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Abstract— We propose a method for synthesizing decentral-
ized feedback controllers for a team of multiple heterogeneous
agents navigating a known environment with obstacles. The
controllers are designed to drive agents with limited team
state information to goal sets while avoiding collisions and
maintaining specified proximity constraints. The method, its
successful application to nonholonomic agents in dynamic
simulation, and its limitations are presented in this paper.

I. INTRODUCTION

There are many applications where it is necessary to
guide multiple vehicles to destinations or goal sets in an
environment with obstacles while avoiding collisions and
maintaining proximity constraints, either for communication
or for sensing. In these situations it may be infeasible for
each agent to have state information of the entire team. While
there is extensive work on controlling formations [1]–[9], this
work does not guarantee that formation constraints are main-
tained in the presence of obstacles. The synthesis of feedback
controllers for vehicles in environments with obstacles are
considered by [10]–[17]. However, most of these papers do
not consider multi-vehicle constraints. In other words, the
algorithms are not explicitly designed to prevent collisions
and maintain communication between agents; those which
do [16], [17] require tedious hand-tuning of parameters.
Some methods of maintaining relative constraints seen in the
literature include specifying a leader or setting a priority or
agent hierarchy [18], [19], maintaining a rigid formation [6],
[7], [20], or adding inter-agent repulsive forces [21], [22].

In this paper, we consider the problem of synthesizing
feedback controllers for a team of multiple heterogeneous
agents navigating a known environment with obstacles. We
want controllers that are guaranteed to drive agents with
limited communication to goal sets while avoiding collisions
and maintaining specified proximity constraints. We are
particularly interested in guiding a heterogeneous team of
aerial and ground vehicles in an urban environment to desired
goal sets with constraints on relative configurations.

One approach to solving the problem is to use navigation
functions [10] to synthesize nonlinear feedback controllers
that guarantee safety (obstacle avoidance) and global con-
vergence. Extensions of navigation functions to the multi-
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vehicle case have been addressed by [16], [23], [24]. While
this approach has the advantage of resulting in controllers
with almost global convergence and smooth feedback, it is
tedious for complex spaces, involves nonlinear equations,
and requires hand-tuning of parameters.

A second approach is to decompose the configuration
space into cells and synthesize controllers in individual cells
in a way that guarantees a path between cells from any
starting configuration to the goal configuration. Variations on
this theme have been reported for piecewise affine systems
[13], [14], holonomic systems [11], [25], and non holonomic
systems [26]. While not all papers consider obstacles, it
is possible to construct cells that are in the obstacle free
space and feedback controllers that ensure smooth transitions
between cells [11], [15], [25]–[27]. However, these papers do
not address the problem of coordinating multiple agents.

Our method is similar in spirit to this second approach.
The basic idea is to combine the information about individual
Euclidean configuration spaces to construct the configuration
space for all n agents. We eliminate from this set con-
figurations that result in collisions or violate our specified
proximity constraints to generate a team configuration space.
We construct decentralized feedback controllers for point
robots in cells to guarantee convergence to goal sets while
satisfying all specified constraints. The controller is then
extended to nonholonomic robots by feedback linearization.
As we will show, the special case where communication is
not limited results in a complete method. In other words,
if there is a solution to the centralized navigation problem,
our method will find feedback controllers that will achieve
the desired task. Finally, in contrast to previous papers on
multi-vehicle coordination [16], [21], [23], our method for
synthesizing feedback controllers is completely automated.

We allow for a wide range of task specifications. The
most important is collision avoidance. We can also specify
connectivity constraints between designated pairs of agents
that specify a maximum distance between these agents. We
may wish to enforce an exclusion constraint: there can only
be one agent in specified regions. We can also allow logical
combinations of goal configurations. By this we mean that
if there exist n agents and l ≤ n goals in the configuration
space, then we can require any l of the n agents to achieve the
goal positions, or specify tasks for combinations of agents.

The basic approach is as follows. First, we combine the
information about the n agent configuration spaces and
connectivity and collision constraints to generate the team
configuration space, CT . In this work, we chose to represent
the space as a union of polytopes, each of which is described
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Fig. 1: Panels (a-d) show sample connectivity graphs. Panel
(e) shows a legal decomposition, and panel (f) shows an ille-
gal decomposition (inconsistent number of facets on (1,3)).

by an intersection of half-spaces in d-dimensions. We derive
a discrete graph on the set of polytopes in which each
edge represents an allowable path consistent with the task
specifications. We then find a discrete path on this graph
to the goal set and derive feedback controllers to drive any
state in each polytope (except the goal polytope) to the
next polytope on the path. Finally, we derive an appropriate
feedback controller for the goal polytope to drive the system
to its desired configuration. The controller synthesis is based
on the work of Habets and van Schuppen [13].

The outline of the paper is as follows. We first introduce
some basic definitions and formulate the problem in Section
II. In Section III we determine a discrete path through the
space and describe in detail the controller synthesis. We
present some simulations and experiments in Section IV, and
discuss the complexity of our algorithm in Section V. We
conclude with Section VI.

II. PROBLEM FORMULATION

Consider a team of n kinematic agents VA = {ai|i =
1, . . . , n} which, starting from some initial configuration,
must reach some goal configuration while maintaining com-
munication between specified agents and without colliding
with each other or obstacles in the space. The agent ai has
the configuration or state xi ∈ Rdi with the dynamics:

ẋi = ui, xi ∈ Xi ⊂ Rdi , i = 1, . . . , n. (1)
The agents have a predetermined connectivity graph whose
edges denote constraints on proximity that must be main-
tained for communication of state information between spec-
ified agents and a collision graph whose edges describe
minimum-distance safety constraints.

Recall that a graph is a pair of sets G = (V,E), where
V ={v1, ..., vn} is the set of vertices or nodes and E⊆ [V ]2

is the set of edges on the graph. Pairs of vertices for which
(vi, vj)∈E are called adjacent. A graph in which all pairs
of vertices are adjacent is called a complete graph.

Definition 2.1: The communication graph (examples in
Fig. 1a-d) on the set of agents is the static graph Gρ

N =
(VA, EN ) where EN is the set of edges on the communi-
cation graph, describing pairs of agents which communicate
state information, and ρ is a metric for determining inter-
agent distances. We call pairs of agents which are adjacent
on this graph neighbors or neighboring agents. To main-
tain communication, pairs (ai, aj) ∈ EN must maintain a
maximum distance |xi − xj |ρ ≤ δi,j

max. Agents receive state
information only about neighboring agents. The constraint
can be written

νρ(xi, xj) ≤ 0 ∀(xi, xj) ∈ EN . (2)

Definition 2.2: The collision graph on the set of agents
is a static graph Gρ

L = (VA, EL) where EL is the set of all
pairs of agents which cannot occupy the same coordinates
simultaneously. Pairs (ai, aj) ∈ EL must maintain a nonzero
minimum distance |xi−xj |ρ ≥ δi,j

min. We write the constraint
λρ(xi, xj) ≥ 0 ∀(xi, xj) ∈ EL. (3)

For homogeneous agents occupying the same space, this
graph will be complete. However, for heterogeneous agents,
this graph may not be complete. For example, if we consider
a two-dimensional configuration space for all vehicles, an
aerial vehicle cannot collide with a ground vehicle or another
aerial vehicle flying at a different altitude.

Definition 2.3: The configuration space Ci of an agent ai

is the set of all transformations of ai. The free space Cfree
i

of ai is the set of all transformations of ai which do not
intersect with obstacles in the configuration space.

We choose to decompose Cfree
i into pi polytopes with

matching facets. As we will see later, this facilitates the con-
troller synthesis technique we use in this paper. By matching
facets we mean that any hyperplane supporting two adjacent
polytopes shares the same vertices in both polytopes, and any
hyperplane can only support one facet of that polytope. This
is illustrated in Fig. 1(e-f),: the decomposition in panel 1e is
legal since all facets match exactly on both sides, while the
decomposition in panel 1f is illegal, since facet (1,3) has an
extra vertex from polytopes B and C on the right.

Definition 2.4: The team configuration space is the Carte-
sian product of the configuration spaces of each agent,

Call = Cfree
1 × Cfree

2 × · · · × Cfree
n

x = [x1, . . . , xn] ∈ Call.
(4)

Thus the configuration of all of the n agents is described by
a single point in Call. Call has dimension d =

∑n
i=1 di and

contains
∏n

i=1 pi polytopes.
Definition 2.5: The mutual exclusion graph on the set of

agents is the static graph GM = (VA, EM ) where EM is
the set of all pairs of agents which cannot simultaneously
occupy the same polytope in Ci = Cj if they share the same
decomposition, or in Cfree. The constraint can be written

µ(xi, xj) =
{

0, (xi, xj) ∈ EM in same polytope
1, otherwise. (5)

In general, the team of agents can be heterogeneous;
thus they might not share the same configuration space, so
di 6= dj . However, in this paper, we will only consider
examples in which all configuration spaces are projected onto
a plane. Thus, while the configuration spaces are different for
different agents (e.g., aerial versus ground), the dimensions
of the configuration spaces are identical. From this point on
we will let d1 = d2 = . . . = dn.

The proximity constraints specified by the connectivity
graph Gρ

N = (VA, EN ) and the collision graph Gρ
L =

(VA, EL) are realized using ρ as the infinity norm which
lends itself easily to convex decompositions. For pairs of
agents (ai, aj) ∈ EN ∩ EL the intersection of these con-
straints corresponds to a square annulus in the relative space
of two agents as in Fig. 2a (the shaded region denotes illegal
configurations). Pairs (ai, aj) ∈ EN − EL have only the
maximum distance constraint (Fig. 2b), and pairs (ai, aj) ∈

1937



xi-xj

yi-yj

ji,

min
δ

ji,

max
δ

(a) Neighbors with col-
lision constraint

xi-xj

yi-yj
ji,

max
δ

(b) Neighbors with no
collision constraint

xi-xj

yi-yj

ji,

min
δ

(c) Collision constraint
on non-neighbors

Fig. 2: Proximity Constraints. The shaded region indicates
configurations that are not allowed.

EL−EN have infinite annuli (Fig. 2c). The decompositions
in Fig. 2a and 2c satisfy our legal decomposition criterion.

Definition 2.6: The task configuration space CT is the set

CT = Call ∩ Lρ ∩M∩Nρ, (6)
where
Lρ ≡{x|x ∈ Call, λρ(xi, xj) ≥ 0 ∀(ai, aj) ∈ EL},
M≡{x|x ∈ Call, µ(xi, xj) = 1 ∀(ai, aj) ∈ EM},
Nρ ≡{x|x ∈ Call, νρ(xi, xj) ≤ 0 ∀(ai, aj) ∈ EN}.

(7)

CT is a space composed of polytopes in which the agents
cannot collide, lose communication or violate the mutual
exclusion constraints.

Problem 2.7: For any initial state x0, consider the system
(1) on Rd, with goal configuration xg ∈ Xg ⊂ CT ⊂ Rd and
metric ρ. Find a piecewise affine input function u : [0, T0] →
U for any x0 ∈ CT such that

1) ∀t∈ [0, T0], x∈Call and x(T0) arbitrarily close to xg ,
2) ẋi = ui,
3) x(t) ∈ Lρ ∩M∩Nρ, ∀t ∈ [0, T0].

We can also replace xg by the set Xg in the above problem
statement to allow a set of goal configurations.

III. FEEDBACK CONTROLLERS ON CT

In this section, we develop feedback controllers to solve
Problem 2.7. In other words, we ensure that the agents are
always inside the team configuration space CT and they reach
the goal configuration. There are two stages in this process.
First, we pursue a discrete representation of the team config-
uration space and find paths in this discrete representation.
Second, we translate these paths into feedback controllers.

The key step in the first stage is to define an adjacency
graph on the set of polytopes.

Definition 3.1: The polytope graph GP = (VP , EP ) on
the polytopes in CT is the pair of sets VP = {c1, . . . , cn},
where ci is the centroid of the i-th polytope P i, and EP , the
set of all pairs of polytopes which share a (matching) facet.

Using the polytope graph we determine a discrete path
from every polytope to the goal polytope. When goal posi-
tions are not specifically assigned to agents (e.g. when only
m of n agents are required to reach the goal set Xg) we have
a finite number of goal nodes rather than one goal node.

Due to the communication requirements, we must trian-
gulate the polytopes P i into simplices si

j . The reason for
this will become clear in the discussion of the controller we
will use. We now define an adjacency graph on the set of
simplices in each polytope.

Definition 3.2: The i-th simplex graph Gi
S = (V i

S , Ei
S)

on the simplices si
j in polytope P i is the pair of sets V i

S =
{ci

1, . . . , c
i
n}, where ci

j is the centroid of the j-th simplex
si

j ∈ P i, and Ei
S , the set of all pairs of simplices which

share a facet.
We use the simplex graph to determine a discrete path

from each simplex in a polytope to simplices on its exit
facet.

Theorem 3.3 (Necessary condition): Problem 2.7 has a
solution only if the polytope graph, GP is connected.
Proof: CT contains every allowable configuration x in our
polytopic world model. GP contains all the information
about the connectivity of CT . Thus, if there is a solution
to Problem 2.7, there must exist a path from any node in
GP to the goal node(s). Conversely, if there is no path on
the graph GP between any two nodes, there is no solution
to Problem 2.7.

Since there are multiple paths to the goal, we can use
the usual notion of a distance on a graph to find the
shortest paths in the polytope graphs using an algorithm like
Dijkstra’s algorithm. From our view point, the shortest path
minimizes the number of polytopes that are visited; this in
turn minimizes the number of transitions between polytopes.
Similarly we find the shortest path in the same sense on the
simplex graphs, to any of the simplices on the exit facet. In
the goal polytope, P g , we find the shortest path from any
simplex in its triangulation to the goal simplex, sg .

Once the paths on the polytope and simplex graphs are
identified, we want to be able to synthesize decentralized
feedback controllers to solve Problem 2.7. The synthesis
procedure is similar in spirit to those discussed in [12]–
[15], but is closest to the one developed by Habets and
van Schuppen [13] for determining a centralized affine state
feedback that satisfies a set of inequalities on a polytope. In
their paper, they derive controllers that drive a linear system
from any initial condition in a polytope through a desired
exit facet in the polytope while guaranteeing the system does
not leave the polytope. We slightly modify this algorithm to
design decentralized piecewise affine controllers.

We now consider the subproblem of steering states in a
simplex to a specified exit facet with limited state informa-
tion.

Problem 3.4: Consider the affine system (1) on simplex
si

j ∈ P i ∈ CT , where si
j is the j-th simplex in P i, the ith

polytope on a path to the goal, and xg /∈ si
j . Let Fk be the

facet shared by si
j and sj+1

i with normal vector nk pointing
out of si

j . For any initial state x0 ∈ si
j , we have to find a time-

instant Ti ≥ 0 and an input function u : [0, Ti] → U (where
u is realized by the application of a continuous feedback law
u(t) = Fx + g, g ∈ R2n) such that

1) ∀t ∈ [0, Ti] : x(t) ∈ si
j ,

2) x(Ti) ∈ Fk, and Ti is the smallest time-instant in the
interval [0,∞) for which the state reaches facet Fk,

3) nT
k ẋ(Ti) > 0, i.e. the velocity vector ẋ(Ti) at x(Ti) ∈
Fk has a positive component in the direction of nk,

4) matrix F , composed of matrices F ij ∈ R2×2, i, j =
1, . . . , n, is such that F ij = 0 if (ai, aj) /∈ EN .
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The special case of Problem 3.4 without restricting the
choice of F matrices results in a centralized controller.

Theorem 3.5: The centralized case of Problem 3.4 has a
solution if there exist inputs satisfying conditions (1) and
(2) of Proposition 3.1 and (2c) of Theorem 4.7 in [13]. A
solution is guaranteed if the system is fully actuated and the
inputs are not constrained.
Proof: See [13].

Once in sg , we solve the equation
ẋ(x = xg) = Fxg + g = 0. (8)

Theorem 3.6 (Sufficient condition): Problem (2.7) has a
solution if GP is connected, there are no bounds on inputs,
and communication between agents is not limited.
Proof: Follows from Theorem 3.5.

This constraint (4) on F limits the state information
available to each agent: only if two agents are neighbors will
they exchange state information. Because of the addition of
these constraints on the solution of the linear program, we
cannot guarantee that a solution will be found.

The constraint (4) can be easily formulated as a supple-
mentary equality constraint on the linear program used to
solve for the inputs at the vertices of each simplex. Without
requirement (4), F and g are calculated after solving the
linear program, by using the equation F T

gT

=

 v1
T 1

...
...

vd+1
T 1


−1  u1

T

...
ud+1

T

=
[
V T 1

]−1
U. (9)

Since we know certain entries of F must be zero, we restrict
solutions of u accordingly. Define W ≡

[
V T 1

]−1
. Then we

impose Fi,j =Wi [u1,j · · ·ud+1,j ] T =0 in the linear program.
In summary, the algorithm for controller synthesis or the

solution to Problem 2.7 involves the following four steps:.
Algorithm 3.7:
1) Construct task configuration space CT (Definition 2.6).
2) Find paths on polytope and simplex graphs GP , GS .
3) Solve Problem 3.4 on all simplices except sg .
4) Solve Equation 8 in sg .
Using vector fields instead of potential or navigation

functions for a controller has several advantages. The vector
field approach, resulting in piecewise linear or piecewise
affine feedback, is a computational approach instead of an
analytical approach, so it can be used in any environment,
while navigation functions are only formulated for star-
shaped sets [10]. The vector field method can be automated,
since all values can be determined with a linear program.
In contrast, at least one parameter must be manually chosen
for the navigation function method: the more complex the
space, the more parameters must be chosen [10]. While the
navigation function method does not scale, the vector field
method scales exponentially (as described in Section V).

IV. SIMULATIONS AND EXPERIMENTS

In this section, we solve many multi-agent coordinated
control problems to illustrate the application of the technique.
The simulations run on either MATLAB alone, using the
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Fig. 3: Three agents through a narrow corridor. The black
boxes on the upper right show proximity constraints.

δ max

(a) Two ground agents

δ maxδ max

(b) Two ground agents and one UAV

Fig. 4: A team of unmanned vehicles navigate an urban
environment. Buildings are enclosed by black polygons. The
bar on the bottom left shows δmax for each simulation.
In 4b, one agent is a UAV, which has a long range of
communication.

Multi-Parametric Toolbox for polytope computations, or on
a MATLAB interface for Gazebo.

A. Three Agents Negotiate Passage through a Corridor

Fig. 3a and 3b show a simulation in which the agents
successfully traverse a corridor too narrow to allow the
agents to traverse it in anything other than a single-file forma-
tion, making the proximity constraints difficult to preserve.
Note that no formation is specified. Only the collision graph
(complete) and connectivity graph (as in Fig. 1b) are part of
the problem specification (δmin = 0.7, δmax = 1.6). Fig. 3a
shows an intermediate stage, where all three agents are in
the corridor.

B. Two Agents Through a Complex and Real Space

Fig. 4 shows a simulation of a real world problem where
vehicles with realistic ranges of communication (150 m. in
4a and 250m. in 4b) navigate through an urban environ-
ment to their respective destinations while keeping within
the specified range. Fig. 4a has two ground vehicles with
complete connectivity and collision graphs. Fig. 4b shows
two ground vehicles with one aerial vehicle with a very large
communication range (greater than 1000 m.). All these plans
were generated automatically using Algorithm 3.7.

C. Three Agents in MATLAB and GAZEBO

In these simulations, preprocessing of the controller
is done in MATLAB. Three-dimensional dynamic simula-
tion of the robots is done using GAZEBO, part of the
PLAYER/STAGE/GAZEBO project [28]. GAZEBO is an open
source multi-robot simulator, designed to accurately simulate
a small population of robots with high fidelity. We use a
MATLAB API which interacts directly with the GAZEBO
to provide real-time control. For details on the model used
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in GAZEBO, and the conversion from a holonomic to a
nonholonomic system, see [29].

A simple multiply connected space is shown in Fig. 5a
and 5c. In these simulations, the agents share the same con-
figuration space, collision graph (complete), start and goal
configurations, and proximity constraints (δmin = 0.7m, and
δmax = 2.5m). In the centralized case, the communication
graph is complete; however, in the decentralized case (Fig.
5c and 5d), it is not complete (as in Fig. 1b, with agent 1
red, agent 2 green, and agent 3 blue). The distance between
the solid lines and the black dotted lines at the starting point
is due to feedback linearization distances, (centralized: 0.3,
decentralized: 0.4). The agents take different routes to the
goal since the feedback linearization points for the two cases
at t = 0 are in different polytopes.

Fig. 5b and 5d show the distance between agents in each
case. The first row corresponds to agents 1 and 2, the second
to agents 2 and 3, and the third to agents 1 and 3. The left
column shows Euclidean distance between pairs of agents;
center and right columns show distance in the x-direction
and y-direction, respectively. The plots show that proximity
constraints are maintained. In the center plot in Fig. 5d, the
red line depicting inter-robot distance dips below the dashed
blue line, indicating that the robot distance has exceeded the
limit; the feedback linearization point, however, does not.

D. Experiments with Two Agents

In experiments, we have used two SCARAB robots in a
complex environment, pictured in Fig. 5e, interfacing with
them with a similar MATLAB interface. Overhead cameras
are used for robot tracking, which is accurate within 3 cm.
We have used a feedback linearization distance of 18 cm, and
padded the obstacles accordingly. Figures 5e and 5f shows
the results of one experiment which is in the supplemental
video. Figure 5f shows distance between the two robots
and the distance between the feedback linearization points
(δmin = 0.5m, δmax = 3m). This experiment shows that the
controller can successfully be applied to real robot navigation
problems.

V. COMPUTATIONAL COMPLEXITY

In this section we discuss the computational complexity of
our method. Worst case complexity is mostly determined by
the number of polytopes in CT , which scales exponentially
with n. However, actual numbers observed are much lower.
Call ∈ Rd contains

∏n
i=1 pi polytopes, where pi is the

number of polytopes in Cfree
i . For each pair of agents with

collision constraints we have one annulus with 4 regions,
resulting in a maximum of 4n(n−1)/2 proximity regions
intersected with Call. This results in a maximum of

Pmax = 4n∗(n−1)/2
n∏

i=1

pi (10)

polytopes in CT . We must solve for a controller in each
polytope in CT to have a global solution to Problem 2.7.

This is a worst-case scenario, as some of these polytopes
violate connectivity constraints, and the proximity constraints

TABLE I: Complexity of each step
Task Complexity Ref
Construct Cfree

i O(vi + min{vi, r
2
i , r4

i }) [30]
Construct CT O(Pmax · LP (hi + 1, d)) [31]
Plan on polytopes O(|EA| + Pmax log Pmax) [32]
Solve inequalitiesa O(LP (|Vi||Fi| − d, d2)) [33]
Triangulationa O(|Vi|d/2) [31]
Plan in goal polytope P g O(|ES | + |Si| log |Si|) [32]
Solve inequalitiesb in P g O(LP (d2 + d + 1, d2)) [33]
Solve F , g on polytopesb O

`
2
3
(d + 1)3 + 2d(d + 1)2

´
[33]

aper polytope, bper simplex

TABLE II: Critical values in our simulations
Pmax P = |CT |

PP
i=1 Vi/P

PP
i=1 Fi/P

Fig. 4a 12, 996 2572 18 9
Fig. 5a 4096 464 92 15

are dependent (x1 <x2, x2 <x3 =⇒ x1 <x3). The polytopes
in Call which violate these constraints are eliminated in CT .

Table I specifies the complexity of every step in the
process. Here, vi (resp. ri) is the total number of vertices
(resp. reflex vertices) in Cfree

i , represented by a quasi-in-
simple polygon. LP(m, p) represents the complexity of a
linear program in p dimensions and m constraints. hi is
the number of inequalities used to describe the polytope
after proximity constraints are added. |Vi| (resp. |Fi|) is the
number of vertices (resp. facets) in polytope P i. |Si| is the
number of simplices in the Delaunay triangulation of P i.

The computational expense of the process depends largely
on the methods used for decompositions, Cartesian products,
and intersections, as well as the number of agents, connec-
tivity, and complexity of the space.

Table II presents critical values from our simulations. Al-
though Pmax is exponential, the actual number of polytopes
in CT is much lower. The table also presents average number
of vertices and facets per polytope.

There are several ways to decrease the computation time
required. Combinations of polytopes which violate proximity
constraints can be ruled out before taking the Cartesian
product. Additionally, given a limited number of polytopes
which contain all possible initial configurations of the agents,
solve only in those polytopes which they will pass through.

VI. CONCLUDING REMARKS

We presented a method for synthesizing feedback con-
trollers for a team of multiple heterogeneous agents navi-
gating a known environment with obstacles, and its appli-
cation to navigation in urban environments. In MATLAB
simulations, we showed the application of the algorithm
to agents navigating a narrow corridor as well as an ur-
ban environment. In experiments as well as 3-D dynamic
GAZEBO simulations, the controllers, although not specifi-
cally designed for nonholonomic robots, successfully drive
agents with limited system state information to goal sets
while avoiding collisions and maintaining specified proxim-
ity constraints. Additionally, we have shown in experiments
that the controllers can be successfully applied to real robot
navigation problems.

One limitation of this algorithm is that the complexity
is exponential in the number of agents. However, we have

1940



0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

x,position

y
,p

o
s
it
io

n

1
2

3

12

3

(a) Centralized Results

0 0.5
0

1

2

3

D
is

ta
n
c
e
 1

,2

0 0.5

-2

0

2

0 0.5

-2

0

2

0 0.5
0

1

2

3

D
is

ta
n
c
e
 2

,3

0 0.5

-2

0

2

0 0.5

-2

0

2

0 0.5
0

1

2

3

t, time

D
is

ta
n
c
e
 1

,3

0 0.5

-2

0

2

t, time

0 0.5

-2

0

2

t, time

(b)

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

x,position

y
,p

o
s
it
io

n

1 2

3

12

3

(c) Decentralized Results
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(e) Experimental Results
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Fig. 5: Simulations and an experiment in a multiply connected space on the SCARAB. In 5a, 5c, 5e, solid (dotted) lines show
the position of the robot (feedback linearization point). Black boxes show proximity constraints (written in 5e). In 5b, 5d,
5f, red (green) depicts the robot position (feedback linearization point), dotted blue marks the maximum allowable distance.

briefly discussed two methods of decreasing the complexity.
Additionally, the proximity constraint dependency combined
with connectivity constraints significantly decrease the num-
ber of polytopes in the space, as shown in Table II.

There is potential to reduce complexity by considering
that we are taking Cartesian products of identical graphs. By
taking this into account, we may build the polytope graph
with less computation. This is a direction for ongoing work,
as is more extensive experimentation with multiple SCARAB
robots.
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