
Coordination of Multiple AGVs in an Industrial Application

Roberto Olmi, Cristian Secchi and Cesare Fantuzzi

Abstract— In this paper we propose a methodology for coor-
dinating a group of mobile robots following predefined paths
in a dynamic industrial environment. Coordination diagrams
are used for representing the possible collisions among the
robots. Exploiting the structure of the industrial application
we are dealing with, we propose an algorithm for efficiently
composing the coordination diagram. Furthermore, we classify
the possible collisions that can take place and the induced
geometry of the resulting coordination diagram. Finally, we
exploit this information for developing a planning algorithm
that allows to coordinate the robots and to take into account
unexpected events that can occur in an industrial environment.

I. INTRODUCTION

Automated guided vehicles (AGVs) are used more and
more in industrial plants and warehouses. In these appli-
cations, a central issue is how to plan the motion of the
AGVs in order to minimize the delivery time while avoiding
collisions and deadlocks.

A fleet of robots can be coordinated using either a central-
ized or a distributed control architecture. In the first case, a
central unit computes all the control actions to deliver to the
robots. In the second case, each robot computes its action.
The interested reader is addressed to [1], [2], [3], [4], [5] for
further information.

Furthermore, it is possible to classify the coordination
strategies into two main classes: centralized approaches and
decoupled approaches. Centralized approaches search the
solution of the motion planning problem in a composite
coordination space, which is formed by the Cartesian product
of the configuration spaces of the individual robots. A
method that uses the notion of composite robot, but that
does not require the computation in composite configuration
space, is presented in [6]. In [7] a technique, based on a
Petri nets, to avoid deadlock through re-routing is presented.
Decoupled approaches face the complexity of the coordina-
tion by breaking the problem into two distinct phases: path
planning and motion coordination. During the first phase
a path for each vehicle is planned without considering the
presence of other vehicles. In the second phase the velocity
profile with which each robot has to track its assigned path
is computed. In [8] the problem of defining a velocity curve
is transformed in a Mixed Integer Non-Linear Programming
problem for finding a global optimum for the coordination
problem. In [9] an algorithm for computing Pareto optimal

Authors are with the Department of Sciences and Methods
of Engineering, University of Modena and Reggio Emilia, via
G. Amendola 2, Morselli Building, Reggio Emilia I-42100 Italy
{roberto.olmi,cristian.secchi,
cesare.fantuzzi}@unimore.it

The authors wish to greatly acknowledge the company Elettric80 s.p.a.
(www.elettric80.com) which supported this research.

coordination path within the coordination space is presented.
In [10], [11] time optimal coordination algorithms which can
be considered somewhere between centralized planning and
decoupled planning are presented. In [12] a technique to
control the motions of several robots moving along fixed
independent paths is presented. This technique exploits an
algorithm for computing a bounding box representation of
the so called coordination diagram, given the path of each
robot. This representation induces a cell decomposition of the
diagram that allows any classical search algorithm to be used
for computing the collision-free path within the coordination
diagram.

The work presented in this paper is made in cooperation
with a company producing AGVs for transporting goods in
warehouses. The robots are controlled through a centralized
architecture. Given a warehouse, a roadmap along which the
AGVs can move is designed. The central system assigns to
each AGV a mission, namely a path on the roadmap from
a starting point to a goal, that the robot has to track. Our
goal is to provide a coordination algorithm which is efficient
and that avoids collisions between robots. We develop a
coordination algorithm based on coordination diagrams. The
construction of the coordination diagram is, in general, a
computationally demanding task [12]. As a first contribution
of this paper, we exploit the structure of the roadmap to
develop a technique to build the coordination diagram online
with a very limited computational effort. Loosely speaking,
when the roadmap is defined we generate a set of offline sub-
coordination diagrams. When a group of robots starts moving
over the roadmap, the coordination diagram is composed by
putting together the proper sub-coordination diagrams which
are identified by the paths tracked by the robots. Furthermore,
we classify the possible collisions that can take place and
the induced geometry of the resulting coordination diagram.
Finally, as a second contribution, we exploit this information
for developing an incremental coordination algorithm. This
latter feature allows to take into account unexpected events
that can occur in an industrial environment (e.g. temporary
malfunctioning of the AGVs, emergency stops).

The paper is organized as follows: in Sec. II a formal
definition of the problem is reported and in Sec. III the tech-
nique for composing the coordination diagram is presented.
In Sec. IV we illustrate the possible kinds of cordination
diagram.In Sec. V we present the planner for the motion
coordination of the vehicles and in Sec. VI we propose some
simulations Finally, in Sec. VII some conclusions are drawn
and some future work is addressed.

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 1916

II. OVERVIEW OF THE PROBLEM

A. Roadmap and missions

We consider N AGVs that are moving in the same
environment and that share the same configuration space C
(e.g. SE(2)). In the application that we are considering, for
a given plant to be served, a network of paths which the
AGVs can follow is defined. We can model this network as
a roadmap R, that is a one-dimensional connected subset
of C. The roadmap is formed by a collection T of regular
curves. Each element of τi ∈ T is a mapping τi : [0, 1]→R
and we call it segment. A route πi is defined as a sequence
of adjacent segments and it can be considered as a mapping
πi : si �→ R, si ∈ [0, l(πi)] where l(πi) is the total length
of the path.

We indicate with A(xi) the portion of space occupied by
an AGV at the configuration xi ∈ R. Two segments τi, τj ∈
T represents a pair of colliding segments if there exists a
pair of scalars (α, β) ∈ [0, 1]2 such that

A(τi(α)) ∩A(τj(β)) �= ∅ (1)

This means that when two AGVs are moving through τi and
τj it can happen that a collision takes place.

For a given plant, a centralized planning system plans a
set of missions to be executed by the AGVs. Each AGV has
to execute a mission, namely to reach a goal configuration
xgoal

i ∈ R starting from its initial configuration xinit
i ∈ R.

In case no more missions are scheduled, a homing mission is
assigned to the AGV which is taken to a garage position. It is
possible that the planning system can decide to change a mis-
sion previously assigned to an AGV. Furthermore, vehicles
can be blocked by unexpected events for an unpredictable
amount of time.

When a mission is assigned to an AGV, the shortest path
πi : [0, l(πi)] → R, where πi(0) = xinit

i and πi(l(πi)) =
xgoal

i , that it has to track is computed. Our goal is to
determine the velocity profile by which each AGV has to
move through the assigned path in order to avoid collisions
among the AGVs and to minimize the total time required by
the fleet for reaching the goal configurations.

For the moment, we do not take into account robot dy-
namics. In order to guarantee that the coordination problem
admits a solution, we assume that, for each AGV, the initial
and the goal configurations do not belong to an already
planned path.

B. Coordination diagram

The coordination strategy that we are going to develop in
the paper is based on the concept of coordination diagram
[13]. Given N paths π1, . . . πN parameterized by s1 ∈
[0, l(π1)], . . . , sN ∈ [0, l(πN)], the coordination diagram
represents all the configuration set of the robots along their
paths and, therefore, it is given by S = [0, l(π1)] × · · · ×
[0, l(πN)]. A point s = (s1, . . . , sN) in the coordination
diagram represents a possible configuration of the robots
along their paths. For each pair of paths, a collision region

is defined as:

Xcoll
ij = {(s1, . . . , sN) ∈ S |A(πi(si)) ∩ A(πj(sj)) �= ∅}

(2)
This region defines all the possible configurations of the fleet
such that two vehicles collide moving along paths πi and πj .
Since it depends only on the configuration of two robots, this
region can be completely characterized by its 2D projection
onto the (si, sj) plane of the coordination diagram (that we
will denote for shortly with CDij).

A coordination path is a map γ : [0, T]→ S that defines
a coordinated motion of the robots along their predefined
paths. A possible solution to the collision free coordination
of the N AGVs is to find a coordination path that joins
the point s0 = (0, . . . , 0) ∈ S, (starting configurations
of the paths), to the point sf = (l(π1), . . . , l(πN)), (goal
configurations), which avoids the collision regions in the
coordination diagram.

III. CONSTRUCTION OF THE COORDINATION DIAGRAMS

In this section we propose a strategy for building the
coordination diagram corresponding to N AGVs moving
along paths over a predefined roadmap R.

When an AGV completes its last mission, a new one is
assigned to it. This implies that the coordination diagram
should be modified. In order to avoid to stop all the AGVs
for computing the coordination diagram the algorithm must
require a small computational effort. In [12] the path of
each robot are considered to be not known a priori and
the coordination diagram is computed online subdividing
the path into straight line segment and arc of a circle. Our
approach exploits the knowledge of the roadmap (recall
Sec. II-A) in order to split this computation in an offline
phase and an online phase. This will reduce the time needed
for the computation of the coordination diagram.

The offline phase is run once after the definition of the
roadmap. For each τh ∈ T we define the collision segments
set CSSh (function DETERMINE CSSh in Alg. 1) as

CSSh = {τ ∈ T | ∃(α, β) ∈ [0, 1]2A(τh(α))∩A(τ(β)) �= ∅}
(3)

namely the set of segments that are colliding with τh.
For each pair of colliding segments (τh, τk) we compute

and store their relative two dimensional sub-coordination di-
agram sCDhk using standard collision checking algorithms
[1] (function COMPUTE sCDhk in Alg. 1). Furthermore,
for each segment τh ∈ T , an empty Booking Table BTh is
created. This object contains the list of paths including that
segment. The procedure for creating the sub-coordination
diagrams is illustrated in Alg. 1. In summary, the main output
of the offline phase, is a set of sub-coordination diagrams
stored in a database as pieces of a puzzle that will be
used in the online phase for building the global coordination
diagram.

When a new path πi is assigned to an AGV, all the sCDij

describing the collision regions between the AGV along πi

and the other vehicles must be computed. For each segment
τk of the path, we make a reservation on its corresponding

1917

Algorithm 1 Sub-coordination Diagrams Computation
Require: Roadmap as a collection T of segments τi

for all τh ∈ T do
DETERMINE CSSh

for all τk ∈ CSSh do
COMPUTE sCDhk

end for
CREATE BTh

end for

booking table; in this way we specify that the segment τk is
contained in the path πi. We then check the set of colliding
segments CSSk. For each colliding segment τh ∈ CSSk, we
check its booking table and in case it has been booked by
another path πj , we fetch the corresponding sub-coordination
diagram sCDhk from the database that we have built before.
The path πj can be on its turn split into a sequence of
segments and τh will be part of this sequence. The decom-
position of πi and πj into sequences of segments, induces
a partition on the coordination plane. Each block of the
partition is identified by a segment in the sequence of πi and
a segment of the sequence of πj . Thus, the sub-coordination
diagram sCDhk is inserted (function INSERT(sCDhk) in
Alg. 2) in correspondence of the partition block of the (si, sj)
plane of the overall coordination diagram that is identified
by τh and by τk .

Remark 1: The sub-coordination diagram computed in
Alg. 1 are computed assuming a certain default travel direc-
tion over the two segments. During the composition phase,
the real direction along which the colliding segments are
crossed by the AGV is considered and the sub-coordination
diagram is properly reversed before being inserted in the
coordination diagram.

In summary, the composition of the diagram is the result
of picking the right piece from a database that has been
defined once the roadmap has been defined. The algorithm
for composing the coordination diagram is reported in Alg. 2:

Algorithm 2 Coordination diagram composition
Require: Paths currently covered by moving vehicles
Require: New path πi

for all τh ∈ πi do
BTh ← πi

for all τk ∈ CSSh do
if BTk �= ∅ then

for all πj ∈ BTk do
CDij ←INSERT(sCDhk)

end for
end if

end for
end for

IV. TAXONOMY OF THE COORDINATION DIAGRAMS

In this section we provide a classification of the possible
collisions that can take place between two vehicles and the

AGV2

AGV1 AGV2

AGV1

Enclosure
rectangle

Portion of the path
where AGVs

can collide

AGV1

AGV2

Intersection collision Front collision Back collision

y yy

x xx

cy2

cy2

cx1 cx1cx1

cy1
cy1

cx2 cx2cx2

cy

π1

π1π1

π2

π2

π2

s2s2 s2

s1s1 s1 a

a

a

a

a

a

b

b

b

b

b

b

Fig. 1. Three kinds of collision and the corresponding coordination
diagrams

induced geometry of the corresponding collision diagram.
For the sake of simplicity, we consider circular robots
of the same size. We consider roadmaps composed only
by straight segments, spaced enough so that vehicles on
parallel segments don’t collide. Under these assumptions, the
condition for which there is a collision is given by:

√
(x1 − x2)2 + (y1 − y2)2 ≤ dmin (4)

where xi and yi, i = 1, 2, represent the coordinates of the
center of the circle, and dmin is the diameter of the circle.

There are only three possible kinds of collisions between
two AGVs:

• Intersection collision: it takes place when the paths
intersect (see Fig. 1). By the paths parameterizations
(using notations in Fig. 1, where cxi, cyi are the initial
coordinates of vehicle i) the condition (4) becomes:

((cy2 − cy1)− s1)2 + ((cx1 − cx2)− s2)2 ≤ d2
min (5)

• Front collision: it takes place when the paths have
some common segments and the AGVs move on them
in opposite senses. Using the path’s parameterizations
(with notations in Fig. 1, where we have posed β =
cy2 − cy1, and where cx1 ≡ cx2), the condition in (4)
becomes:

β − dmin ≤ s1 + s2 ≤ β + dmin (6)

Thus, the collision zone is defined by all points between
the lines of equation s2 = (β − dmin)− s1 and
s2 = (β + dmin)− s1.

• Back collision: it takes place when the paths have some
common segments and the AGVs move in the same
sense (see Fig. 1). By computations analogous to the
ones for front collision, we obtain that the collision zone
is defined by all points between the lines of equations
s2 = (β + dmin) + s1 and s2 = (β + dmin) + s1.

To simplify the shape of the collision regions, we ap-
proximate (with a little loss in completeness) them with an

1918

enclosing rectangle having two sides parallel to the bisector
of the diagram. In Fig. 1 we have represented the enclosure
rectangle gray filled.

V. MOTION PLANNER

As reported in Sec. II, in order to find a solution to the
coordination problem it is sufficient to find a coordination
path γ : [0, T] �→ S in the coordination diagram S such that
γ(0) = (0, . . . , 0) and γ(T) = (l(π1), . . . , l(πN)).

We want to determine an incremental algorithm which
determines the coordination action step by step (like in [2])
rather than an algorithm that defines the overall coordination
strategy in one shot (like in [12]). This choice is due to the
fact that in factory applications a lot of unexpected events
could prevent some AGVs from performing the pre-planned
action. The problem of finding an optimal coordination path
has an exponential complexity [12], [1] and, therefore, in
case the number of AGVs is big, it could be necessary to
stop the AGVs for a significant amount of time waiting
for each new re-planning. An incremental algorithm decides
which action to implement when the robots are at a given
configuration by looking at all the possible collisions (due
both to the presence of collision regions in the coordination
diagram and to unexpected events) and decides the motion
that the AGVs should make. Thus, the algorithm that we are
proposing, allows to take into account also unexpected events
without the need of re-planning each time the coordination
of the robots.

In order to build the incremental coordination algorithm,
we first need to impose a grid structure over the coordination
diagram S. Thus, for each axis, we split the interval [0, l(πi)]
of the coordination diagram into pi segments. This induces a
grid structure over each CDij plane. The granularity of the
partition (i.e. pi) depends on the particular application.

Remark 2: Notice that the partition of the axis for the
planning algorithm is different from that considered in
Sec. III since the granularity required is, in general, different
from that induced by the segments in T .

When moving over a path πi, an AGV, executes an action
ui. It can either move forward to the next segment (ui = 1) or
move backward to the previous segment (ui = −1) or remain
motionless (ui = 0). The role of the coordination algorithm
is to tell to all the vehicles which action has to be executed.
We define the action set as U = {(u1, . . . , uN) | ui ∈
{−1, 0, 1}}. The problem of choosing the right coordination
action has, in general, exponential complexity. In order
to decrease the computational effort, we will not consider
generic collision regions, but we will limit ourselves to the
three kinds of collision regions outlined in Sec. IV.

It is clear that, locally, the best coordination action is the
one which leads to the major advancement of the fleet. Thus,
the first criterion by which the actions are chosen is the
maximization of overall fleet advancement. Since all robots
can take only three actions, we can identify 2N + 1 subsets
Ur ∈ U that contain actions with lead to the same advancing

factor r:

Ur = {(u1, . . . , uN) |
N∑

i=1

ui = r} (7)

Loosely speaking, the advancing factor, provides a measure
of the advancement of the overall fleet. For example, the
action subset UN−1 contains all the actions that make
advancing all vehicles but one that remains motionless.

The algorithm evaluates, in decreasing order, the actions
belonging to each subset Ur, starting from r = N , until it
is found a subset that contains a valid action. In Alg. 3, we
have denoted with ACTION SET(r) the function that gives
the subset to Ur.

Thanks the cylindrical structure of the collision regions
the algorithm can realize a coordination path considering just
all the CDij . As we have seen in Sec. IV, collision regions
on the two dimensional planes have a well defined shape.
Thanks to this particular structure, we can define over each
plane some regions that we call shadow zones. These regions
are defined between the collision region, the axes of the plane
and the two rays r1 and r2 tangent to obstacle borders and
parallel to the bisector of the plane (see Fig. 2). The goal
is to partition each plane in a set of zones in which some
actions are forbidden since they would lead to collision or
they would delay the completion time of the missions.

The algorithm has to choose an action that is allowed by
all planes (a valid action). We denote by sij the point in
CDij that denotes the configuration of two AGVs considered
along their paths πi and πj . For all possible collision region
(Sec. IV) we can define (see as an example Fig. 2):

• Light region: When sij falls in this region there are no
actions that have to be discarded.

• Antumbra region: This region means that the robots are
approaching to collision. As long as sij remains in this
region, there are no action that penalize the possibility
of escaping from the shadow zone. Thus, all the actions
remain valid.

• Penumbra region: This corresponds to the situation in
which one vehicle has reached a segment that belongs to
the path of another vehicle. To escape from this region
the following constraint between the actions has to be
satisfied:

ui + uj ≤ 1 (8)

• Umbra region: This corresponds to the situation in
which a couple of AGV has reached a common portion
of path. The constraints imposed by this region are:

ui + uj ≤ 0 (9)

• Obstacle border: In this region, all the directions that
enter into the collision region are forbidden. Referring
to Fig. 2, the following constraints on the control actions
have to be satisfied:

ui − uj ≥ 0 sij ∈ AB

ui + uj ≥ 0 sij ∈ BC
uj − ui ≥ 0 sij ∈ CD
ui + uj ≤ 0 sij ∈ DA

(10)

1919

Penumbra

PenumbraAntumbra

Umbra

Collision zone

A

B

C

D

Light region

sj

si

r1

r2

λ1

λ2

P1

P2

C1

C2sij

Fig. 2. Shadow sub-zones and corresponding actions allowed

For each action set Ur to be evaluated, the algorithm
reads in which zone the coordination point projection falls
(READ(CDij , s) in Alg. 3) and discards all the actions of Ur

that do not respect the constraints imposed by the region. In
Alg. 3 we refer to this operation with PRUNE(Region, Ur).
Further actions are forbidden in case they imply a movement
of an AGV that has to implement an emergency stop. In
this way, the emergency handling is embedded online in
the coordination controller. If, after pruning, all the actions
contained in Ur are discarded, the next subset Ur−1 is
considered. The evaluation of the action subsets terminates
when, after pruning, the action set contains at least one action
that satisfies the constraints induced by the shadow zones of
each coordinate plane. We refer to this subset as the valid
action set.

In general, when the evaluation stops, the valid action set
contains more than one action. The final choice of the action
to execute is made evaluating a cost function C(u). This
cost is an indicator of the total time spent by the vehicles to
avoid the collision with the others and it depends on the way
chosen to bypass each collision region on the coordination
diagram. Consider a given configuration of the robots and a
valid action set. For each sij falling in a shadow zone, two
points in the plane are individuated. These points, indicated
as P1 and P2 in Fig. 2, are the intersection between the two
half-lines λ1 and λ2 (outgoing from the actual position in
the coordinate plane, parallel to and directed in the positive
direction of the coordinate axis) and the two rays r1 and
r2 as depicted in Fig. 2. The distance between sij and the
points P1 and P2 is proportional to the time required by two
AGVs for bypassing the collision region traveling in a given
direction. Thus, to each action moving toward P1 (P2) is
associated a cost equal to the distance between sij and P1

(P2). On the other hand, to each action moving away from
P1 and P2 (or standing in the same position) is associated a
cost equal to the sum of the distances between sij and the
points P1 and P2. This means that actions that don’t tend
to resolve the collision condition are penalized with respect
to those that tend to escape from the shadow zones. Finally,
a cost equal to the minimum distances between sij and P1

and between sij and P2 is associated to actions which yield
an advancement of both vehicles. This means that the choice
of bypassing the obstacle is postponed but, since both AGVs

are moving toward their goals, these action are not penalized.
In case the coordination point in the plane doesn’t fall into
a shadow zone, a zero cost is associated to all actions.

These calculations in Alg. 3 are indicated by the function
COST(u, CDij). The total cost of the action u is defined
as the sum of the costs associated to u on each coordinate
plane. Once that each valid action has been assigned to a
cost, the algorithm picks a minimum cost action. Thus, the
chosen action u∗ is given by:

u∗ = argmin
u∈Ur

C(u) (11)

Algorithm 3 Local planner
loop

Read the current positions of the robots si

r← N � N active robots
Ur ← ∅
while Ur = ∅ do

Ur ← ACTION SET(r)
for all CDij do

Region← READ(CDij , s)
Ur ← PRUNE(Region, Ur)

end for
r ← r − 1

end while
for all CDij do

if Region = Shadow then
for all u ∈ Ur do

C(u)← C(u)+ COST(u, CDij)
end for

end if
end for
u∗ ← ARGMIN(C(u))
return u∗

end loop

VI. SIMULATIONS

We have tested our approach running a simulation with 5
robots in MATLAB on a Intel Pentium D 3,20 GHz. In Fig. 3
some snapshots illustrating the coordination problem are
reported. In the first one we have marked the goal positions
G1, . . . , G5. See also the attached video.

The vehicles are starting in random positions along given
paths in order to consider the fact that the mission can be re-
leased asynchronously. We have also considered unexpected
events by randomly blocking one vehicle for a random time
interval. In Fig. 4 we show some planes of the GCD in
which are displayed the shadows and the projection of the
coordination path computed. The numbers pi of partitions
in which each path is split are 375,400,400,575 and 550
respectively. We have replicated 10 times the same test (i.e.
the same paths, but with different starting positions and un-
expected events). For the online composition of the diagrams
and the definition of the shadow zones the algorithm on
average takes 260 ms. The local planner algorithm, for the

1920

G1

G2

G3

G4 G5

1

3

6

2

4

5

Fig. 3. Snapshots of the simulation

LGV 1

LG
V

2

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

LGV 1

LG
V

3

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

LGV 1

LG
V

4

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

LGV 1

LG
V

5

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

LGV 2

LG
V

3

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

LGV 2

LG
V

4

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

LGV 2

LG
V

5

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

LGV 3

LG
V

4

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

LGV 3

LG
V

5

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

LGV 4

LG
V

5

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

Fig. 4. The solid black line describes the projections of the coordination
path within the coordination diagrams.

computation of a single action takes at maximum 8 ms (while
the average is 2 ms).

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed an algorithm for coordinat-
ing multiple AGVs moving on a predefined roadmap for an
industrial application. Our algorithm is based on the use of
coordination diagrams. Using the particular structure of the
considered application we have been able to considerably
reduce the time required for computing the coordination
diagram. Furthermore, since only some kinds of collisions
can take place, we have been able to develop a motion
planner with a limited complexity and which can handle both

collisions avoidance and emergency stops that can take place
in industrial plants.

Future work aims at studying the complexity of the
proposed algorithm from a rigorous point of view. On the
experimental sides, we want to implement the proposed
control strategy on a real industrial setup. In order to do this,
we will need to relax some assumptions made since now.
To handle the vehicle dynamics we will make the algorithm
planning always some steps ahead with respect the current
configuration. This is necessary also to let the vehicles stop
if the communication with the central unit is lost.

REFERENCES

[1] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[2] R. Alami, S. Fleury, M. Herrb, and F. I. F. Robert, “Multi-robot

cooperation in the martha project,” IEEE Robot. Automat. Mag., vol. 5,
no. 1, pp. 36–47, Mar 1998.

[3] L. Chun, Z. Zheng, and W. Chang, “A decentralized approach to the
conflict-free motion planning for multiple mobile robots,” in IEEE Int.
Conf. on Robotics and Automation, Detroit, Michigan, May 1999, pp.
1544–1549.

[4] S. Morinaka, T. Nishi, M. Konishi, and J. Imai, “A distributed routing
method for multiple agvs for motion delay disturbances,” IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, pp. 1986–1991, Aug
2005.

[5] Y. Guo and L. Parker, “A distributed and optimal motion planning
approach for multiple mobile robots,” in IEEE Int. Conf. on Robotics
and Automation, vol. 3, Washington, DC, May 2002, pp. 2612–2619.

[6] P. Svestka and M. Overmars, “Coordinated motion planning for
multiple car-like robots using probabilistic roadmaps,” in IEEE Int.
Conf. on Robotics and Automation, vol. 2, Nagoya, May 1995, pp.
1631–1636.

[7] N. Wu and M. Zhou, “Shortest routing of bidirectional automated
guided vehicles avoiding deadlock and blocking,” IEEE/ASME Trans.
on Mechatronics, vol. 12, no. 1, pp. 63–72, Feb 2007.

[8] J. Peng and S. Akella, “Coordinating multiple double integrator robots
on a roadmap: Convexity and global optimality,” in IEEE Int. Conf.
on Robotics and Automation, Barcelona, Spain, Apr 2005, pp. 2751–
2758.

[9] R. Ghrist, J.M.O’Kane, and S. LaValle, “Computing pareto optimal
coordination on roadmaps,” Int. J. Robot. Res., vol. 24, no. 11, pp.
997–1010, 2005.

[10] S. LaValle and S. Hutchinson, “Path selection and coordination for
multiple robots via nash equilibria,” in IEEE Int. Conf. on Robotics
and Automation, vol. 3, May 1994, pp. 1847–1852.

[11] ——, “Optimal motion planning for multiple robots having indepen-
dent goals,” IEEE Trans. on Robotics and Automation, vol. 14, no. 6,
pp. 912–925, Dec 1998.

[12] T. Simon, S. Leroy, and J. Laumond, “Path coordination for multiple
mobile robots: a resolution-complete algorithm,” IEEE Trans. Robot.
Automat., vol. 18, no. 1, pp. 42–49, Feb 2002.

[13] P. O’Donnell and T. Lozano-Perez, “Deadlock-free and collision-
free coordination of two robot manipulators,” in IEEE Int. Conf. on
Robotics and Automation, vol. 1, May 1989, pp. 484–489.

1921

