
No Robot Left Behind: Coordination to Overcome Local

Minima in Swarm Navigation

Leandro Soriano Marcolino and Luiz Chaimowicz.

Abstract— In this paper, we address navigation and coordi-
nation methods that allow swarms of robots to converge and
spread along complex 2D shapes in environments containing
unknown obstacles. Shapes are modeled using implicit functions
and a gradient descent approach is used for controlling the
swarm. To overcome local minima, that may appear in these
scenarios, we use a coordination mechanism that reallocates
some robots as “rescuers” and sends them to help other
robots that may be trapped. Simulations and real experiments
demonstrate the feasibility of the proposed approach.

I. INTRODUCTION

The use of large groups of robots in the execution of

complex tasks has received much attention in recent years.

Generally called swarms, these systems employ a large

number of simpler agents to perform different types of

tasks, oftentimes inspired by their biological counterparts.

In general, swarms of robots must perform without a desig-

nated leader and using limited communication. Due to these

challenges, new algorithms to control and coordinate these

very large groups of robots have been developed.

In this paper, we present navigation and coordination

methods that allow swarms of robots to converge and spread

along complex 2D shapes in environments containing ob-

stacles. We build on our previous work in which implicit

functions and gradient descent techniques were used to syn-

thesize shapes and patterns in obstacle free environments [1].

Here, along with gradient descent, robots are repelled by

locally sensed obstacles using a potential field approach. As

expected, this can lead to the appearance of local minima

compromising the convergence. To overcome this, we rely

on multi-robot coordination: some robots become rescuers

and retrace their paths to help others stuck in local minima.

The general area of motion planning for large groups of

robots has been very active in the last few years. One of the

first works to deal with the motion control of a large number

of agents was proposed for generating realistic computer ani-

mations of flocks of birds (called boids) [2]. Basically, local

interactions among neighboring agents create an emergent

behavior for the whole flock. In robotics, these interactions

can be considered as a special case of the potential field

approach [3], in which robots are attracted by the goal and
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repelled by obstacles and other robots. In swarms, attractive

forces are generally modeled through the gradient descent

of specific functions [4], [5]. Unfortunately, as in regular

potential field approaches, the presence of obstacles and local

repulsion forces among the robots may cause convergence

problems in general gradient descent approaches, mainly

when robots are required to synthesize shapes. Hsieh and

Kumar [6] are able to prove convergence properties and the

absence of local minima for specific types of shapes and

environments. Also, special types of navigation functions can

be used to navigate swarms in cluttered environments [7].

But these approaches may be hard to compute in real time

and may not be applicable to all types of environments.

Other approaches to navigate large groups in obstructed

environments consist in treating the swarm as a simpler

entity with a smaller number of degrees of freedom and then

perform the motion planning for this entity. The work pre-

sented in [8], for example, models a group with a deformable

shape and uses a Probabilistic Roadmap to plan for this

shape. Belta et al. [9] show how groups of robots can be

modeled as deformable ellipses, and presented decentralized

controllers that allowed the control of the shape and position

of the ellipses. This approach was extended in [10] with

the development of a hierarchical framework for trajectory

planning and control of swarms. A hierarchical approach

was also used in [11] in which planning was simplified by

dynamically grouping robots using a sphere tree structure. A

related work, that investigates coordination mechanisms for

boundary coverage with swarms is presented in [12].

In this paper, instead of restricting our environment,

developing complex controllers, planners, and navigation

functions, or relying on random movements to escape local

minima, we use the composition of simple controllers and

decentralized coordination to allow swarms of robots to

navigate and synthesize patterns, overcoming local minima

in environments containing unknown obstacles. This is the

main contribution of this work.

This paper is organized as follows. Next section presents

the approach used to generate the implicit functions, the

controllers used to navigate the swarm, and an example of

a complex shape synthesized in an environment containing

obstacles. Section III explains the coordination methodology

used to overcome local minima and shows simulations of a

local minima scenario. Section IV presents some experiments

performed with a couple of e-puck robots that demonstrate

the feasibility of the proposed approach. Finally, Section V

brings the conclusion and directions for future work.
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II. SYNTHESIZING SHAPES

As stated in the previous section, we want to control a

very large group of robots to converge and spread along

complex shapes in environments containing obstacles. As in

[1], robots spread along a 2D curve S given by implicit

functions of the form s(x, y) = 0. This implicit function can

be viewed as the zero isocontour of a 3D surface f = s(x, y)
whose value is less than zero for all points (x, y) that are

inside the S boundary and is greater than zero for all points

outside the S boundary. By controlling individual robots to

perform a gradient descent on f2, we are able to make

the group converge to S. In order to compute the gradient

forces, robots must know their global position. This is a

strong assumption, but it is generally accepted when dealing

with swarm navigation. Besides, advances in localization

technologies have been providing affordable and scalable

ways to localize large number of robots (see Section IV-A).

To synthesize specific shapes, we consider f as a weighted

sum of radial basis functions (RBFs) created interpolating

from a set of constraint points. We specify some constraint

points pj along the shape boundary such that f(pj) = 0 and

at least one constraint smaller than zero inside the boundary

(to avoid degenerate solutions). Each of these constraints will

be the center of one RBF. Then, solving a simple linear

system, we determine the weights (wj) of all the RBFs that

comprise the function f :

f(q) =
∑

j

wjh(|q − pj |) (1)

where the term |q − pj | is the Euclidean Distance (d)
between the point where the function is being evaluated

and a constraint pj . In this paper function h is given by

h(d) = d2 log(d).
For obstacle avoidance, we use a regular potential field

approach: if an obstacle is detected by the robot, this obstacle

applies a repulsive force that is inversely proportional to

the distance between them. The same approach is used

for modeling repulsion between robots. In simulation, we

consider that the robot’s sensing region is determined by a

circle with radius r centered at the robot. So, we define two

sets Oi and Ni containing, respectively, the obstacles and

robots detected inside this region.

Thus, considering a fully actuated robot i with dynamic

model given by q̇i = vi and v̇i = ui, where qi = [xi, yi]
T

is the configuration of robot i, ui is its control input and vi

is the velocity vector, the control law is given by:

ui = −α∇f
2(qi) − Cq̇i − β

∑

k∈Oi

1

dik

− γ
∑

j∈Ni

1

qj − qi

. (2)

Constants α, β, γ, and C are positive. The first term is

the gradient of the square of the RBF function given by

equation 1, used to guide the robots toward the specified

shape. The second term is a damping force. The third term

is the sum of repulsive forces applied by the obstacles (dik is

the distance vector between robot i and obstacle k). Only the

obstacles that are inside robot i sensing region, represented

by the set Oi, are considered in the computation of forces.

The fourth term computes the repulsive interaction of a robot

with its neighbors, represented by the set Ni.

To illustrate this approach, we performed simulations in

which a swarm should generate a pattern (letter ‘G’) in

an environment containing obstacles. We used MuRoS, a

multirobot simulator that allows us to implement various

tasks, test different controllers, and observe the robots in real

time. Constants α, β and γ were tuned to balance attractive

and repulsive forces adequately and velocities were limited

to an acceptable maximum (saturation). The sensing radius

r is set to 3 times the size of the robot. Figure 1 shows a

sequence of snapshots of robots converging to the target.

III. OVERCOMING LOCAL MINIMA

The approach presented in the previous section can lead

to situations of local minima. Since robots are attracted by

the goal and repelled by obstacles and other robots, they

can be trapped in regions where the resultant force is zero

or where the force profile leads to repetitive movements

(for example, continuous circular movements in a specific

region). In general, the local minima regions depend on the

shape of the obstacles and on the number of robots. So, it

is difficult to model these regions precisely and there are no

formal guarantees that the robots will converge to the desired

pattern. To overcome this, we use coordination strategies

that allow robots to escape from local minima with the help

of their teammates. The general idea is to use some of the

robots that reach the target as “rescuers”. These rescuers will

retrace their path looking for other robots that may be stuck

in local minima. For this, two additional assumptions are

made: a robot must have a small memory in order to save

their path and must be able to send messages to the robots in

its neighborhood. The amount of storage needed is not high,

a few KBytes will suffice in most situations. Also, affordable

short range communication mechanisms, such as Bluetooth,

are commonly available nowadays. Thus, these assumptions

do not compromise the applicability of our methodology.

The strategies developed take advantage of some char-

acteristics of swarms in general: the presence of a large

number of members and the possibility of local interactions

among them. Since we have a very large group, it is possible

to allocate different roles to some of the robots while the

others perform the original mission. As an example, we

have the rescuers to help other robots. Also, when a large

number of robots are trapped, local force interactions allow

robots to “push” some teammates out of the local minima

and local communication allows rescuers to broadcast free

paths to the neighboring robots trapped in regions of local

minima. Finally, an important characteristic of using swarms

is fault tolerance. The loss of some team members do not

compromise the mission as a whole. So the algorithm does

not need to be complete: we can have robots that may not

be rescued and will be considered “missed in action”.

Our coordination is based on a mode switching mechanism

similar to the dynamic role assignment presented in [13]. A

robot can switch between different modes (or roles) during
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Fig. 1. A group of 80 robots synthesizing a complex shape (letter ‘G’) while avoiding obstacles. Robots are represented by the small circles.

the execution of the task. Each mode determines a different

behavior for the robot and will be executed while certain

internal and external conditions are satisfied. The mode

switching together with local interactions allow robots to

escape local minima and converge to the desired target.

A. Modes

Robots in the swarm can be in one of five different modes

during task execution: normal, trapped, rescuer, attached and

completed. These modes can be represented by a finite state

machine (FSM), in which the edges represent the possible

transitions between different modes. Figure 2 shows the finite

state machine used in our coordination mechanism.

Fig. 2. Finite state machine showing the possible modes and transitions
for each swarm member.

A normal robot simply behaves as explained in Section

II. It performs a gradient descent, following paths that will

avoid obstacles and eventually lead to the target. All robots

start in the normal mode and become trapped if they fall

in a local minima region. A trapped robot acts similarly to

a normal one, except for the following facts: (i) a trapped

robot strongly repels another trapped robot and this repulsion

is stronger than the one between two normal robots. As a

local minima region tends to attract many robots, the local

interactions through these stronger repulsion forces will help

some of the robots to escape this region; (ii) trapped robots

accept messages from rescuers or attached robots that will

help them to escape from local minima and move towards

the target. This will be better explained later in this section.

To change its mode from normal to trapped (and vice-

versa), a robot considers the variation of its position over

time. If its position do not change much during a certain

amount of time, it becomes trapped. Since robots can have

small or repetitive movements in the local minima area, the

transition back trapped to normal is harder. It only gets back

to the normal mode with larger variations in its position.

When a robot arrives at the target it may become a rescuer.

Basically, when moving towards the goal, a robot saves a

sequence of waypoints that is used to mark its path. If it be-

comes a rescuer it will retrace its path backwards looking for

trapped robots. After retracing its path backwards, the robot

moves again to the goal following the path in the correct

direction. In order to minimize the memory requirements of

the algorithm, the robot discards redundant information in

the path stored. Therefore, if there is a straight line in the

path, ideally only two waypoints will be used. If there is

a complicated and narrow curve, the robot will save more

waypoints to be able to follow the path.

An important point is to define which and how many

robots will become rescuers. To control this we use “co-

ordination tokens” 1. We start with n tokens at the target.

Every robot that arrives removes one token. The first robot

that does not find any token to remove becomes a rescuer and

puts m new tokens at the target, with m < n. This inequality

is important because we do not want the first robots to

arrive to become rescuers since they probably started near

the target and will not find many trapped robots in their path.

This procedure is repeated with m tokens until a maximum

number τ of rescuers are sent. The values of m, n and τ

are determined empirically and may vary depending on the

total number of robots and characteristics of the environment.

With an appropriately large number of robots and correctly

specified constants, generally we will have enough rescuer

robots to achieve a good convergence rate.

A trapped robot keeps sending messages announcing its

state. When a rescuer listens to one of these messages,

thereby detecting a trapped robot in its neighborhood, it

broadcasts its current position and its path. Any trapped robot

will receive the message if it is within a certain distance from

the rescuer and there is a direct line of sight between them.

After receiving it, the trapped robot changes its mode to

attached.

An attached robot will move to the received position and

then follow the received path to the goal. An attached robot

can also communicate with other trapped robots, spreading

the information about the feasible path to the goal. In this

situation, the trapped robots will change their status to

attached and will be able to also spread the information to

their neighbors, creating a powerful communication chain. To

avoid congestion with many robots converging to the same

waypoint, a circular area around the waypoint is considered.

1We borrow this term from the multi-agent community where tokens are
used to transmit information between agents in a scalable way [14]. Here,
tokens are basically distributed counters used to coordinate the robots.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. A swarm of 110 robots escaping from local minima and converging to the target. The robot shapes represent the different modes.

Finally, a robot will change its mode to completed when it

reaches the target. In this case, it will spread along the zero

isocontour of the implicit function as explained in section II.

Completed robots will not switch to trapped again but may

become rescuers according to the coordination tokens.

This idea of saving and communicating feasible paths to

the target is inspired in the use of pheromones by social

insects. A pheromone is any chemical or set of chemicals

produced by a living organism that transmits a message to

other members of the same species [15]. For example, certain

ants leave a trail of pheromones as they return to the nest

with food. This trail attracts other ants and serves as a guide,

thereby creating an implicit form of communication. In this

paper, a phromone inspired approach is implemented using

explicit communication due to the difficulties of artificially

creating and detecting real pheromones. Instead of being

marked on the ground, feasible trails are saved by the robots

and transmitted to teammates.

B. Classical Example

To demonstrate the coordination strategy, we modeled

a classical local minima scenario: an u-shaped obstacle

forming a dead end. We simulated 110 robots in this scenario

and were able to successfully achieve convergence, with

all robots escaping local minima and spreading along the

target. The variables that control the number and frequency

of rescuers are set to n = 12, m = 4, τ = 10.

The initial state of the simulation can be seen in Figure

3(a). The robots are in the left (white circles), in the middle

we have an u-shaped obstacle and in the right we have our

target (dashed square). In Figure 3(b), some robots have

already arrived at the target, but many robots are stuck in

the region of local minima. It is interesting to note how

the trapped robots (gray squares) are spread in this region

due to the stronger repulsion forces that exist among them.

As mentioned, this enables some of these robots to escape

from the local minima. In Figure 3(c), the initial effect

of the rescuers can be observed. There are some attached

robots (right-pointing white triangles) using the information

transmitted by the rescuers (left-pointing black triangles) to

escape the dead end in the bottom left of the obstacle. Others

are already moving in the correct direction while the attached

robots re-transmit the rescuer’s information.

Figure 3(d) shows all robots escaping the local minima

region, thanks to the communication network created by the

attached robots that enabled all of them to receive a feasible

path. Soon we achieve the situation in 3(e) where most robots

are reaching the target region (black diamonds) while there

are still some rescuer robots that are looking for trapped

ones and will later move back to the goal (Figure 3(f)).

IV. EXPERIMENTS

To demonstrate the feasibility of the proposed approach,

we performed some experiments with a couple of e-puck

robots. The e-puck is a small-sized (7cm diameter) differen-

tial drive robot that is very suitable for swarm experimenta-

tion [16]. Each robot is equipped with a ring of 8 IR sensors

that allows proximity sensing and a group of colored leds

to indicate robot status. Local processing is performed by

a dsPIC microprocessor and a bluetooth wireless interface

allows robot to robot communication and remote control.

The robot is also equipped with a micro-camera, a 3D

accelerometer, speakers and a microphone. Figure 4 shows

the robots used in the experiment.

Fig. 4. Pair of e-puck robots used in the experiments.
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Despite not being executed with swarms of robots, these

experiments demonstrate three fundamental robot competen-

cies for the execution of the proposed algorithm: (i) the

robot’s ability of localizing itself, following the negative

gradient to a specific goal, and retracing its path; (ii) the

ability of communicating its path to a trapped robot that will

follow this path to the goal; and (iii) the capacity of detecting

that it is trapped in a local minima.

A. Localization, Gradient Descent, Path Retracing

As discussed in Section II, robots navigate to the goal

following the negative gradient of an implicit function and

avoid obstacles and other robots using repulsion forces. For

gradient computation, robots must know their position. In

this paper, we use a localization system specifically designed

for swarm localization in indoor environments [17]. In this

system, robots are tagged with geometrical markers and a

group of overhead cameras is used to localize and uniquely

identify the robots. The use of geometrical markers makes

the system scalable to large numbers of robots while the

association of multiple cameras allows the coverage of a

larger work area. A modular and distributed software system

that may run in different computers is responsible for gather-

ing information from multiple cameras, localize the robots,

and transmit this information in real time to the robots.

Experiments performed in [17] showed that the system is

capable of detecting up to 40 different markers at 25Hz on

a single computer, with 1cm accuracy.

Since we are using differential drive robots in these

experiments, some changes had to be made in the controller

of Equation 2. The resultant acceleration vector generated by

the controller is integrated to linear and angular velocities

using the approach proposed in [18]. The repulsive potential

field generated by the obstacles is also based on [18], using

distances measured through the IR sensors (the sensing range

is about 4.5 cm). Constants are set to α = 2, β = 0.002,

γ = 0.002, and the maximum velocity is set to 2.05 cm/s.

Figure 5 shows a trajectory performed by one robot using

this controller in a environment containing a single obstacle.

The implicit function sets the goal region approximately

around position (0,0). The start and end points are marked

with a triangle and a circle respectively. It can be observed

that the robot successfully follows the inverse of the gradient

from a initial position to the goal while avoiding obstacles.

After reaching the goal, it retraces its path using the saved

waypoints. The total number of waypoints in this path is 118

(without discards). Considering that each waypoint needs

64 bits, the total memory required for storing the path is

less than 1KB. Notice that due to the robot’s differential

constraints, the retraced trajectory is not identical to the saved

one, but both are sufficiently close for the rescue mission.

B. Communication and Rescue

Figure 6 shows a complete run of the algorithm in a

scenario containing a local minima. The graphs show the

trajectories executed by two robots (robot 1 - solid, robot 2

- dashed). In figure 6(a), robot 1 moves from a start position
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Fig. 5. E-puck’s trajectory: the robot moves from a start position (triangle)
to the goal and then retraces its path.
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Fig. 6. A complete run of the algorithm. (a) Robot 1 (solid) gets trapped
while robot 2 (dashed) reaches the goal and retraces its path. (b) Robot 1
escapes local minima after receiving a message from robot 2. The triangles
mark the start of the trajectories.

until getting trapped in a local minimum, while robot 2

reaches the goal around position (0,0) and then becomes

a rescuer and retraces its path. Figure 6(b) shows robot 1

escaping from the local minimum and moving to the goal

after receiving a message from robot 2 containing a free path.

As explained in Section III, robot 1 first moves to the position

from where robot 2 sent the message and then follows the

received waypoints to the goal. Robot 2, after retracing its

path, also follows its saved waypoints to the goal.

Robots communicate using a bluetooth interface. In this

experiment, differently from the simulations, robots do not

need to “see” each other to communicate, i.e., they exchange

messages even when there is no line of sight between them.

This leads to an interesting situation: after receiving the
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Fig. 7. Robot changes to the trapped state at the vertical line when the
variation in its recent positions is small.

waypoints, robot 1 changes its status to attached and tries

to move towards robot 2 to start the waypoint following.

But since there is no direct path between them, robot 1 gets

trapped again. This happens 8 times until robot 2 sends a

message from a position that can be reached by robot 1. This

may explain the movements performed by robot 1 inside the

local minima while robot 2 is retracing its path in Figure 6(a).

C. Trapped State Detection

To be able to execute the mode switching presented in

Section III, robots must have the ability of detecting that

they are trapped in a local minimum. To do this, a robot

keeps track of its recent positions. If the distance from its

current location to one of these positions is less than a certain

threshold, it considers itself trapped. To demonstrate this

ability we ran some experiments in which one robot gets

trapped in a local minima caused by an u-shaped obstacle,

in a scenario similar to Figure 6(a).

Figure 7 shows the robot’s coordinates x (dashed) and y

(solid) as a function of time. The vertical line marks when

the robot changes its status from normal to trapped. It can be

noticed that the robot correctly detects that it is trapped when

the variation of both coordinates during a specific amount

of time is small. The position variation that activates the

trapped state must be tuned according to the robot expected

velocities, otherwise a robot that is moving very slowly

may consider itself trapped. But it is important to mention

that these “false-positives” generally do not compromise the

algorithm, since, as explained in Section III, robots in the

trapped state still perform the gradient descent.

V. CONCLUSION

This paper presented a methodology for controlling and

coordinating large groups of robots to navigate and synthe-

size complex shapes in environments containing unknown

obstacles. Shapes are modeled using implicit functions gen-

erated interpolating from a set of constraint points. A compo-

sition of gradient descent and potential fields is used to guide

robots to the target while avoiding obstacles. To overcome

local minima, that may appear in these scenarios, we devel-

oped a distributed coordination mechanism based on mode

switching that reallocates some robots as rescuers and sends

them to help the robots that may be trapped. Simulations

and real experiments demonstrated that this composition of

simple controllers and explicit coordination allowed robots

to successfully navigate and synthesize shapes in these

environments. We believe that the use of local interactions

and task allocation mechanisms with robot swarms opens an

interesting path for research and we intend to investigate this

further.
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