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Abstract— In this paper, a novel approach for parallel
kinematic machine control relying on a fast exteroceptive
measure is implemented and validated on the Orthoglide robot.
This approach begins with rewriting the robot models as a
function of the only end-effector pose. It is shown that such an
operation reduces the model complexity. Then, this approach
uses a classical Cartesian space computed torque control with
a fast exteroceptive measure, reducing the control schemes
complexity. Simulation results are given to show the expected
performance improvements and experiments prove the practical
feasibility of the approach.

I. INTRODUCTION

Experience shows that parallel kinematic machines are not

as accurate as expected, specially for high speed machining

application [1], [2], [3]. The causes of accuracy losses are

numerous. First, due to the complex mechanical structure, the

models used in control are generally simplified, leading to

non negligible errors [2]. Performant modeling methods [4],

[5], [6] could yet be used to improve the accuracy while

decreasing the computational burden. Second, the presence

of numerous passive joints leads to a lack of accuracy, due to

the unavoidable clearances [7]. An identification process [7]

can decrease the clearances influence but not cancel it.

Other causes can be found, such as assembly errors, thermal

deformations, vibrations and so on [2]. Nevertheless, the

benefit of adapted models with a performant identification

is not the only way to improve the performances.

Indeed, a parallel kinematic machine is generally con-

trolled with the same laws as a serial one, namely single

axis control for machine tool [8] or joint space computed

torque control for high speed manipulators [9]. It was already

shown that these strategies are not relevant for parallel

kinematic machines [10], [11], [12]. In fact, [12] shows that

a parallel kinematic machine should be controlled with a

computed torque control compensating for the high dynamic

coupling between, even at low speed [12]. Moreover, this

control should include a Cartesian space dynamic modeling,

which is relevant for parallel kinematic machines [13], [10].

Therefore, a Cartesian space control is more adequate than

a joint space one.

Indeed, as theoretically shown in [11], the Cartesian space

computed torque control of a parallel kinematic mecha-
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nism is a state feedback controller (dual to the joint space

computed torque control of a serial kinematic mechanism).

Moreover, the dynamics of the regulated error is subject to

less unmodelled terms than for the usual control schemes.

However, using a Cartesian space computed torque control

requires a fast and accurate measure of the end-effector pose.

In this way, one could avoid solving the forward kinematic

problem since the latter, being a square problem, might be

biased by the numerical estimation errors and the geometrical

errors. Furthermore, the reliability and speed of the estima-

tion are not ensured. In this way, an exteroceptive measure

is more relevant since it does not depend of the accuracy

of a mechanical model and a heavy nonlinear estimation. To

our mind, computer vision could be a good approach [14],

following [15] which showed some advantages of the visual

servoing for parallel kinematic machines. Nevertheless, the

classical visual servoing does generally not ensure high-

speed task, since it is a kinematic control scheme.

Consequently, the proposed approach tries to reach good

high speed performances by combining fast exteroceptive

measure, Cartesian space models and Cartesian space com-

puted torque control. It is coherent with Fakhry’s work

for serial robots [16] while being adapted to parallel kine-

matic machines and aiming at faster tasks. Moreover, our

approach is slightly different of the other recent work on

fast visual servoing [17] since vision is not used in an

external compensation loop modifying the reference path of

an internal dynamical control, but directly in the control loop

compensating for the dynamics in real time.

The contribution of this paper is to propose the first, to

our knowledge, experimental results for high-speed vision-

based control of parallel kinematic machines, which validates

the theoretical results of [11]. This validation is done on the

Orthoglide [18], which is designed for high speed machining.

The dynamical modeling method is updated to the use

of exteroceptive sensing and compared with the classical

ones based on joint sensing. Last but not least, simulations

are provided to show the potential improvements that this

method unveils. The paper is organised as follows. Section II

deals with the modeling of the test-bed. Section III recalls the

various control schemes and gives comparative simulation

results. Section IV provides the first experimental results and

Section V concludes the paper with a discussion on further

improvement possibilities.
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Fig. 1. Experimental set-up: the Orthoglide is observed by a high-speed

camera.

II. MODELING OF THE TEST-BED

A. Presentation of the Orthoglide

The Orthoglide [18] is a 3 DOF translational parallel kine-

matic machine (Figure 1). Its mechanical structure consists

of three identical PRPaR legs (P: Prismatic, R: Revolute, Pa:

Parallelogram). Only the prismatic joints are actuated, the

others are passive. Its maximal performances are 1.2m.s−1

for speed and 20m.s−2 for acceleration. In order to ensure

accurate tracking at such speeds, a computed torque control

is required to compensate for the dynamic coupling between

legs. The complete modeling of this machine is now detailed,

where the focus is put on the simplifications generated by the

use of an exteroceptive measure rather than a proprioceptive

one.

B. Kinematic modeling

The inverse kinematic model links the active joint variable

(q1i where i is the leg number) to the end-effector pose X =
[Xe Ye Ze]

T . There are 8 inverse kinematic solutions, but

only one is located in the robot workspace [19]:

q11 = Ze −
√

D2
4 − X2

e − Y 2
e − D6

q12 = Xe + a −
√

D2
4 − Y 2

e − (Ze − a)
2 − D6

q13 = Ye + a −
√

D2
4 − X2

e − (Ze − a)
2 − D6

(1)

where D4, D6 and a are geometrical parameters.

The Orthoglide has the great advantage of having an

analytically defined forward kinematic model since (1) yields

a second order equation, whose solution is given by [19]:

PBi = −a + qi1 + D6 (2)
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√
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Bi

)

−D2
4

and the sign in (3) is such that the solution corresponds to

the actual assembly mode, defined by Ze > 0.

The inverse instantaneous kinematic model links the ac-

tive joint speeds to the end-effector velocity. This model

is obtained by differentiating (1). However, this model is

here written directly as a function of the end-effector pose

whereas it is generally written as a function of the joint

variables:

Dinv =
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∆1

Ye

∆1
1

1 Ye

∆2

Ze−a
∆2
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∆3
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(7)

where:
∆1 =

√
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4 − X2

e − Y 2
e

∆2 =
√
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4 − Y 2

e − (Ze − a)
2

∆3 =
√

D2
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2

(8)

C. Dynamic modeling

The general form of the inverse dynamic model of a

parallel kinematic machine is written as [6]:

Γ = DT

(

FP +
3
∑

i=1

JT
piJ

−T
i Hi(qi, q̇i, q̈i)

)

(9)

where:

• D is the forward instantaneous kinematic matrix of

the machine, computed as the inverse of the inverse

instantaneous kinematic matrix described in (7)

• FP = MP (Ẍ − g) are the end-effector dynamics

• Jpi = I3 is the Jacobian linking the last leg joint

variables to the end-effector Cartesian variables

• J−1
i are the legs inverse instantaneous kinematic matri-

ces

• Hi are the leg dynamics, here computed with the

Newton-Euler algorithm [20]

• g is the gravity acceleration

Several computational schemes are available depending on

how much one relies on the end-effector pose measure. The

first scheme, used in the classical joint space approach, is

1) Computation of the end-effector pose, speed and ac-

celeration from the forward kinematic model and the

joint values
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2) Computation of the passive joint variables, speeds and

accelerations

3) Computation of the legs dynamics Hi with the

Newton-Euler algorithm

4) Computation of Γ with (9)

Alternately, a second scheme is proposed now, associated

to the Cartesian space approach used in this paper. Indeed,

the dynamics do not depend, in fact, on the passive joint

variables, but on their sines and cosines. Actually, the latter

can be expressed using only the end-effector pose:

s31 = − Ye

D4
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√
D2

4−Y 2
e

D4
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D2

4−Y 2
e
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4−Y 2
e

s32 = −Ze−a
D4

c32 =

√
D2
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D4
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s33 = −Xe

D4
c33 =

√
D2

4−X2
e
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(10)

from which the legs inverse instantaneous kinematic matrices

can also be expressed using only the end-effector pose:
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Knowing that, the second scheme decomposes in:

1) Computation from the end-effector pose measure of the

expressions in (10), and the passive joints speed and

acceleration from the first and second order instanta-

neous leg kinematics (whose closed-form expression

can be derived from (11))

2) Computation of the legs dynamics with the Newton-

Euler algorithm

3) Computation of Γ using with (9)

Therefore, using a Cartesian space model allows for sim-

plifying algorithms as compared to the classical joint space

modeling.

A third scheme is sometimes possible, where the numer-

ical Newton-Euler algorithm is replaced by a closed-form

expression. The third scheme is clearly the best in terms

of computational cost and modeling errors. Indeed, only the

useful terms are employed and there is no extra computation.

However, this method is not always achievable because the

forward instantaneous kinematic matrix does not always

have a closed-form expression. Nevertheless, an analytical

expression of the legs dynamics could generally be used.

Anyhow, the second scheme should be preferred to first

scheme when used in a Cartesian space control with an

+

++
_

P ath MachineP IDIKM(Xd)

s2

M

Xd
qd

q

Γ

Fig. 2. Single-axis control scheme

Single-axis Joint space

CTC

Cartesian

space CTC

Vision-

based CTC

Sensor accu-

racy

10µm 1µm 10µm 1µm 10µm 1µm 100µm 10µm

Classical

identification

148

63

148

63

137

59

137

59

131

57

131

57

106

53

84

36

Accurate

identification

111

40

111

40

93

39

93

39

83

34

83

34

103

52

81

35

TABLE I

Position defects in µm on a 5cm square at 3m.s−2 for several control

strategies, sensor accuracy and identification accuracy, first row is static

accuracy (mean of error) and second is dynamic accuracy (standard

deviation of error)

Single-axis Joint space

CTC

Cartesian

space CTC

Vision-

based CTC

Sensor accu-

racy

10µm 1µm 10µm 1µm 10µm 1µm 100µm 10µm

Classical

identification

84

37

84

37

92

36

92

36

77

23

77

23

80

28

27

19

Accurate

identification

43

34

43

34

45

48

45

48

28

20

28

20

80

28

27

19

TABLE II

Position defects in µm on a 5cm circle at 3m.s−2 for several control

strategies, sensor accuracy and identification accuracy, first row is static

accuracy (mean of error) and second is dynamic accuracy (standard

deviation of error)

exteroceptive measure. Indeed, the gain of computation cost

allows for higher control speed, higher accuracy since sim-

pler models are used leading to a decrease of modeling

errors. The second scheme is thus the one implemented and

tested in the sequel.

III. SIMULATION

We propose a comparison between the standard single

axis control (Figure 2), the more elaborated joint space

computed torque control (Figure 3), the advanced Cartesian

space computed torque control with forward kinematic model

(Figure 4) and the proposed vision-based computed torque

control (Figure 5). This comparison is achieved on classical

machining trajectories: a square and a circle in the XY plan.

The displacement is computed with a fifth order polynomial

interpolation. Acceleration is fixed at 3m.s−2. The control

rate is fixed at 400Hz and the tuning of the PID controller at

6Hz. The joint sensors have either 10µm or 1µm accuracy.

The vision sensor has either 100µm or 10µm accuracy and

allows for a 400Hz measure. In a first time, the uncertainty is

fixed at 100µm on the geometric parameters and 10% on the

dynamic parameters (in the order of a classical identification

errors). In a second time, these uncertainty are then fixed at

10µm and 1% (accurate identification).

Figure 6 shows the trajectories in the XY plane achieved

by the four control strategies when the reference trajectory

is a 50mm square at 3m.s−2 with a classical identification.
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Fig. 3. Joint space computed torque control scheme for parallel kinematic machines, where bX is the estimated end-effector pose and ω = Ẍ is a control

signal
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Fig. 4. Cartesian space computed torque control scheme for parallel kinematic machines with forward kinematic model, where bX is the estimated

end-effector pose and ω = Ẍ is a control signal
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Fig. 5. Cartesian space computed torque control scheme for parallel kinematic machines with high speed vision, where ω = Ẍ is a control signal

Fig. 6. Comparison between single-axis, joint space computed torque,

Cartesian space computed torque control and vision-based computed torque

control on a 50mm square at 3m.s−2 with a classical identification

All the control strategies allows for a satisfactory tracking.

Single-axis, joint space and Cartesian space computed torque

control have a similar accuracy except at the beginning of the

trajectory where the single-axis presents an overshoot. The

vision-based computed torque seems to be a bit closer to the

reference. This is numerically shown in Table I and Table II.

Indeed, the single-axis and joint space computed torque

control have very closed static and dynamic accuracies, the

second control is a bit better than the first one on the square

but not on the circle. On the opposite, the Cartesian space and

the vision based computed torque controls allow for small

improvement in term of accuracy on both trajectories, when

vision based control seems to be the best. Moreover, it be

can be noticed that the accuracy of these three first control

strategies depends only on the identification accuracy and

not the sensors accuracy. The vision based computed torque

reaches the best accuracy on the the square. On the opposite,

the vision based computed torque control accuracy mainly

depends on the sensor accuracy and seems insensitive to the

identification one.

These simulation results first show that vision based

computed torque control should allow for the best accuracy

and does not depends on the identification of the mechanical

structure. Indeed, as the end-effector pose is measured and

not estimated with the forward kinematics, the quality of the

feedback information depends only on the sensor accuracy.

The benefit of an accurate identification is thus less important

than the quality of the sensors and the control tuning. On

the opposite, the three other control strategies require an

accurate identification rather than a perfect tuning and sensor

accuracy. In fact, the model accuracy is essential because the

necessary information (end-effector pose) has to be estimated

through this model.

These simulation results show secondly that the use of
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Visual measure

Synchronisation

Orders

Information

Fig. 7. Control architecture

the Cartesian space control, with forward kinematics and

especially with vision, allows for a noticeable accuracy

improvement (up to 40% in static and 60% in dynamic when

an accurate vision sensor is used). The decrease of the model

use and avoidable modeling errors are the main sources of

this accuracy improvement.

Let us also remark that, on a light parallel kinematic

machine, as dynamics are nearly linear, a single-axis control

allows for similar accuracy as joint computed torque control.

Indeed, the use of a complex structure model in the control

loop is not necessarily an improvement because of heavy

useless computation and estimation errors injection. This

opposes to the case of heavy mechanical structures, where a

computed torque control, even in joint space, improves the

accuracy [11], [12].

IV. EXPERIMENTS

We propose an experimental validation of the above sim-

ulations. The set up is shown in Figure 1 and the complete

control architecture in Figure 7. The image acquisition is

achieved with a 1024×1024 global shutter CMOS camera.

To achieved a 400Hz visual measure, only a 360×360

region of interest is used. The tracking in the image of the

visual pattern uses the first order moment of the grayscale

pixels in a small region of interest around each blob. The

pose estimation is achieved via the well-know Dementhon

algorithm[21] and sent to the dSpace 1103 Board via an

RS422 Serial Link. On the opposite, the dSpace Board sends

a 400Hz synchronisation signal launching the acquisition-

tracking-pose measurement process. The dSpace 1103 board

is also assigned to the computed torque control loop and the

fifth degree path generation between two points. Then the

interface computer sends orders and grabs information such

as actuators positions, end-effector pose, and so on.

In a first part, the visual measure is tested to show its

accuracy. This test is achieved on a linear actuator with a

1µm linear sensor. The test trajectory is a 200mm linear

displacement with accelerations ranging from 1m.s−2 to

10m.s−2. Figure 8 (left) shows the measured position by

the visual sensor and the actuator sensor and Figure 8

(right) shows the visual measure accuracy with regards to

the actuator sensors considered as the ground-truth. It can be

noticed that the visual measure is quite accurate at low speed.

The faster are the moves, the worse is the measure accuracy

as numerically shown in Table III. The visual sensor allows

for a 198µm static accuracy and a dynamic accuracy ranging

from 286µm (at 2m/s−1) to 4.468mm (at 10m/s−1).

Fig. 8. Comparison between 400Hz visual measure and 1µm optical

sensor with acceleration ranging from 1m−2 to 10m−2

Acceleration (m.s−2) 1 3 5 10

Dynamic Error (µm) 286 801 1946 4468

TABLE III

Dynamic error between 500Hz visual measure and 1µm optical sensor

where static error is 198µm

This is a fair result, which could be improved, at least only

by means of the current technological development rate, not

to count on scientific advances.

In a second part, the visual based computed torque is

implemented and tested on a 60mm circle with maximal

speed of 0.2m.s−1 and maximal acceleration of 3m.s−2.

Figure 9 shows the achieved circle by the Cartesian space

computed torque control with the forward kinematic model

and the vision-based computed torque control in the XY plan

and Figure 10 shows the resulting error on the Z axis. For a

fair comparison, both controls are tuned with the same gains,

that are reduced with respect to the model-based control in

place in order to cope with the vision constraints (noise and

delay). The trajectory tracking is similar in both cases, as

numerically shown in Table IV, with perhaps a slightly better

performance in the vision-based case.

This validates the principle of the proposed approach,

where, let us underline it, no joint sensing at all is used

and where the vision sensor is not as accurate as it could or

shall be. Yet, improving the visual sensor should allow for

increasing the tuning and thus the accuracy.

V. CONCLUSION

In this paper, a recent theoretically novel approach for

parallel kinematic machine control was experimentally vali-

dated. Recall that this approach relies on an exteroceptive

measure of the end-effector pose (here computer vision),

rather than on solving for the forward kinematic problem.

This allows for simplifying the models used in the control

CS CTC VB CTC

Static accuracy (µm) 2590 2576

Dynamic accuracy (µm) 1954 1727

TABLE IV

Position defect for the Cartesian space computed torque control with the

forward kinematic model and the vision-based computed torque control on

a 60mm circle
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Fig. 9. 60mm circle at 3m.s−2 achieved by the Cartesian space computed

torque control with the forward kinematic model and the vision-based

computed torque control in the XY plan
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Fig. 10. Position errors on Z axis on a 60mm circle achieved by the

Cartesian space computed torque control with the forward kinematic model

and the vision-based computed torque control

schemes by writing them as a function of the only end-

effector pose measure (that is, the actual state of parallel

kinematic machines). This approach relies hence on a Carte-

sian space computed torque control using the exteroceptive

measure in the feedback loop, which was shown to be a state

feedback control. The control scheme is thus reduced to its

simplest expression. This is not only theoretically proper,

but leads in simulation to a better accuracy to the model-

based joint-based classical methods, namely the joint space

computed torque control and the Cartesian space one with

the forward kinematic model. Moreover, such a strategy

was shown, again in simulation, to be less sensitive to

the mechanical identification than the classical approaches.

Finally, the experimental validation of the approach on the

Orthoglide shows that even with a sub-optimal vision sensor,

the approach competes with the well established methods.

Yet, the simulation results provided in this paper let us expect

even greater performances in terms of accuracy with a more

accurate exteroceptive sensor.

To conclude optimistically, there might not be “Still a long

way to go on the road for parallel mechanisms”[22] to reach

better performances than serial mechanisms.
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