning process is required beforehand in 
order to obtain optimum results as shown. 

V. CONCLUSIONS AND FUTURE DIRECTIVES 
The localization of wireless agents is an important and 

challenging task that needs to be addressed if accurate real 
applications wanted to be put to the test beyond the always 
forgiving simulation environment. Our approach is based on 
a simple idea that can be developed efficiently for 
low-energy, low-processing power agents such as the Micaz 
motes. Our results show that the RSSI has the potential of 
being a valid tool for the estimation of distance in indoor 
settings when used in combination with data analysis 
techniques. 

The results give a good basis in order to extend our analysis 
to more complicated scenarios: multiple agents, more 
complex movement patterns, and multi-channel interference. 
Also, the optimization of the parameters that impact the 
output of the preprocessing techniques will yield more 
accurate results. In such an optimization process, it should 
also be considered the parameters that affect the estimation of 
distance such as the path-loss exponent, if the log-distance 
path loss model is used. 
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