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Abstract— In this work inspired by flocking of birds or fish
communities traveling together in the nature, we have developed
a novel dynamically reformable mobile formation algorithm
for the navigation of wheeled mobile robot (WMR) groups
operating in complex and/or obstacle dense environments. The
proposed method is formed via the combination of simple and
computationally efficient tools such as (i) a mobile network
of a small number of WMR sensors for detecting obstacles;
(ii) Cardinal Cubic splines or Least Squares fits for modeling
the formation boundaries based on this small network; and
(iii) reference frames to ensure uniform spacing and velocity
profiles along the ensemble. By these components a simple
geometrical formation is developed for real time flock path
planning of relatively large groups of small agents. To our best
knowledge the proposed approach is novel and its effectiveness
is verified by simulations in complex environments.

I. INTRODUCTION

In complex robotic tasks, instead of using a couple of
dexterous, highly functional robots with extensive sensor
and actuators that will require complex planning and control
algorithms and intelligence to perform the tasks, it might be
more appropriate to use large numbers of inexpensive robots
equipped with elementary level intelligence. Some similar
tasks involve search and rescue, coverage, mapping in vast
remote operational spaces including outer space and under
sea. In this respect research on gaining insight into behavior
of bird or fish species in nature is critical, as they form
highly effective swarms improving the performance of single
individuals in tasks like hunting, defense, and migration to
long distances. It is believed that in these groups autonomous
agents do not follow commands from a leader, or some global
plan [1]. Instead they re-adjust their behavior by factors
such as low level reasoning based on their nearest neighbors.
Swarm or flock methods in robotics aim to gain insight into
collective and cooperative tasks by imitation of these natural
swarms. In this respect, Reynolds introduced three heuristic
rules termed “cohesion”, “separation” and “alignment” that
led to creation of the first computer animation of flocking
[2]. Among these rules cohesion is on flock centering (ie.
attempt to stay close to nearby flockmates); separation is on
collision avoidance with nearest neighbors; and alignment
is also refereed to as attempting to match velocity with
nearby flockmates. These three rules form a framework for
the navigation of robot swarms.

Many alternative methods have been proposed for forming
swarm/flock behavior as closely as possible, particularly for
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modeling multi-agent collective motion problems. In [3],
[4] particle swarm optimization is applied for generating
accurate flock patterns. In [5], a simple model of swarming
in the presence of an attractant/repellent profile is presented
for simulating stable social foraging of swarms in a profile
of nutrients. There are also potential function based swarm
planners [6], [7]. In [8], authors present alternative swarm
approach via guidance of a high number of simple agents by
a smaller number of more sophisticated robots similar to the
shepherding behavior in sheep flocks. These robot guides
may aid future transportation and leisure activities in air
and sea. Some methods which integrate implicit polynomials
(IPs) with swarm applications have also been presented [9],
[10], [11]. As accurate polynomial fitting is computationally
intensive for real-time swarm applications, these methods are
limited to IP based mapping nearly stationary shapes such as
undersea structures or oil spills. Swarm methods can also be
applied to other fields than robotics such as computational
graphics/geometry [12] and medicine [13].

The flock planner we propose is based on the coordination
of a mobile dynamically reconfigurable formation and the
single agent path planner we have introduced in [14]. The
formation as a whole uses a small number of ensemble outer
sensors as a network to detect the obstacles and concurrently
reform its outer shape during navigation. It uses the acquired
data to guide the agents of formation away from the detected
obstacles. The agents are constrained to within the morphed
formation by fitting discrete boundaries via Cardinal Cubic
(CC) splines or alternatively continuous borders by Least
Squares IP functions. Finally for even agent distribution and
velocity alignment a readjustable reference frame moving
with the formation is introduced. The agents avoid collisions
with their neighbors or any small obstacles that may enter
the formation zone undetected by the sensor network by
an efficient agent planner. To the best of our knowledge
the proposed method is novel. The most notable benefits
of the method are guidance of agents by smoothly varying
outer boundaries, and effective agent margins by the attached
mobile reference frame. These propertied result in improved
collective behavior and reduced entrapment/collision rates in
complex environments. Moreover the proposed formation has
a computationally-simple approach to modeling formation
borders despite utilizing a point set based approach. Hence,
real-time simulations of relatively large flocks (of 15 agents)
is achievable with entry level PCs.

The rest of the paper is organized in the following manner:
Section II presents the problem statement, while Section
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III revises a fixed reference frame based flock planner. In
Section IV, the mobile formation based planner is explained
in detail with supporting simulations presented in Section V.
Finally concluding remarks are summarized in Section VI.

II. THE PROBLEM FORMULATION

The main objective of this work is to design a mobile
dynamically re-morphable formation, which can collectively
steer a group of WMRs similar to flocking behavior in envi-
ronments of highly complex obstacle distribution. Effective
real-time operation with simple hardware and computational
power is also another critical aspect. Hence the preferred
approach is based on integration of various computationally
simple algorithms. These components use position data from
some agent sensors (in the form of a sensor network) to
generate mobile formation borders and reference frames for
satisfying the three main rules of flocking (ie. cohesion,
separation and alignment) for a group of WMRs. The WMRs
also use the an efficient agent planner for relatively minor
path rearrangements.

III. FIXED REFERENCE FRAME PATH PLANNER

The flock planner in [14] uses a simple yet effective reac-
tive agent planner with a fixed reference frame (FRF) for nav-
igation of a group of unicycle type WMRs in a loosely bound
geometrical formation. The agents are normally directed
towards their reference points in the formation. However,
when they encounter obstacles, the avoidance mechanism
of their individual planners are activated and temporarily
divert them from the formation. After the obstacle avoidance
is over, the agents are again directed to their reference
locations in a smooth path. The method has a number of
advantages such as enabling real-time path generation for
relatively crowded agent groups, not requiring inter-agent
communications during navigation and improved concave
obstacle avoidance by adjusting two parameters. The main
disadvantage of FRF planners is they cannot achieve collec-
tive navigation in complex environments such as tunnels.
Many agents inevitably get marooned from the reference
frame. The reactive agent obstacle avoidance performance
falls as obstacle sizes increase with respect to the sensing
range. This may cause some WMRs to be trapped. Even
worse if an agent reverses direction in a tunnel, this may
severely disrupt the trailing traffic. Moreover using expensive
longer range sensors is not a viable option as this conflicts
with the aim of swarm planning.

IV. MOBILE DYNAMICALLY RECONFIGURABLE
REFERENCE FRAME FORMATION

In this work we propose a mobile flock planner, called
“Mobile Dynamically Reconfigurable Reference Frame”
(MDRRF) formations to address the collectivity limitation of
FRF planners. The method uses obstacle data from a small
network of range sensors to adopt the three flocking rules of
Reynolds [2]. The sensor data is used to (i) maneuver the
overall formation away from the detected obstacles and (ii)
simultaneously reform the shape of the formation boundaries

3 3 23
x

xx
24 4 X

XX

X
1

3 2

xx 15

X

X
X5

8
x xx

6 7 8 6 X
X

X
O1

5
7

(a) No Obstacle (b) Obstacle
:   Sensor network,         :  Agents, :  Ellipsoidal formation,   O1 :  Obstacle
: Formation center ( / ) : Reformed (formation / control nodes): Formation center,    ( / , ) : Reformed (formation / control nodes)

Fig. 1. Morphing of an MDRRF formation.

according to encountered walls. These components address
the “cohesion rule” and reduce agent defragmentation. A
mobile reformable reference frame is integrated into the
MDRRF planner. The frame provides reasonably spaced
reference points in environments with/without obstacles,
thereby improving agent distribution and velocity profiles
(“separation” and “alignment” rules).

A. Mobile Sensor Network

The mobile sensor network Ps = {psi}8
i=1, is a set of

8 sensors from outer agents of formation as depicted in
Figure 1. The main function of this network is to detect
encountered obstacles and provide a measure of their impact
on the formation boundaries. The flock planner will then use
this data to re-adjust the direction and shape of the formation
so that the agents are guided away from large and possibly
concave obstacles.

In an obstacle free environment the MDRRF formation is
assumed to start as an ellipsoidal zone and is steered non-
holonomically for the rest of the simulation. The procedure
is outlined in Figure 1(a). For re-adjusting the formation
behavior nearby obstacles, the planner requires both the
intrusion range of the obstacles into the formation sensing
zone and an estimate of their size/position. Obstacle size and
position estimates are computed by an efficient algorithm
without resorting to complex mappings and these estimates
are used to provide a steer force for maneuvering the overall
ensemble similarly to the planner in [15].

The planner also reforms the shape of the formation outer
boundary near obstacles to limit agent-obstacle interaction.
A set of control nodes Pc = {pci}8

i=1 is defined to be
one to one and onto the set of sensor range locations Ps

when the formation is not influenced by obstacles. However
when an obstacle is detected, the positions of the associated
control nodes shrink towards the formation center to reflect
the termination of formation boundary at the obstacle border
(see the sensors 7 and 8 in Figure 1(b) shrunk by the dark
gray arrows from the sensing range). At every time instant
of the contraction periods, the control nodes corresponding
with the free sensors expand to normalize the formation area
for inter-collision free guidance of agents away from blocks
(see the expansions from sensing range denoted by light gray
arrows in Figure 1(b)).
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The details of the mathematical model summarizing the
above procedure is as follows. Let an obstacle detection
occur by a number of n sensors at time t = t0 [s] and
let the obstruction continue until t = tf [s]. Let the index
set of the all control vertices and the control vertices under
obstacle effect denoted by Ci = {i}8

i=1 and Oi ∈ N
n,

respectively. Thus the index set of the free control nodes
is Fi = Ci \ Oi ∈ N

8−n. The obstructed sensor nodes are
shrunk towards the formation center as depicted in Figure
1(b) via the following the iterative model:

pci [t + �t] = pcm + kC(pci [t] − pcm), ∀i ∈ Oi. (1)

In (1) iteration continues throughout the time period t ∈
[t0, tf ]. pci [t] and pci [t+�t] represent the current position of
the contracting nodes and their next sample update. �t is the
sample time, kC ∈ R

+ is the contraction coefficient and pcm

is the formation center. Contraction reduces the area of the
formation in the direction of obstacles. The planner should
compensate for this lost area to avoid agent deadlocks. This
is carried out by expanding the free control nodes during
t ∈ [t0, tf ] as follows:

pci [t + �t] = pcm + kE(pci [t] − pcm)wEi , ∀i ∈ Fi. (2)

Here pci [t] and pci [t+�t] are the current and next updates of
the expanded nodes, and pcm, �t are as previously defined.
The expansion is governed by the expansion coefficient
kE and control node weights wEi . kE is a measure that
compensates for the lost area from contraction and is related
to kC by kE = e n kC/(8− n), e ≤ 1. wEi is a weight for
distribution of the expansion among the free sensor nodes.
These weights emphasize direction of formation path so that:

wEi =
(

1 +
wsensi

wFT

)
, ∀i ∈ Fi, (3)

where wFT is the overall weight of the expanding control
vertices and wsensi is weight of the ith expanded node. The
indexing of wsensi is according to the order in Figure 1 with:

wsensi = {4, 3, 2, 1, 0, 1, 2, 3}, ∀i ∈ Ci. (4)

B. Synthesis of the Formation Outer Boundary

The sensor network and morphing of the corresponding
control nodes serve as a rough framework for reforming the
formation shape near obstacles. But less sparse bounding
mechanisms are necessary for keeping the agents together
when the formation is affected by obstacles. Two alternative
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boundary models are applied for this purpose: (i) Cardinal
Cubic (CC)-splines, and (ii) Least Squares (LS)-fits. CC-
splines are 3rd degree parametric curves. They are repre-
sented by piecewise cubic polynomials in the form σ(s) =
a0 + a1s + a2s

2 + a3s
3 with variation of their parameter in

the range s ∈ [0, 1). They interpolate through their control
points called knots and satisfy C1 continuity. Thus they
form a discrete and smooth boundary of interpolated points
between the formation sensor network knots by a selection
of equidistant intermediate s values in the interval [0, 1).
The formula for CC-spline interpolation between the control
nodes pci−1 and pci is:

σ(s) =

⎡
⎢⎣

1
s
s2

s3

⎤
⎥⎦

T ⎡
⎢⎣

0 1 0 0
−τ 0 τ 0
2τ τ − 3 3 − 2τ −τ
−τ 2 − τ τ − 2 τ

⎤
⎥⎦

⎡
⎢⎣

pci−2

pci−1

pci

pci+1

⎤
⎥⎦
(5)

where i ∈ Ci denotes the indices of knots set; and τ ∈ [0, 1]
is the tangent of the spline at the knots. Lower τ values
are preferable for providing smooth boundary pieces σ(s),
in between every neighboring knot pair pci−1 and pci .

The bounding mechanism of discrete CC-splines is similar
to electrostatic potentials. The fitted set of points can be
assigned same charges as the enclosed agents. Thus the
spline border can be used as a repelling potential, ie. a
set of same signed charges with the agents to redirect any
nearby WMRs towards the formation center. Specifically, a
bounding force Fb(t) = [Fb(x), Fb(y)]T , is superposed to the
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agent steer force Fs(t) to confine the agent to the formation
boundary if the distance of a robot to the formation border
La, is less than a threshold δL:

Fb(x) = Kr(pcm − pae)/(‖pcm − pae‖La), La < δL (6)

Here (6) pcm is the formation center, pae is the agent steer
point and Kr ∈ R

+ is a positive scalar constant. This
mechanism only disrupts the paths of agents in vicinity of
formation border, thereby improving agent collectivity.

CC-splines based formation borders have a number of
drawbacks: (i) They are interpolating functions, thus their
output is a discrete set of positions. The number of elements
in this set cannot be selected arbitrarily high for compu-
tational cost concerns. As the formation is morphed, there
may occasionally be sparser regions in the set, allowing the
agents to leave the formation. (ii) Another difficulty of the
CC-splines is their boundary force Fb(t) integrated with the
agent obstacle avoidance force mechanism via superposition.
Hence the selection of the constant Kr in equation (6)
involves heuristics. This may arise problems in obstacle
and agent dense scenarios. We have used IP curves which
model boundaries by continuous functions to address these
weaknesses models. The general formula for IP curve models
(also refereed to as algebraic curves) is

f(x, y) =
∑

i,j≥0,i+j=n

aijx
iyj (7)

where aij and n are the coefficients and the degree of the
curve, respectively; and i and j are the powers of x and y
terms. IP curves are defined at the zero-set of these functions
such that f(x, y) = 0. Algebraic curves have a computa-
tionally efficient point-boundary classification mechanism by
evaluation of their polynomials. For example to determine
the position of an agent with respect to an algebraic curve
based formation boundary, we only evaluate the IP at the
agent sensor position values pc = (xc, yc). Thus from
(7), we can conclude that the sensor point is outside the
curve if f(xc, yc) > 0, on the curve if f(xc, yc) = 0, and
inside the curve if f(xc, yc) < 0. As a result any IP based
outer boundary can be directly integrated into the obstacle
avoidance mechanism of the employed agent planner as a
virtual obstacle similarly to the approach in [15]. This is an
effective formation border generation mechanism if the IP
fits can be applied in real-time.

However, directly attempting to fit closed-bounded 2-D
algebraic curve fits has numerous drawbacks. IP fits have
the effect of smoothing their data point sets, thus poor
shape representation is common when lower degree IPs are
utilized as basis sets [16]. A more important and common
problem of general IP methods is curve instability (ie. open
curves with branches leading to infinity rather than closed
bounded fits), which renders point classification useless. In
this paper an alternative approach is used for outer bounding
the formations by IP fits to achieve improved stability and
point classification: The set of control nodes Pc, is Euclidean
transformed to origin with T : Pc → Pt to form a normalized
set of control nodes Pt (see the transition from Figure
2(a) to 2(b)). The transformation is so that the front and

Fig. 4. Overview of the complex tunnel simulation environment.

rear control vertices intersect with the x-axis as depicted
in Figure 2(b); however, the formation center pcm need not
exactly coincide with the origin. The new set of 8 control
nodes Pt is subdivided to two data subsets of 5 points each
corresponding to the upper and lower half planes bounded
by x-axis. These two subsets are fit by two separate 4th

degree open IPs. These two fits are then re-transformed to
the formation pose as in Figure 2(c) thereby forming the
outer boundary of the robot ensemble. This approach has
numerous advantages: (i) the resulting curves intersect each
other near the very front and rear nodes of control points set
Pc, thereby offering similarly efficient point classification
as closed bounded IP fits; (ii) utilization of two IPs have
higher redundancy for accurate shape representation; (iii) the
method uses a small number of points and is suitable for
real-time operation.

Least Squares IP fitting method is used for being more
efficient than other IP techniques. The utilized polynomial
basis functions are in the form

y = f(x) = a0 + a1x + . . . + a4x
4 = aT · x. (8)

Here the LS curve parameter vector a ∈ R
5 is estimated by:

a = (χT χ)−1χT υ, (9)

where χ and υ are the VanDerMonde matrix of x-axis and
vector of y-axis components of transformed data subsets, in
the form

χ =

⎡
⎣ 1 xt1 x2

t1 x3
t1 x4

t1· · ·
1 xt5 x2

t5 x3
t5 x4

t5

⎤
⎦ , υ =

⎡
⎣ yt1

· · ·
Yt5

⎤
⎦ . (10)

The proposed IP fit method is not interpolation, but
approximation based. Hence the resulting fits may be in-
accurate if some data set points are very near each other (ie.
near singularity condition for the χT χ matrix in (9)). This
problem can be cured by reducing the e coefficient of the
expansion ration kE in equation (2) or by modification of
(9) via ridge regression regularization in the form [16]:

aRR =
(
χT χ + εI5×5

)−1
χT υ, (11)

with I5×5, being the 5×5 identity matrix, and ε is a scaling
factor in range 0.001− 0.01.

C. Reference Frame

For even inter-agent spacing and smooth velocity profiles
in the ensemble, a mobile reference frame is applied (see
Figure 3). To avoid computationally costly reference point
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(a) Simulation time: t=0s (b) t=215s

(c) t=705s (d) t=1120s

(e) t=1450s (f) t=1775s

Fig. 5. MDRRF formation in a complex tunnel with CC-spline boundary

distribution methods such as Voronoi tessellations [17], a
simpler approach is preferred. Let the center line of the
formation is divided to two segments, FC from front control
node to center of formation CR from center to rear vertex
as in Figure 3(a). Then the reference vertices are placed
equidistantly on segments emanating from these center lines
perpendicularly to the formation orientation. When the for-
mation is morphed according to the method in Section IV-A,
the norms of the pivot lines extend or shrink by the change
of the nearby control vertex positions, thereby preserving the
distances between the agents and the formation border as in
Figure 3(b). If the line segments shrink causing the reference
nodes to converge nearby, the path planners of the associated
agents detect neighboring WMRs by their range sensors and
activate their avoidance mechanism preventing collision.

V. SIMULATION RESULTS

The effectiveness of the MDRRF planner is verified sim-
ulations on tunnel environments with wide cross-sections
and with U-gaps (see Figures 4 and 7). The aim of the
simulations is steering a collection of 15 agents from their

(a) t=0s (b) t=250s

(c) t=500s (d) t=750s

(e) t=1100s (f) t=1400s

Fig. 6. MDRRF formation in a complex tunnel with 2 LS-fits

initial locations to the desired regions marked by circles in
the right side clearance. The agents are assumed to be small
ellipsoidal robots with minor and major axis lengths 5-5.5
[cm]. The major and minor axis lengths of the formation
zone and the WMR sensing regions are:

af = 110, bf = 100, a = 11, b = 10 [cm].

The formation and agent reference velocities are 0.07, 0.075
[m/s] for the CC-spline simulations, and 0.11, 0.117 [m/s]
for the LS-fit simulations. For spline interpolated formation
borders, 5 intermediate points are placed between every
neighboring knot pair. Ridge regression parameter is selected
to be ε = 0.01.

The first two simulations are on the collective steering of
15 agents, which utilize two alternative forms of MDRRF
planners (see Figure 5 for CC-spline boundaries, and Fig-
ure 6 for the LS-fits bounds). In these figures the dotted
and continuous envelopes depict the CC-spline and LS-fit
based formation borders, respectively. From Figure 5 we can
observe that some agents leave the formation of CC-spline
boundaries (Figures 5(e) and 5(f)). This is in parallel with
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(a) Environment overview (at t=0s) (b) t=30s (c) t=75s

(d) t=175s (e) t=275s (f) t=500s

Fig. 7. LS-fit based swarm planner in a tunnel with U-gaps.

discrete nature of splines. However, the LS-fits provide more
effective bounding and hence improved agent collectivity
as in Figure 6. Moreover, the LS-fit approach has a higher
formation velocity. Another set of simulations are in Figure
7, where LS-fit based MDRRF planner helps a group of
agents maneuver around the U-gap in a tunnel with a dead
end corridor. The improved performance is mainly owing
to the synergy of the multiple sensor readings from widely
distributed sensors over the formation. These simulation
environments are typical cases, where FRF based formations
fail with the agents relying on their short range sensors. Thus
we have repeated the simulations also with the FRF planner
and included the results in the attached video file along with
MDRRF clips. From the streams, we can observe the FRF
planner fails with many agents getting trapped at the concave
regions. We can also observe the advantage of MDRRF ap-
proach: CC-spline based simulations achieve more accurate
and collective path plans than the FRF planners. LS-fits based
planners achieve better agent and velocity alignment over
the other two approaches resulting in more accurate flocking
behavior.

VI. CONCLUSIONS

We have proposed a new algorithm for flocking like behav-
ior of relatively crowded WMR ensembles in obstacle ridden
environments. Our method is based on the co-operation
of a computationally efficient single robot planner with a
simple mobile formation based on geometric evaluations
rather than swarm intelligence. The algorithm enables more
effective navigation than FRF based approaches in complex
environments such as tunnels with variable cross sections,
while retaining computational efficiency. Moreover improved
navigation is obtained by utilization of data from a network
of range sensors instead of resorting to expensive hardware.
Therefore this method may reduce the necessity for detailed
mappings or locally known milestones for flocks of inex-
pensive WMRs. The effectiveness of the proposed planner is
verified by numerous simulations.
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