
  

Abstract— The paper presents a new stiffness modelling 
method for overconstrained parallel manipulators, which is 
applied to 3-d.o.f. translational mechanisms. It is based on a 
multidimensional lumped-parameter model that replaces the 
link flexibility by localized 6-d.o.f. virtual springs. In contrast 
to other works, the method includes a FEA-based link stiffness 
evaluation and employs a new solution strategy of the 
kinetostatic equations, which allows computing the stiffness 
matrix for the overconstrained architectures and for the 
singular manipulator postures. The advantages of the 
developed technique are confirmed by application examples, 
which deal with comparative stiffness analysis of two 
translational parallel manipulators. 

I. INTRODUCTION / RELATED WORKS 
elative to serial manipulators, parallel manipulators are 
claimed to offer an improved stiffness-to-mass ratio and better 
accuracy. This feature makes them attractive for innovative 

machine-tool structures for high speed machining [1, 2, 3]. When a 
parallel manipulator is used as a Parallel Kinematic Machine 
(PKM), stiffness becomes a very important issue in its design [4, 5, 
6, 7]. This paper presents a general method to compute the stiffness 
analysis of 3-dof overconstrained translational parallel 
manipulators. 

Generally, the stiffness analysis of parallel manipulators is 
based on a kinetostatic modeling [8], which proposes a map of the 
stiffness by taking into account the compliance of the actuated 
joints. However, this method is not appropriate for PKM whose 
legs are subject to bending [9].  

Several methods exist for the computation of the stiffness 
matrix: the Finite Element Analysis (FEA) [10], the matrix 
structural analysis (SMA) [11], and the virtual joint method (VJM) 
that is often called the lumped modeling [8].  

The FEA is proved to be the most accurate and reliable, 
however it is usually applied at the final design stage because of 
the high computational expenses required for the repeated re-
meshing of the complicated 3D structure over the whole 
workspace. The SMA also incorporates the main ideas of the FEA, 
but operates with rather large elements – 3D flexible beams 
describing the manipulator structure. This leads obviously to the 
reduction of the computational expenses, but does not provide clear 
physical relations required for the parametric stiffness analysis. 
And finally, the VJM method is based on the expansion of the 
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traditional rigid model by adding the virtual joints (localized 
springs), which describe the elastic deformations of the links. The 
VJM technique is widely used at the pre-design stage.  

Next section introduces a general methodology to derive the 
kinematic and stiffness model. Section 3 describes the manipulator 
compliant elements and the link stiffness evaluation methods. 
Finally in section 4, we apply our method on two application 
examples. 

II. GENERAL METHODOLOGY  

A. Manipulator Architecture 
Let us consider a general 3 d.o.f. translational parallel 

manipulator, which consists of a mobile platform connected to a 
fixed base by three identical kinematics chains (Fig. 1). Each chain 
includes an actuated joint “Ac” (prismatic or rotational) followed 
by a “Foot” and a “Leg” with a number of passive joints “Ps” 
inside. Certain geometrical conditions are assumed to be satisfied 
with respect to the passive joints to eliminate the platform rotations 
and to achieve stability of its translational motions. 
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Fig. 1. Schematic diagram of a general 3-d.o.f. translational parallel 

manipulator (Ac – actuated joint, Ps – passive joints, F – foot, L - Leg) 
Typical examples of such architectures are: 
(a) 3-PUU translational PKM (Fig 2a); where each leg consists 

of a rod ended by two U-joints (with parallel intermediate and 
exterior axes), and active joint is driven by linear actuator [13]; 

(b) Delta parallel robot (Fig 2b) that is based on the 3-RRPaR 
architecture with parallelogram-type legs and rotational active 
joints [14]; 

(c) Orthoglide parallel robot (Fig 2c) that implements the 3-
PRPaR architecture with parallelogram-type legs and translational 
active joints [10]. 

Here R, P, U and Pa denote the revolute, prismatic, universal 
and parallelogram joints, respectively. 

It should be noted that examples (b) and (c) illustrate 
overconstrained mechanisms, where some kinematic constrains are 
redundant but do not affect the resulting degrees of freedom. 
However, most of the past works deal with non-overconstrained 
architectures, which motivates the subject of this paper [8]. 

B. Basic Assumptions 
To evaluate the manipulator stiffness, let us apply a 

modification of the virtual joint method (VJM), which is based on 
the lump modeling approach [8, 10]. According to this approach, 
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the original rigid model should be extended by adding the virtual 
joints (localized springs), which describe elastic deformations of 
the links. Besides, virtual springs are included in the actuating 
joints to take into account stiffness of the control loop. To 
overcome difficulties with parallelogram modeling, let us first 
replace the manipulator legs (see Fig. 3) by rigid links with 
configuration-dependent stiffness. 

This transforms the general architecture into the extended 3-
xUU case allowing treating all the considered manipulators in the 
similar manner. Under such assumptions, each kinematic chain of 
the manipulator can be described by a serial structure (Fig. 3), 
which includes sequentially: 

 Ac Rigid Foot 

End-effector
(rigid) 

Base platform 
(rigid) 

U Rigid Leg U

 6-d.o.f. 
spring

 6-d.o.f.
spring

 1-d.o.f. 
spring  

Fig. 3. Flexible model of a single kinematic chain  

(a) a rigid link between the manipulator base and the ith 
actuating joint (part of the base platform) described by the constant 
homogenous transformation matrix i

baseT ; 
(b) a 1-d.o.f. actuating joint with supplementary virtual spring, 

which is described by the homogenous matrix function 
0 0( )i i

a q θ+V  where 0
iq  is the actuated coordinate and 0

iθ  is the 
virtual spring coordinate; 

(c) a rigid “Foot” linking the actuating joint and the leg, which 
is described by the constant homogenous transformation matrix 

footT ; 
(d) a 6-d.o.f. virtual joint defining three translational and three 

rotational foot-springs, which are described by the homogenous 
matrix function 1 6( , )i i

s θ θV … , where 1 2 3{ , , }i i iθ θ θ  and 4 5 6{ , , }i i iθ θ θ  
correspond to the elementary translations and rotations 
respectively; 

(e) a 2-d.o.f. passive U-joint at the beginning of the leg allowing 
two independent rotations with angles 1 2{ , }i iq q , which is described 
by the homogenous matrix function 1 1 2( , )i i

u q qV ; 
(f) a rigid “Leg” linking the foot to the movable platform, which 

is described by the constant homogenous matrix transformation 
legT ; 
(g) a 6-d.o.f. virtual joint defining three translational and three 

rotational leg-springs, which are described by the homogenous 
matrix function 7 12( , )i i

s θ θV … , where 7 8 9{ , , }i i iθ θ θ  and 
10 12 12{ , , }i i iθ θ θ  correspond to the elementary translations and 

rotations, respectively; 
(h) a 2-d.o.f. passive U-joint at the end of the leg allowing two 

independent rotations with angles 3 4{ , }i iq q , which is described by 
the homogenous matrix function 2 3 4( , )i i

u q qV ; 
(i)  a rigid link from the manipulator leg the end-effector (part of 

the movable platform) described by the constant homogenous 
matrix transformation i

toolT ; 

The expression defining the end-effector location subject to 
variations of all coordinates of a single kinematic chain may be 
written as follows 

0 0 1 6

1 1 2 7 12 2 3 4

( ) ( , )

( , ) ( , ) ( , )

i i i i i
i base a foot s

i i i i i i i
u leg s u tool

q

q q q q

θ θ θ

θ θ

= ⋅ + ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

T T V T V

V T V V T

…

…
 (1) 

where matrix function (.)aV  is either an elementary rotation or 
translation, matrix functions 1(.)uV  and 2(.)uV  are compositions of 
two successive rotations, and the spring matrix (.)sV  is composed 
of six elementary transformations. In the rigid case, the virtual joint 
coordinates 0 12,i iθ θ…  are equal to zero, while the remaining ones 
(both active 0

iq  and passive 0 4,i iq q… ) are obtained through the 
inverse kinematics, ensuring that all three matrices , 1,2,3i i =T  
are equal to the prescribed one that characterizes the spatial 
location of the moving platform (kinematic loop-closure 
equations). Particular expressions for all components of the product 
(1) may be easily derived using standard techniques for the 
homogenous transformation matrices. It should be noted that the 
kinematic model (1) includes 18 variables (1 for active joint, 4 for 
passive joints, and 13 for virtual springs). However, some of the 
virtual springs are redundant, since they are compensated by 
corresponding passive joints with aligning axes or by combination 
of passive joints. For computational convenience, nevertheless, it is 
not reasonable to detect and analytically eliminate redundant 
variables at this step, because the developed below technique 
allows easy and efficient computational elimination. 

C. Differential Kinematic Model 
To evaluate the manipulator ability to respond to the external 

forces and torques, let us first derive the differential equation 
describing relations between the end-effector location and small 
variations of the joint variables. For each ith kinematic chain, this 
equation can be generalized as follows 

, 1,2,3i i
i i q i iθδ = ⋅ δ + ⋅ δ =t J θ J q , (2) 

where the vector δ (δ , δ , δ , δ , δ , δ )T
i xi yi zi xi yi zip p p ϕ ϕ ϕ=t  describes 

the translation δ (δ , δ , δ )T
i xi yi zip p p=p  and the rotation 

δ (δ , δ , δ )T
i xi yi ziϕ ϕ ϕ=ϕ  of the end-effector with respect to the 

Cartesian axes; vector 0 12( , )i i T
i θ θδ = δ δθ …  collects all virtual 

joint coordinates, vector 1 4( , )i i T
i q qδ = δ δq …  includes all passive 

joint coordinates, symbol ' 'δ  stands for the variation with respect 
to the rigid case values, and ι

θJ , q
ιJ  are the matrices of sizes 6×13 

and 6×4 respectively. It should be noted that the derivative for the 
actuated coordinate 0

iq  is not included in q
ιJ  but it is represented 

in the first column of ι
θJ  through variable 0

iθ . The desired 
matrices ι

θJ , q
ιJ , which are the only parameters of the differential 

model (2), may be computed from (1) analytically, using some 
software support tools, such as Maple, MathCAD or Mathematica. 
However, a straightforward differentiation usually yields very 
awkward expressions that are not convenient for further 

(a) 3-PUU translational PKM [13] (b) Delta parallel robot [14] (c) Orthoglide parallel robot [10] 

   
Fig. 2. Typical 3 d.o.f. translational parallel mechanisms  
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computations. On the other hand, the fractionized structure of (1), 
where all variables are separated, allows applying an efficient 
semi-analytical method. To present this technique, let us assume 
that for the particular virtual joint variable 0

iθ  the model (1) is 
rewritten as 

1 2( )i
i ij j j ijθ= ⋅ θ ⋅T H V H , (3) 

where the first and the third multipliers are the constant 
homogenous matrices, and the second multiplier is the elementary 
translation or rotation. Then the partial derivative of the 
homogenous matrix iT  for the variable i

jθ  at point 0i
jθ =  may be 

computed from a similar product where the internal term is 
replaced by (.)jθ′V  that admits very simple analytical presentation. 
In particular, for the elementary translations and rotations about the 
X-axis, these derivatives are: 

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

xTran

⎡ ⎤
⎢ ⎥′ = ⎢ ⎥
⎢ ⎥⎣ ⎦

V ;   
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

xRot

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

V . (4) 

Furthermore, since the derivative of the homogenous matrix 
1 2( )i

i ij j j ijθ′ ′= ⋅ θ ⋅T H V H  may be presented as 

0
0

0
0 0 0 0

iz iy ix

iz ix iy
i

iy ix iz

p
p
p

ϕ ϕ
ϕ ϕ
ϕ ϕ

′ ′ ′−⎡ ⎤
′ ′ ′⎢ ⎥−′ = ⎢ ⎥′ ′ ′−

⎢ ⎥
⎣ ⎦

T , (5) 

then the desired jth column of ι
θJ  can be extracted from i′T  (using 

the matrix elements 14T ′ , 24T ′ , 34T ′ , 23T ′ , 31T ′ , 12T ′ ). 
The Jacobians q

ιJ  can be computed in a similar manner, but the 
derivatives are evaluated in the neighborhood of the “nominal” 
values of the passive joint coordinates i

j nomq  corresponding to the 
rigid case (these values are provided by the inverse kinematics). 
However, simple transformation i i i

j j jnomq q qδ= +  and 
corresponding factoring of the function 

( ) ( ) ( )i i i
q j j q j j q j jnomq q qδ=V V V  allow applying the above approach. 

It is also worth mentioning that this technique may be used in 
analytical computations, allowing one to avoid bulky 
transformations produced by the straightforward differentiating. 

D. Kinetostatic and Stiffness Models 
For the manipulator kinetostatic model, which describes the 

force-and-motion relation, it is necessary to introduce additional 
equations that define the virtual joint reactions to the corresponding 
spring deformations. In accordance with the adopted stiffness 
model, three types of virtual springs are included in each kinematic 
chain: 
• 1-d.o.f. virtual spring describing the actuator compliance; 
• 6-d.o.f. virtual spring describing compliance of the foot;  
• 6-d.o.f. virtual spring describing compliance of the leg.  

Assuming that the spring deformations are small enough, the 
required relations may be expressed by linear equations 

0
i i

actKτθ 0 = θ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ; 
1

6

i i

Foot
i i

τ

τ

θ1

θ 6

⎡ ⎤ θ⎡ ⎤
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥θ⎣ ⎦⎣ ⎦

K ; 
7

12

i i

Leg
i i

τ

τ

θ 7

θ12

⎡ ⎤ θ⎡ ⎤
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥θ⎣ ⎦⎣ ⎦

K , (6) 

where i
jτθ  is the generalized force for the jth virtual joint of the ith 

kinematic chain, actK  is the actuator stiffness (scalar), and, FootK , 
LegK  are 6×6 stiffness matrices for the foot and leg respectively. It 

should be stressed that, in contrast to other works, these matrices 
are assumed to be non-diagonal. This allows taking into account 
complicated coupling between rotational and translational 

deformations, while usual lump-based approach does consider this 
phenomena [8]. For analytical convenience, expressions (6) may be 
collected in a single matrix equation 

θ , 1, 2,3i
i iθ = ⋅δ =τ K θ  (7) 

where 0 12( , )i i i Tτ τθ θ θ=τ …  is the aggregated vector of the virtual 
joint reactions, and ( , , )act Foot Legdiag K=θK K K  is the aggregated 
spring stiffness matrix of the size 13×13. Similarly, one can define 
the aggregated vector of the passive joint reactions 

1 4( , )i i i T
q q qτ τ=τ …  but all its components must be equal to zero: 

, 1,2,3i
q i= =τ 0  (8) 

To find the static equations corresponding to the end-effector 
motion iδt , let us apply the principle of virtual work assuming that 
the joints are given small, arbitrary virtual displacements 
( , )i i∆ ∆θ q  in the equilibrium neighborhood. Then the virtual work 
of the external force if  applied to the end-effector along the 
corresponding displacement i i

i i q iθ∆ = ∆ + ∆t J θ J q  is equal to the 
sum ( ) ( )T i T i

i i i q iθ ∆ + ∆f J θ f J q . For the internal forces, the virtual 
work is θ

Ti
i− ⋅ ∆τ θ  since the passive joints do not produce the 

force/torque reactions (the minus sign takes into account the 
adopted directions for the virtual spring forces/torques). Therefore, 
because in the static equilibrium the total virtual work is equal to 
zero for any virtual displacement, the equilibrium conditions may 
be written as  

Ti i
iθ θ⋅ =J f τ ;     

Ti
q i⋅ =J f 0 . (9) 

This gives additional expressions describing the force/torque 
propagation from the joints to the end-effector. Hence, the 
complete kinetostatic model consists of five matrix equations (2), 
(7)…(9) where either if or iδt  are treated as known, and the 
remaining variables are considered as unknowns. Obviously, since 
separate kinematic chains posses some degrees-of-freedom, this 
system cannot be uniquely solved for given if . However, vice 
versa, for given end-effector displacement iδt , it is possible to 
compute both the corresponding external force if  and the internal 
variables, iδθ , i

θτ , iδq  (i.e. virtual spring reactions and 
displacements in passive joints, which may also provide useful 
information for the designer). Since matrix θK is non-singular (it 
describes the stiffness of the virtual sprigs), the variable iδθ  can 
be expressed via if  using equations θ

i
iθ = ⋅ δτ K θ  and 

Ti i
iθ θ⋅ =J f τ . 

This yields substitution 1
θ( )

Ti
i i

−
θδ = ⋅θ K J f  allowing reducing the 

kinetostatic model to system of two matrix equations  
1

θ( )
Ti i i

i q i i
−

θ θ ⋅ + ⋅δ = δJ K J f J q t ;     
Ti
q i⋅ =J f 0  (10) 

with unknowns if  and i∆q . This system can be also rewritten in a 
matrix form 

θ
i i

q i i
Ti iq

⎡ ⎤ δ⎡ ⎤ ⎡ ⎤⋅ =⎢ ⎥ δ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

S J f t
q 0J 0

 (11) 

where the sub-matrix 1
θ θ

Ti i i−
θ θ=S J K J  describes the spring 

compliance relative to the end-effector, and the sub-matrix i
qJ  

takes into account the passive joint influence on the end-effector 
motions. Therefore, for a separate kinematic chain, the desired 
stiffness matrix iK  defining the motion-to-force mapping 

i i i= ⋅ δf K t , can be computed by direct inversion of relevant 
10×10 matrix in the left-hand side of (11) and extracting from it the 
6×6 sub-matrix with indices corresponding to θ

iS . It is also worth 
mentioning that computing θ

iS  requires 6×6 inversions only, since 
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1 1 1 1( , , )act Foot Legdiag K− − − −
θ =K K K . Solvability of system (11) in 

general case, i.e. for any given i
θJ  and i

qJ , cannot be proved. 
Moreover, if the matrix i

qJ  is singular, the passive joint 
coordinates iq  can not be found uniquely. From a physical point 
of view, it means that if the kinematic chain is located in a singular 
posture, then certain displacements iδt  can be generated by 
infinite combinations of the passive joints. But for the variable if  
the corresponding solution is unique (since the matrix i

θJ  is 
obviously non-singular if at least one 6 d.o.f. spring is included in a 
serial kinematic chain). On the other hand, the singularity may 
produce an infinite number of stiffness matrices for the same 
spatial location of the end-effector and for different values iq  
provided by the inverse kinematics. A special technique to tackle 
this case, based on the singular value decomposition, has been also 
developed. After the stiffness matrices iK  for all kinematic chains 
are computed, the stiffness of the entire manipulator can be found 
by simple addition 3

1im i== ∑K K . This follows from the 
superposition principle, because the total external force 
corresponding to the end-effector displacement δt  (the same for 
all kinematic chains) can be expressed as 3

1i i== ∑f f  where 
i i= ⋅ δf K t . It should be stressed that the resulting matrix iK is not 

invertible, since some motions of the end-effector do not produce 
the virtual spring reactions (because of passive joints influence). 
However, for the entire manipulator, the stiffness matrix mK  is s 
positive definite and invertible for all non-singular (for the rigid 
model) postures. 

E. Comparison with Other Results 
The main advantage of the proposed methodology is its 

applicability to overconstrained mechanisms. To describe it in 
more details, let us briefly review an alternative technique [8]. The 
latter is originated from the same principal equations but the 
solution strategy includes straightforward elimination of the 
passive joint variables iq  using the differential kinematic 
equations (2) only. Obviously, the feasibility of this step depends 
on the solvability of the equivalent matrix system  

1 1
12 21
2

323
3

3

q

q

q

θ

θ

θ

δ⎡ ⎤−⎡ ⎤ ⎡ ⎤ δ⎡ ⎤δ⎢ ⎥⎢ ⎥ ⎢ ⎥− ⋅ = ⋅ δ⎢ ⎥⎢ ⎥δ⎢ ⎥ ⎢ ⎥ δ⎢ ⎥⎣ ⎦−⎢ ⎥ ⎢ ⎥ ⎣ ⎦δ⎣ ⎦ ⎣ ⎦

tI J J θqI J J θq θJI J q
 (12) 

where δt  and iδq  are treated as unknowns. In the non-
constrained case (for the 3-PUU architecture, for instance) the 
matrix in the left-hand side of (14) is square, of size 18×18, so it 
can be inverted usually. However, for overconstrained 
manipulators, this matrix is non-square, so the system cannot be 
solved uniquely. For example, for manipulators with the 
parallelogram-type legs (Orthoglide, Delta, etc.) the matrix size is 
18×15. So, in [10] three additional (virtual) passive joints were 
introduced to solve the problem. But, obviously, such a 
modification changes the manipulator architecture and its stiffness 
matrix, doubting validity of the corresponding model. Besides, the 
developed technique allows computing the stiffness matrix even for 
the singular manipulator postures and does not incorporate the 
least-square pseudo-inversions applied by other authors. This is 
achieved by applying another solution strategy, which considers 
simultaneously the kinematic and static-equilibrium equations for 
each kinematic chain separately. Some hidden conveniences are 
included in the modeling stage. In particular, the kinematic models 
of the chains may include several redundant springs that are totally 
compensated by relevant passive joints. However, there is no need 

to eliminate these springs from the model manually, since they do 
not increase the matrix sizes in system (11). This allows including 
in the model 6-d.o.f. virtual springs of general type, without any 
modifications. Another advantage of the proposed technique is that 
it can be generalized easily. Within this paper, it is applied to the 
stiffness modeling of 3-d.o.f. translational manipulators with 
actuators located between the base and the foot. However, it can be 
easily modified to cover other actuator locations, which may be 
included in the foot or in the leg. A further generalization is related 
to a number of kinematic chains and their similarity. They are also 
not crucial assumptions and influence on the Jacobian computing 
only. But after the Jacobians are determined, the stiffness matrices 
for separate chains may be computed in the same manner and then 
aggregated.  

III. PARAMETERS OF THE COMPLIANT ELEMENTS 
The adopted stiffness model of each kinematic chain includes 

three compliant components, which are described by one 1-d.o.f. 
spring and two 6-d.o.f. springs corresponding to the actuator, and 
to the foot/leg links (see Fig. 3). Let us describe particular 
techniques for their evaluation. 

A. Actuator Compliance 
The actuator compliance, described by the scalar parameter 

1
act actk K −= , depends on both the servomechanism mechanics and 

the control algorithms. Since most of modern actuators implement 
the digital PID control, the main contribution to actk  is done by the 
mechanical transmissions. The latter are usually located outside the 
feedback-control loop and consist of screws, gears, shafts, belts, 
etc., whose flexibility is comparable with the flexibility of the 
manipulator links. Because of the complicated mechanical structure 
of the servomechanisms, the parameter actk  is usually evaluated 
from static load experiments, by applying the linear regression to 
the experimental data. 

B. Link Compliance 
Following a general methodology, the compliance of a 

manipulator link (foots and legs) is described by 6×6 symmetrical 
positive definite matrices 1 1,leg foot

− −K K  corresponding to 6-d.o.f. 
springs with relevant coupling between translational and rotational 
deformations. This distinguishes our approach from other lumped 
modeling techniques, where the coupling is neglected and only a 
subset of deformations is taken into account (presented by a set of 
1-d.o.f. springs). The simplest way to obtain these matrices is to 
approximate the link by a beam element for which the non-zero 
elements of the compliance matrix may be expressed analytically: 

11
Lk

EA
= ;

3

22 3 z

Lk
EI

= ;
3

33 3 y

Lk
EI

= ; 44
Lk

GJ
= ; 55

y

Lk
EI

= ;  

66
z

Lk
EI

= ;   
2

35 2 y

Lk
EI

= − ;   
2

26 2 z

Lk
EI

=  
(13)

Here L is the link length, A is its cross-section area, Iy, Iz, and J are 
the quadratic and polar moments of inertia of the cross-section, and 
E and G are the Young’s and Coulomb’s modules respectively. 
However, for certain link geometries, the accuracy of a single-
beam approximation can be insufficient. In this case the link can be 
approximated by a serial chain of the beams, whose compliance is 
evaluated by applying the same method (i.e. considering the 
kinematic chain with 6-d.o.f. virtual springs, but without passive 
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joints). This leads to the resulting compliance matrix 
1 1 T

Link b b b
− −=K J K J , where bJ  and 1

b
−K  incorporate the Jacobian and 

the compliance matrices for all virtual springs. 

C. FEA-based evaluation of stiffness 
For complex link geometries, the most reliable results can be 

obtained from the FEA modeling. To apply this approach, the CAD 
model of each link should be extended by introducing an auxiliary 
3D object, a “pseudo-rigid” body, which is used as a reference for 
the compliance evaluation. Besides, the link origin must be fixed 
relative to the global coordinate system. Then, sequentially and 
separately applying forces , ,x y zF F F  and torques , ,x y zM M M  to 
the reference object, it is possible to evaluate corresponding linear 
and angular displacements, which allow computing the stiffness 
matrix columns. The main difficulty here is to obtain accurate 
displacement values by using proper FEA-discretization (“mesh 
size”). Besides, to increase accuracy, the displacements must be 
evaluated using redundant data set describing the reference body 
motion. For this reason, it is worth applying a dedicated SVD-
based algorithm. As follows from our study, the single-beam 
approximation of the Orthoglide foot gives accuracy of about 50%, 
and the four-beam approximation improves it up to 30% only. 
While the FEA-based method is the most accurate one, it is also the 
most time consuming. However, in contrast to the straightforward 
FEA-modeling of the entire manipulator, which requires re-
computing for each manipulator posture, the proposed technique 
involves a single evaluation of link stiffness. 

IV. APPLICATION EXAMPLES 
To demonstrate efficiency of the proposed methodology, let us 

apply it to the comparative stiffness analysis of two  
3-d.o.f. translational mechanism, which employ Orthoglide 
architecture. CAD models of these mechanisms are presented in 
Fig. 4.  

A. Stiffness of U-Joint Based Manipulator 
First, let us derive the stiffness model for the simplified Orthoglide 
mechanics, where the legs are comprised of equivalent limbs with 
U-joints at the ends. Accordingly, to retain major compliance 
properties, the limb geometry corresponds to the parallelogram 
bars with doubled cross-section area. Let us assume that the world 
coordinate system is located at the end-effector reference point 
corresponding to the isotropic manipulator posture (when the legs 
are mutually perpendicular and parallel to relevant actuator axes). 
For this assumption, the geometrical models of separate kinematic 
chains can be described by the expression (1) Because for the rigid 
manipulator the end-effector moves with only translational 
motions, the nominal values of the passive joint coordinates are 
subject to the specific constraints 3 2 4 1;q q q q= − = − , which are 
implicitly incorporated in the direct/inverse kinematics [10]. 
However, the flexible model allows variations for all passive joints. 
Using the link stiffness parameters obtained by the FEA-modeling 
and applying the proposed methodology, we computed the 
compliance matrices for three typical manipulator postures, the 
principal components of which are presented in Table 1. Below, 
they are compared with the compliance of the parallelogram-based 
manipulator. 

B. Stiffness of Parallelogram Based Manipulator 
Before evaluation the compliance of the entire manipulator, let 

us derive the stiffness matrix of the parallelogram. Using the 
adopted notations, the parallelogram equivalent model may be 
written as 

2 2 7 12( ) ( ) ( ) ( , )Plg y x y sq L q θ θ= ⋅ ⋅ − ⋅T R T R V …  (14) 

where, compared to the above case, the third passive joint is 
eliminated (it is implicitly assumed that 3 2q q= − ). On the other 
hand, the original parallelogram may be split into two serial 
kinematic chains (the “upper” and “lower” ones) 

1

1 6 2

( /2) ( ) ( )

( , ) ( ) ( /2)
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up z y x

up up up
s y z

d q q L

q q dθ θ

= − ⋅ + ∆ ⋅ ⋅

⋅ ⋅ − + ∆ ⋅

T T R T

V R T…
 (15) 
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1 6 2
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dn z y x
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s y z

d q q L

q q dθ θ

= ⋅ + ∆ ⋅ ⋅

⋅ ⋅ − + ∆ ⋅ −

T T R T

V R T…
 (16) 

where L, d are the parallelogram geometrical parameters, 
1 2, , { , }i iq q i up dn∆ ∆ ∈  are the variations of the passive joint 

coordinates and the sub/superscripts “up” and “dn” correspond to 
the upper and lower chain respectively. Hence, the parallelogram 
compliance matrix may be also derived using the proposed 
technique that yields an analytical expression 
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where cos( ); sin( )q qC q S q= = . Using this model and applying 
the proposed technique, we computed the compliance matrices for 
three typical manipulator postures (see table Table 1). As follows 
from the comparison with the U-joint case, the parallelograms 
allow increasing the rotational stiffness roughly in 10 times. This 
justifies application of this architecture in the Orthoglide prototype 
design [15].  

V. CONCLUSIONS 
The paper proposes a new systematic method for computing the 

stiffness matrix of overconstrained parallel manipulators. It is 
based on multidimensional lumped model of the flexible links, 
whose parameters are evaluated via the FEA modeling and 
describe both the translational/rotational compliances and the 
coupling between them. In contrast to previous works, the method 
employs a new solution strategy of the kinetostatic equations, 
which considers simultaneously the kinematic and static relations 
for each separate kinematic chain and then aggregates the partial 
solutions in a total one. This allows computing the stiffness 
matrices for overconstrained mechanisms for any given 
manipulator posture, including singular configurations and their 
neighborhood. Another advantage is computational simplicity that 
requires low-dimensional matrix inversion compared to other 
techniques. Besides, the method does not require manual 
elimination of the redundant spring corresponding to the passive 
joints, since this operation is inherently included in the numerical 
algorithm. The efficiency of the proposed method was 
demonstrated through application examples, which deal with 
comparative stiffness analysis of two parallel manipulators of the 
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Orthoglide family (with U-joint based and parallelogram based 
links). Relevant simulation results have confirmed essential 
advantages of the parallelogram based architecture and validated 
adopted design of the Orthoglide prototype. Another contribution is 
the analytical stiffness model of the parallelogram, which was 
derived using the same methodology. While applied to the 3-d.o.f. 
translational mechanisms, the method can be extended to other 
parallel architectures composed of several kinematic chains with 
rotational/prismatic joints and limb- or parallelogram-based links. 
So, future work will focus on the stiffness modeling of more 
complicated parallel mechanism with another actuator location 
(such as the Verne machine [16]) and also on the experimental 
verification of the stiffness models for the Orthoglide robot. 
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(A) U-JOINT BASED ARCHITECTURE (B) PARALLELOGRAM BASED ARCHITECTURE (C) WORKSPACE AND CRITICAL POINTS Q1 AND Q2

FIG. 4. KINEMATICS OF TWO 3-DOF TRANSLATIONAL MECHANISMS EMPLOYING THE ORTHOGLIDE ARCHITECTURE 
 

TABLE I: TRANSLATIONAL AND ROTATIONAL STIFFNESS OF THE 3-PUU AND 3-PRPAR MANIPULATORS 

MANIPULATOR 
ARCHITECTURE 

Point Q0 

, , 0.00x y z mm=  
Point Q1 

, , 73.65x y z mm= −  
Point Q2 

, , 126.35x y z mm= +  

 trank [N/mm] rotk [N⋅mm/rad] trank [N/mm] rotk [N⋅mm/rad] trank [N/mm] rotk [N⋅mm/rad] 

3-PUU manipulator 2.78⋅10-4 20.9⋅10-7 10.9⋅10-4 24.1⋅10-7 71.3⋅10-4 25.8⋅10-7 

3-PRPaR manipulator 2.78⋅10-4
 1.94⋅10-7

 9.86⋅10-4
 2.06⋅10-7

 21.2⋅10-4
 2.65⋅10-7
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