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Abstract— A systematic approach to compute total stiffness
of parallel manipulators is proposed. Link stiffness and joint
stiffness can be calculated simultaneously. Stiffness of passive
joint (joint without actuator) is temporally assumed as nonzero
variable in the procedure and infinite stiffness can be treated. A
simple parallel manipulator is used as an example to illustrate
the process and its correctness. Then validity of the proposed
approach is confirmed by comparing to FEA and conventional
joint stiffness method. The total link compliance (inverses of
total stiffness) calculated by the developed approach and its
counterpart obtained by FEA model are very close. The total
joint stiffness computed by the developed approach and its cor-
respondence derived from conventional joint stiffness method
are totally the same. Stiffness performance of parallel force
redundancy mechanisms is evaluated. These results indicate
that this scheme is feasible and effective.

I. INTRODUCTION

Fast mechanisms have been developed using merits of
parallel mechanism, for example, DELTA [1], HEXA [2],
RP-1AH [3], and NINJA [4]. In designing such a highly
efficient mechanism, optimizing techniques are required to
pursue the higher acceleration. For example, a two-step
optimum design method is descried in [4].

In designing these mechanisms, in order to solve the con-
tradiction between acceleration and accuracy, the calculation
of stiffness is very important. The used methods for stiffness
calculation can be classed into 3 categories: conventional
joint stiffness analysis, the Finite Element Analysis (FEA),
and the matrix structural analysis.

The first of them, conventional joint stiffness analysis is
based on the calculation of Jacobian matrix that relating the
joint displacement in joint space to Top-plate deflection in
Cartesian space. In this method, only active joint stiffness
is considered and links of mechanism are assumed strictly
rigid. Some of related previous works can be found in [5-8].

FEA is reliable for calculating the stiffness. For example,
the FEA model is adopted to characterize robot static rigidity
and natural frequencies in [9] and it is used to validate
analytical model in [10]. However, FEA does not establish
the analytical relationship between stiffness, dimensions and
free shape of the mechanism. It does not fit the optimiza-
tion techniques in which the performance index should be
represented as a function of design parameters like widths
of links. What is more, these models might be re-meshed
repeatedly and this results in high computational expenses.

The third of them, the matrix structural analysis incor-
porates the main ideas of FEA, but operates with rather
large elements - flexible beams describing the manipulator

structure [11]. It is used for parallel mechanism stiffness
matrix calculation in [12]. However, the clear symbolic
relations required for the parametric stiffness is not provided.

In this paper, a proper systematic way, which is based on
the matrix structural analysis, to obtain the overall stiffness,
taking into account the passive joints, active joints and
links simultaneously, is proposed. The characteristics of this
systematic approach are: (a) Stiffness of passive joints, active
joints and links are all calculated simultaneously; (b) Infinite
stiffness can be treated in the procedure and is shown in
the final result. The advantages of this approach are: (1) the
final stiffness result is a function of design parameters and is
very useful for optimization design. Many different methods
based on matrix structural analysis have been proposed in
the literature. However, it is difficult with these methods to
obtain symbolic results due to the use of very large matrices
which are difficult to inverse. This method makes it possible
to only use 6x6 matrices (or 3x3 in planar cases) and to
sum them, which will lead to usable symbolic expressions.
(2) It is effective and efficient to get the total stiffness by
writing program like using MATLAB symbol toolbox since
this approach is a systematical mathematical one.

The paper is organized as follows: In section 2, the
statement of the problem is described. Section 3 develops
the steps of the systematic stiffness analysis approach and
an illustrative example is given. Section 4 shows the cor-
respondence in results between the proposed approach and
the FEA models. In section 5, the method is validated by
parallel manipulators with force redundancy and compared
with conventional joint stiffness analysis. The conclusion is
given at the end of the paper.

II. PROBLEM STATEMENT

A parallel structure is composed by several serial arms, as
shown in Figure 1. To explain the main idea of this study
and strategy of treating infinite stiffness and zero stiffness
(e.g., stiffness of passive joint shown in Fig. 1), we will first
calculate the total stiffness of a simple example.

Fig. 2 shows a simple parallel mechanism and its spring
model. In order to deal with infinite stiffness and zero
stiffness, we will use stiffness to describe the stiffness of each
joint (k11 and k21 are joint stiffness of each joint respectively)
and compliance to describe the compliance of each link
(c11 and c21 are link compliance of each link respectively).
Denote Ci and Ki(= C−1

i ) (i = 1,2) as the compliance and
stiffness of each sub-arm, respectively. K is defined as total
stiffness of the parallel mechanism.
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Fig. 2. Parallel mechanism and its spring model

Compliance of a serial mechanism is the summation of
compliance of components, i.e.:

Ci =
1

ki1
+ ci2 (1)

Here, no problem will happen even passive joint exists
because all these variables are described by symbols in (1).

Whereas, the stiffness of a parallel mechanism is the
summation of stiffness of components in the mechanism, i.e.:

K = K1 +K2 (2)

From the above definition, the overall stiffness of the
simple parallel mechanism, in which passive joint stiffness
is included, is derived as follow:

K =
k11

1+ k11c12
+

k21

1+ k21c22
(3)

After getting the overall stiffness of the mechanism shown
in (3), we can treat both infinite and zero stiffness as follow:

(a) Infinite stiffness (e.g., any link of the mechanism is
assumed as perfectly rigid) can be treated by setting its
compliance as zero. For example, c12 = 0.

(b) Zero stiffness (e.g., one of the joint is passive joint)
can be treated by substituting its symbol as zero.For example,
substituting 0 for k21 in (3) does cause no trouble.

Based on the above idea, in the followed approach, the
element of joint compliance matrix will be described by
stiffness of each element, and the element of link compliance
matrix will be described by compliance of each element.
Equation (1) is adopted to calculate the compliance of each
sub-arm, and then (2) is used to get the overall stiffness of
parallel mechanism.

III. SYSTEMATIC APPROACH TO STIFFNESS ANALYSIS

In this section, the general kind of parallel mechanisms
and nomenclatures for the 3 dimensional mechanisms are
introduced (Note that, the same nomenclatures are used for
the planar mechanism but the size of nomenclatures is not
shown all). Mechanical element compliance, in which both
joint compliance and link compliance are included, is defined
relating to each local coordinate. The systematic approach to
get the total stiffness of a parallel manipulator is presented
and the procedure is then checked by a simple example.
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Fig. 3. One sub-arm of a parallel manipulator

A. Parallel Mechanisms to be Discussed

Fig. 3 shows one sub-arm of a parallel manipulator and
the nomenclatures are shown as follows:
n: Number of sub-arms of a general parallel manipulator
mi:Number of joints of the i-th sub-arm.i=1, 2,. . . ,n
ΣB: Base coordinate frame,the origin OB

Σi j: The i j-th coordinate frame, the origin Oi j. j=1, 2,. . . ,mi

ΣT: Top-plate coordinate frame, the origin OT

F ∈ R6: Force applied at the top-plate, expressed in ΣB
TF ∈ R6: Force applied at the top-plate, expressed in ΣT

Fi j ∈ R6: Force acting at the origin Oi j, which is equivalent
to force F and expressed in frame Σi j

∆r ∈ R6: Top-plate deflection due to F, expressed in ΣB
T∆r ∈ R6: Top-plate deflection due to F , expressed in ΣT

∆ri j ∈ R6: Small deflection due to force Fi j, expressed in Σi j
BRT ∈ R3×3: Rotational matrix from ΣB to ΣT

CLi( j−1) ∈ R6×6: The i( j− 1)-th link compliance expressed
in its local frame Σi( j−1)( Note that, Σi0 and ΣB are the same
coordinate and CLi0 = 0 as the joints included in the i-th sub
arm is mi while links number is mi −1)
C∗

Ji j ∈ R6×6: The i j-th joint compliance expressed in Σi j

C∗
i j ∈ R6×6: The i j-th compliance, expressed in frame Σi j

BC∗
i j ∈ R6×6:The ij-th mechanical element compliance, ex-

pressed in frame ΣB
BC∗

i ∈ R6×6: The i-th sub-arm compliance, expressed in ΣB
BK∗

r ∈ R6×6: Overall stiffness in which passive joint is
included
BKr ∈ R6×6: Total stiffness of the mechanism

B. Compliance Definition of Mechanical Element

According to the material strength theory, the force and
moment at the endpoint are used while the coordinate is
located at the base point. However, the joint force is acting
at local coordinate whose origin is the base point. Therefore,
we should make the definition of the i j-th compliance C∗

i j.
The i j-th compliance C∗

i j is defined as follow:

∆ri j = C∗
i jFi j (4)

As shown in Fig. 4, the deflection on the i j-th coordinates
∆ri j is the summation of the i j-th joint deflection and the
i( j−1)-th link deflection, that is

∆ri j = ∆rJi j +∆rLi j (5)

where
∆rJi j:the i j-th joint deflection, expressed in Σi j

∆rLi j:the i( j−1)-th link deflection, expressed in Σi j
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Fig. 4. One sub-arm of a parallel manipulator

The relation between i j-th joint deflection and i j-th joint
compliance is expressed as below

∆rJi j = C∗
Ji jFi j (6)

Based on material science, the followed equation can be
obtained.

i( j−1)∆rLi j = CLi( j−1)
i( j−1)Fi j (7)

where
i( j−1)∆rLi j:i( j−1)-th link deflection, expressed in Σi( j−1)
i( j−1)Fi j: Force Fi j, expressed in Σi( j−1)

By using the rotation matrix, the following equations can
be gotten

i( j−1)∆rLi j =
[

i( j−1)Ri j 0
0 i( j−1)Ri j

]
∆rLi j (8)

i( j−1)Fi j =
[

i( j−1)Ri j 0
0 i( j−1)Ri j

]
Fi j (9)

Combining (4)-(9), finally we get the i j-th compliance C∗
i j,

as below

C∗
i j=C∗

Ji j +
[

i( j−1)Ri j 0
0 i( j−1)Ri j

]−1

CLi( j−1)

[
i( j−1)Ri j 0

0 i( j−1)Ri j

]

(10)
For a planar mechanism, the i j-th compliance is given by

C∗
i j = C∗

Ji j +
i( j−1)R−1

i j CLi( j−1)
i( j−1)Ri j (11)

The link deformation and joint deformation of mechanical
element are taken into account by one equation. Moreover,
one can ignore deformation of some elements by setting their
compliance as zero.

C. Procedure of Calculating the Total Stiffness of Parallel
Mechanisms

This subsection describes steps of the proposed approach.
Setting the coordinates is the first step. Then finding com-
pliance of mechanical element introduced in the above
subsection is the second step. Deriving compliance of i j-
th mechanical module and deriving compliance of i-th sub
arm are the followed two steps. In the fifth step, overall stiff-
ness formulation including passive joint stiffness is derived.
Finally, total stiffness of the mechanism can be obtained by
substituting passive joint stiffness as zero.

1) 3 Dimensional Mechanism:
[step1] Setting the i j-th coordinates Σi j

D-H coordinates frames Σi j are assigned.
[step2] Finding compliance of mechanical element C∗

i j
By using (10) (Equation (11) is for planar mechanism),

all of the mechanical elements compliance can be obtained.

[step3] Deriving compliance of i j-th mechanical module
BC∗

i j
BC∗

i j is defined as below

∆r = BC∗
i jF (12)

The relation between displacement of ΣT and Σi j, as
analyzed in [13], is given by

∆ri j = Ji jT
T∆r (13)

where

Ji jT =
[

i jRT [i jPT×]i jRT

0 i jRT

]
(14)

The notation [.×] denotes, for an arbitrary three-

dimensional vector,a =
[
ax ay az

]T
,[a×] =


 0 −az ay

az 0 −ax

−ay ax 0


.

The Jacobian matrix (14) relates to displacement and
orientation of frame ΣT and Σi j with respect to ΣB. It can be
determined from the homogeneous transform i jTT (i jRT and
i jPT are included) relating to ΣT and Σi j, and it is independent
of ΣB.

Then the equivalent force relation is given as the following

Fi j = (J−1
i jT )T TF (15)

By using the rotational matrix BRT , the following equation
can be easily gotten

∆r =
[

BRT 0
0 BRT

]
T∆r (16)

F =
[

BRT 0
0 BRT

]
TF (17)

From combination of (4), (12)-(13), (15)-(17), the compli-
ance of i j-th mechanical module is derived

BC∗
i j =

[
BRT 0

0 BRT

]
J−1

i jT C∗
i j(J

−1
i jT )T

[
BRT 0

0 BRT

]−1

(18)

Substituting (14) into (18) and simplifying it, reduces to

BC∗
i j =

[
BRi j −BRi j[i jPT×]

0 BRi j

]
C∗

i j

[
BRi j −BRi j[i jPT×]

0 BRi j

]T

(19)
[step4] Deriving compliance of i-th sub arm
The compliance of a serial sub arm is the summation of

the compliance of component elements, i.e.

BC∗
i =

mi

∑
j=1

BC∗
i j (20)

[step5] Deriving overall stiffness of the mechanism
Stiffness of a parallel mechanism is the summation of

stiffness of sub arms, i.e.

BK∗
r =

n

∑
i=1

(BC∗
i )

−1 (21)

[step6] Deriving total stiffness
The total stiffness of the mechanism is obtained by sub-

stituting the passive joint stiffness KJPi j as zero.

BKr = BK∗
r |KJPi j=0 (22)
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2) Planar Mechanism Formulation Deduction:
The deduction procedure for planar mechanisms is exactly

the same as the one for 3D mechanisms. Therefore only some
equations which are different from those for 3D mechanisms
will be introduced in this section.

In step3, the Jacobian matrix (14) has the form

Ji jT =
[

i jRT −[i jPT×]T

0 1

]
(23)

The notation [.×] denotes, for an arbitrary two-
dimensional vector, a =

[
ax ay

]T
, [a×] =

[−ay ax
]
.

For a planar manipulator, this Ji jT can also be determined
from the homogeneous transform i jTT . Note that, here i jRT ∈
R2×2, and i jPT ∈ R2×1. Their relation to i jTT is described as
below

i jTT =
[

i jRT
i jPT

0 1

]
(24)

Equation (16) and (17) should be written as

∆r = BRT
T∆r (25)

F = BRT
TF (26)

Finally, the compliance of i j-th mechanical module BC∗
i j

of a planar mechanism can be obtained as

BC∗
i j =

[
BRi j

BRi j[i jPT×]T

0 1

]
C∗

i j

[
BRi j

BRi j[i jPT×]T

0 1

]T

(27)

D. An Example for Illuminating the Procedure

The planar mechanism shown in Fig.5 is a 2 DOF planar
mechanism and it is used to illuminate the procedure. Its total
stiffness is calculated according to the steps of the proposed
approach. Note that, the compliance and stiffness matrices
are pose independent. For simplicity, the following results
are all gotten under the assumption that the mechanism just
moves into the position as shown in Fig.5.

11L

12L

11Σ 12Σ

TΣ

21Σ

22Σ

21L

22L
BΣ

Fig. 5. A 2 DOF planar mechanism with passive joint

(a) The D-H coordinates Σi j (i=1, 2; j=1, 2, 3) are
assigned. (Here, coordinate Σ13 and Σ23 are same as ΣT.)

(b) The i( j − 1)-th link stiffness matrix CLi( j−1) , ex-
pressed in their local coordinates Σi( j−1), is 0 (when j=1),and
CLi( j−1)a 0 0

0 CLi( j−1)b CLi( j−1)c
0 CLi( j−1)c CLi( j−1)d


 (when j �= 1). As shown in

the nomenclatures definition section, C∗
Ji j denotes the i j-th

joint compliance (Size of C∗
Ji j is 3 by 3 as this is a planar

case. Note that, the size of other nomenclatures for planar
mechanism will not be expressed in the following sections).

where C∗
Ji j = diag(0,0,K−1

Ji j ) KJi j:Stiffness of each joint

CLi( j−1)a =
Li( j−1)

Ei( j−1)Ai( j−1)
, CLi( j−1)b =

Li( j−1)
3

3Ei( j−1)Ii( j−1)

CLi( j−1)c =
Li( j−1)

2

2Ei( j−1)Ii( j−1)
, CLi( j−1)d =

Li( j−1)
Ei( j−1)Ii( j−1)

Li( j−1), Ei( j−1), Ai( j−1), Ii( j−1) are the length, Young’s mod-
ulus of elasticity, the original cross-sectional area, second
moment of area of i( j-1)-th link, respectively.

Using (11), we compute all mechanical element compli-
ances, expressed in Σi j , of the 1st sub-arm as follow.

C∗
11 = C∗

J11 C∗
12 =


CL11b 0 CL11c

0 CL11a 0
CL11c 0 CL11d +CJ12




C∗
13 =


 CL12b 0 −CL12c

0 CL12a 0
−CL12c 0 CL12d +CJ13


 (28)

The three results above are the compliance, with respect
to their local coordinate, and they make it clear that both
link and joint deformation of each mechanical element can
be expressed in one equation after transformation.

(c) Substituting these mechanical element compliance,
shown by (28), into (27) respectively, we get

BC∗
11 =


 L2

12CJ11 −L11L12CJ11 −L12CJ11

−L11L12CJ11 L2
11CJ11 L11CJ11

−L12CJ11 L11CJ11 CJ11




BC∗
12=


CL11a+L2

12(CL11d+CJ12) −L12CL11c −L12(CL11d+CJ12)
−L12CL11c CL11b CL11c

−L12(CL11d +CJ12) CL11c CL11d +CJ12




BC∗
13 = C∗

13 (29)

(d) Substituting equations of (29) into (20), we get
BC∗

1 =BC∗
11 +BC∗

12 +BC∗
13 (30)

(e) Compliance of 2nd sub-arm BC∗
2 can be obtained

similarly by the way of getting BC∗
1. Substituting in (21),

we get the overall stiffness of the mechanism BK∗
r .

(f) Finally, the total stiffness is obtained by using (22).
For easily seeing the validity and effectiveness of this

procedure, several results under some special conditions are
shown in the following section.

[Condition1] All the links are rigid

(BC∗
1)

−1 =




KJ12+KJ13
L2

12

KJ12
L11L12

KJ13
L12

KJ12
L11L12

KJ11+KJ12
L2

11
0

KJ13
L12

0 KJ13


 (31)

(BC∗
2)

−1 =




KJ21+KJ22
L2

21

−KJ22
L21L22

0
−KJ22
L21L22

KJ22+KJ13
L2

22

KJ13
L22

0 KJ13
L22

KJ13


 (32)

where KJi j is the i j-th joint stiffness and is inverse of CJi j

From this result, we easily know passive joint stiffness can
be treated. If all the passive joint stiffness are substituted by
zeros, the active joint stiffness is as follows:

BKr =




KJ21
L2

21
0 0

0 KJ11
L2

11
0

0 0 0


 (33)
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This result is totally the same with the one obtained by
conventional joint stiffness calculation method.

[Condition2] All of joint stiffness including the active
joint are assumed zero

BKr = 0 (34)
At this time, the total stiffness of the mechanism is zero no

matter when the stiffness of links is zero or infinite. It means
total stiffness of the mechanism is always zero if all the joints
are passive joints. This is accordant with the practice fact.

[Condition3] all the links are assumed rigid except link11.

BKr =




KJ21
L2

21
0 0

0 KJ11
L2

11+KJ11CL11b
0

0 0 0


 (35)

The above three conditions are used to check the proposed
procedure since active joint stiffness, link stiffness, passive
joint stiffness, infinite stiffness are all included. Joint stiffness
and link stiffness can be treated simultaneously. The same
active joint stiffness as the one obtained from conventional
joint stiffness analysis method and the obvious physics
meaning indicates the proposed procedure is correct.

IV. COMPARISON WITH FEA

The total link compliance (inverses of total stiffness),
in which all joints are assumed as rigid, obtained by this
developed approach and its counterpart derived from FEA
model, are compared.

A. Description of the FEA Model

MSC.visualNastran 4D is used to implement these models.
The shape of all links is assumed as rectangle. Unit forces
are applied at point P and defined in the global coordinates.
Then position displacements in the x-direction, y-direction,
with respect to the global coordinate, are obtained. At the
same time, the orientation displacement of the mechanism
can be achieved by computing the deformation of boundary
points.

11L

12L

11Σ

12Σ

TΣ

21Σ

22Σ

BΣ

21L

22L

11L

12L

11Σ

12Σ

TΣ

21Σ22Σ

BΣ

21L

22L

Case IV Case V
Fig. 6. Mechanism structure of Case IV, and Case V

TABLE I

DESIGN PARAMETERS OF EACH CASE

Symbol Case I Case II Case III Case IV Case V
Height 16 mm 4 mm 4 mm 16 mm 16 mm
Width 12 mm 12 mm 6 mm 12 mm 12 mm
Length L11 = L21 = 100 mm,L12 = L22 = 120 mm

E Modulus of Elasticity: E = 2.0×1011 pa

With the purpose of covering all the diverse parameters of
the mechanism, 5 different cases are studied. Three FEA
models (Case I, case II, and case III) of the analyzed
example, shown by Fig.5, are built with different links
parameters. Fig.6 shows structures of Case IV and Case V.
All links parameters of each case are shown in Table I.

B. Case Studies Results and Comparison

Table II-VI (Position displacement units: m, orienta-
tion displacement units: rad) show the results of different
cases.These results computed by the proposed approach and
those corresponding results obtained from FEA model are
very close to each other.Errors between these elements of the
results are less than 3.1% with respect to the results derived
from FEA model. This confirms the validity of the proposed
approach.

TABLE II

COMPARISON CASE:I
Method Compliance matrix

Proposed
approach


1.1517 0.2056 −5.237

0.2056 1.5632 −12.649
−5.237 −12.649 322.14


×10−7

FEA


1.1171 0.2035 −5.193

0.2035 1.5498 −12.555
−5.212 −12.475 316.81


×10−7

TABLE III

COMPARISON CASE:II
Method Compliance matrix

Proposed
approach


 7.2239 1.2824 −32.647

1.2824 9.8661 −80.505
−32.647 −80.505 2049.5


×10−6

FEA


 7.0124 1.2543 −31.635

1.2544 9.6805 −79.862
−32.025 −80.025 2137.5


×10−6

TABLE IV

COMPARISON CASE:III
Method Compliance matrix

Proposed
approach


 14.448 2.5648 −65.294

2.5648 19.732 −161.01
−65.294 −161.01 4099.0


×10−6

FEA


 14.165 2.5375 −64.008

2.5372 19.503 −160.33
−64.725 −160.25 4132.5


×10−6

TABLE V

COMPARISON CASE:IV
Method Compliance matrix

Proposed
approach


0.9614 0 4.3228

0 1.3551 0
4.3228 0 227.88


×10−7

FEA


0.9622 0 4.3976

0 1.3423 0
4.4181 0 226.25


×10−7

Some reasons for the mismatch shown in the results might
be due to the following. (1) Very small error exists between
the position of point P in the FEA model and very exactly
the position of point P in the proposed approach. (2) FEA
models have to be re-meshed again and again. The default
mesh size should be set before doing the FEA simulation.
This produces very small errors as the default mesh size can
not be set as very small value as it costs much long time
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TABLE VI

COMPARISON CASE:V
Method Compliance matrix

Proposed
approach


 1.1517 −0.2056 −5.237
−0.2056 1.5632 12.649
−5.237 12.649 322.14


×10−7

FEA


 1.1171 −0.2043 −5.179
−0.2043 1.5546 12.56
−5.2025 12.579 317.2


×10−7

to finish the process. (3) The angle displacements (elements
of third row of each matrix) are computed by finding the
deformation of the boundary points in the FEA model.

V. STIFFNESS ANALYSIS OF PARALLEL MECHANISM

WITH FORCE REDUNDANCY

Total stiffness of a mechanisms with force redundancy,
shown in Fig.7, is given. To compare with the results
obtained by conventional joint stiffness method, all the links
compliance and passive joint stiffness are then substituted by
zero. The two results calculated by these two methods are
totally the same, which validate the proposed approach.

B∑

1
SBi
Si

∑
∑

SJi
STJi

∑
∑

T∑

11θ

12θ

22θ

21θ

ϕ

2Si∑

1L

2L

TL

Fig. 7. A parallel force redundancy mechanism with Top-plate

The D-H coordinate frames are assigned. Joint variables
are θi j (i = 1,2; j = 1,2) and orientation of Top-plate is ϕ .
Length of i1-th, i2-th link, Top-plate are L1 , L2 and LT

respectively. The overall stiffness is obtained. Then total joint
stiffness is gotten by substituting all the link compliances
as zero. The result stiffness matrix is very complex. For
simplicity, the following position is chosen for comparison.
When the mechanism moves to the pose as below

θ11 = 0,θ12 =
π
2

,θ21 = 2π,θ22 =
3π
2

,ϕ = 0

and if all passive joint stiffness are substituted by zero, the
active joint stiffness is gotten as follows:

BKr=




KJ12+KJ22
L2

2

KJ12−KJ22
L1L2

LT (KJ12+KJ22)
2L1L2

KJ12−KJ22
L1L2

KJ11+KJ12+KJ21+KJ22
L2

1

LT (KJ11+KJ22)
2L2

1
LT (KJ12+KJ22)

2L1L2

LT (KJ11+KJ22)
2L2

1

L2
T (KJ11+KJ12+KJ21+KJ22)

4L2
1




(36)
Equation (36) is the same as the stiffness results calculated

by conventional joint stiffness method.
The proposed approach is effective for both non-redundant

mechanism and force redundant mechanism. The stiffness

performance can be improved by introducing force redun-
dancy. Take (36) for example, we can distribute (1,1) el-
ement of a desired BKr such that KJ12 + KJ22 is constant.
However, we should pay attention to the control scheme
when designing a real mechanism benefits from force redun-
dancy since KJ12 or KJ22 will be produced by certain control
scheme. That is, the active joints should not all adopt position
control scheme with the integral motion in order to avoid big
internal force caused by a small positional incoincidence.

VI. CONCLUSION

The main results obtained in this paper summarized as
follows.

1) A systematic parametric approach, which is fit for
optimal design, to compute the static stiffness of robots
with/without force redundancy is proposed. It can compute
link stiffness and joint stiffness simultaneously. Stiffness of
passive joints and rigid links can be dealt with.

2) The validity of the proposed approach is confirmed by
comparing to FEA and conventional joint stiffness method.
A comparative analysis between the proposed method and
FEA model shows that the mechanism total link compliance
results obtained by them are much closed. Analysis of
the stiffness matrix of a planar parallel force redundant
manipulators is presented. The obtained results show that
there are no differences between the active joint stiffness
results obtained by conventional joint stiffness method and
the proposed approach.
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