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Abstract— In this paper, we propose a new concept —
the “Reciprocal Velocity Obstacle”— for real-time multi-agent
navigation. We consider the case in which each agent navi-
gates independently without explicit communication with other
agents. Our formulation is an extension of the Velocity Obstacle
concept [3], which was introduced for navigation among (pas-
sively) moving obstacles. Our approach takes into account the
reactive behavior of the other agents by implicitly assuming that
the other agents make a similar collision-avoidance reasoning.
We show that this method guarantees safe and oscillation-
free motions for each of the agents. We apply our concept
to navigation of hundreds of agents in densely populated
environments containing both static and moving obstacles, and
we show that real-time and scalable performance is achieved
in such challenging scenarios.

I. INTRODUCTION

Recently, multi-agent systems have been gaining increas-

ing attention, especially to carry out tasks that can be done

more efficiently and effectively with a team of agents such

as assembly, demining, search and rescue, etc. Other than

control and coordination of multiple agents, one of the cen-

tral problems in this area is motion planning among multiple

moving agents. In this paper, we address the problem of real-

time navigation for multi-agent motion planning in dynamic

environments containing both static and moving obstacles.

Each agent navigates independently without explicit commu-

nication with the other agents. Therefore, we can formulate

the basic problem as navigating a single agent to its goal

location without colliding with the obstacles and the other

agents in the environment.

This problem is not only of interest to robotics but also has

been widely studied for crowd simulation in computer graph-

ics, virtual environments, video gaming, traffic engineering

and architecture design, where each agent can be considered

as a virtual human, a moving car, or an individual pedestrian.

A common approach to this problem is continuous naviga-

tion. It involves a continuous cycle of sensing and acting,

and during each cycle, each agent ‘makes a move’ based on

its observation of its surroundings. Global path planning and

local collision avoidance are often decoupled in this scheme.

Typically, a global path to the goal location indicates the

global direction of motion, while collisions with other agents

and obstacles are avoided by locally navigating around them.

The local collision avoidance technique is an important

module for these planners, and many approaches have been
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Fig. 1. The paths followed by two agents that have opposite preferred
velocities and are on a head-on collision course, using the original Velocity
Obstacle concept (left) and the Reciprocal Velocity Obstacle concept (right).

proposed. However, often these approaches deal with ob-

stacles that are assumed to move passively through the

environment without perception of their surroundings. In

a multi-agent setting, this assumption does not hold as

the agents do perceive each other, and actively adapt their

motions accordingly. When each of the agents does not take

into account that the other agents also have the decision-

making ability to avoid collisions, the resulting motion is

prone to contain undesirable and unrealistic oscillations.

Although this problem has been identified by several prior

works (see, e.g., [2], [1], [9]), no good solution is known for

safe and oscillation-free navigation among multiple agents

in large, cluttered environments.

Main Results: In this paper, we introduce a new concept

for local reactive collision avoidance called the Reciprocal

Velocity Obstacle, which implicitly assumes that the other

agents make a similar collision-avoidance reasoning. Under

this assumption, our framework is guaranteed to generate

safe and oscillation-free motions.

Our method is an extension of the Velocity Obstacle

concept, introduced by Fiorini and Shiller in [3], which is

a generally applicable, well-defined, and simple technique

that has been widely used for safe navigation among moving

obstacles (see, e.g., [16], [9], [5]). Our approach inherits all

of its appealing properties, but we introduce an important

new capability to resolve the common oscillation problem in

multi-agent navigation.

The only information each agent is required to have about

the other agents is their current position and velocity, and

their exact shape (which can be acquired by sensors). We

assume that the agents and the obstacles are translating

objects in the 2-D plane (e.g. discs or polygons). This

assumption is applicable to most applications with mobile

agents, whose orientation can be inferred from the heading

of each agent’s motion.

We show the potential of the Reciprocal Velocity Obstacle

approach by applying it to scenarios in which hundreds of

similar agents navigate independently in a complex envi-

ronment. Our experiments show that smooth and realistic

motions are generated even when the agents form very dense,
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packed groups. Moreover, real-time performance can be

achieved in such challenging scenarios, and the approach is

especially well suitable for parallelization, as an independent

computation is performed for each agent.

Organization: The rest of this paper is organized as

follows. We give a brief overview of prior work in Section II.

In Section III, we review the concept of Velocity Obstacles

and show that it generates oscillations when it is used for

multi-agent navigation. In Section IV, we present our new

concept, the Reciprocal Velocity Obstacle and show that

it generates safe and oscillation-free motions. In Section

V, we describe how we use this method for navigating

many agents in several challenging environments containing

both static and moving obstacles. We demonstrate the real-

time performance of our approach on several benchmarks in

Section VI and conclude in Section VII.

II. PRIOR WORK

In this section, we give a brief overview of prior work on

multi-agent navigation and planning. Besides the Velocity

Obstacle approach [3], [16], many other methods have been

proposed for collision-avoidance, navigation, and planning

among moving obstacles [4], [7], [8], [14], [23], [21], [20],

[24]. However, most of the existing work do not take into

account that the obstacles’ motion may be affected by the

presence of the agent. Some approaches consider the moving

obstacles to be static and replan when it appears that they

have moved. Such approaches are generally not able to plan

safe paths among obstacles moving at high speeds.

There is also an extensive amount of literature on multi-

agent navigation, in which each agent navigates individually

among the other agents, which are considered as obstacles,

e.g. [13], [19], [17], [6], [12]. Most of these techniques have

focused on crowd simulation. Also in these cases, the other

agents are assumed to be either passively moving obstacles

or static obstacles. A number of approaches (roughly) follow

the Velocity Obstacle concept to avoid other agents [2], [10].

We distinguish decoupled multi-agent navigation from

centralized multi-agent planning here. In multi-agent plan-

ning, the composite configuration space of the agents is

considered, and a path is centrally planned in this space (see,

e.g., [11], [15], [18]). These works focus on different aspects

of the problem (e.g., finding optimal coordinations) and are

mostly not suited for on-line real-time application.

Only few attempts have been made to incorporate the

reactive behavior of other entities into the navigation. Kluge

and Prassler [9] proposed Recursive Velocity Obstacles. The

idea is that the first agent chooses a velocity based on the

expected behavior of the second agent, which in turn is

acquired based on the expected behavior of the first agent,

and so on, up to some level of recursion. However, this

approach may not be able to address the oscillation problem

well. In fact, the velocities chosen oscillate between odd and

even levels of recursion and may not converge. Abe and

Matsuo [1] proposed the Common Velocity Obstacle, which

is defined in the 4-dimensional space of all combinations of

velocities of two agents. It addresses the oscillation issue, but

Fig. 2. The Velocity Obstacle V OA

B
(vB) of a disc-shaped obstacle B to

a disc-shaped agent A.

it is unclear how this notion is extended for use with multiple

agents or how well it scales to more complex environments.

III. VELOCITY OBSTACLES

In this section, we briefly review the original concept of

Velocity Obstacles (as introduced in [3]), derive some of its

elementary properties, and show that it generates oscillatory

motions when used in navigation among autonomous entities

with a symmetric collision-avoidance strategy.

A. Velocity Obstacles: Definition

Let A be an agent translating in the plane with its reference

point positioned at pA, and let B be a planar (moving)

obstacle with its reference point positioned at pB . The

velocity obstacle V OA
B(vB) of obstacle B to agent A is then

the set consisting of all those velocities vA for A that will

result in a collision at some moment in time with obstacle

B moving at velocity vB .

The Velocity Obstacle can geometrically be defined as

follows (see Fig. 2). Let A⊕B denote the Minkowski sum

of two objects A and B, and let −A denote the object A
reflected in its reference point:

A⊕B = {a + b |a ∈ A,b ∈ B}, −A = {−a |a ∈ A}.

Let λ(p,v) denote the a ray starting at p and heading in the

direction of v:

λ(p,v) = {p + tv | t ≥ 0}. (1)

If the ray starting at pA and heading in the direction of the

relative velocity of A and B (which is vA−vB) intersects the

Minkowski sum of B and −A centered at pB , velocity vA

is in the velocity obstacle of B. Hence, the velocity obstacle

of B to A is defined as follows:

Definition 1 (Velocity Obstacle).

V OA
B(vB) = {vA |λ(pA,vA − vB) ∩B ⊕−A 6= ∅}.

This means that if vA ∈ V OA
B(vB), A and B will collide at

some point in time. If vA is outside the velocity obstacle of

B, both objects will never collide. If vA is on the boundary

of the velocity obstacle, it will touch B at some moment in
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Fig. 3. The velocity obstacle (grey), and left and right half-planes (striped)
outside the velocity obstacle. The symbols that apply to the velocities in
each of the regions with respect to the velocity obstacle are shown.

time. The velocity obstacle is a cone with its apex at vB , as

can be seen in Fig. 2.

The concept of Velocity Obstacles can be used for navi-

gation among moving obstacles as follows. In each planning

cycle, the agent chooses a velocity that lies outside any

of the velocity obstacles induced by the moving obstacles.

If among the free velocities, the velocity chosen is most

directed towards the agent’s goal position, the agent will

safely navigate towards its goal (see, e.g. [3], [5]).

B. Velocity Obstacles: Properties

Here, we deduce some elementary properties and notations

of velocity obstacles that we will use in this paper:

Lemma 2 (Symmetry).

vA ∈ V OA
B(vB) ⇔ vB ∈ V OB

A(vA).

Lemma 3 (Translation Invariance).

vA ∈ V OA
B(vB) ⇔ vA + u ∈ V OA

B(vB + u).

These properties follow immediately from Definition 1.

Let us also consider the region outside the velocity obsta-

cle. We distinguish the region to the left and the region to

the right of the velocity obstacle, defined by the half-planes

delimited by the two boundaries of the velocity obstacle (see

Fig. 3). We introduce two new notations here, ‘
←−
/∈ ’ and ‘

−→
/∈ ’,

and denote

vA
←−
/∈ V OA

B(vB)

if vA is in the half-plane to the left of V OA
B(vB). Such

velocities let A pass B on the left side. Similarly, we denote

vA
−→
/∈ V OA

B(vB),

if vA is in the half-plane to the right of V OA
B(vB). These

velocities let A pass B on the right side. Note that the left

and the right half-planes overlap. Velocities in this region let

A and B diverge.

Lemmas 2 and 3 also hold for the regions outside the

velocity obstacle. That is, the ‘∈’ in Lemmas 2 and 3 can

freely be replaced by ‘6∈’, ‘
←−
/∈ ’, or ‘

−→
/∈ ’.

We prove the following property for the half planes (the

‘
−→
/∈ ’ can freely be replaced by ‘

←−
/∈ ’):

Lemma 4 (Convexity).

vA
−→
/∈ V OA

B(vB) ∧ v′
A

−→
/∈ V OA

B(vB) ⇒

(1− α)vA + αv′
A

−→
/∈ V OA

B(vB), for 0 ≤ α ≤ 1.

This lemma follows from the fact that a half-plane is convex.

C. Oscillation

The Velocity Obstacle concept can be used for multi-

agent navigation when each agent regards the other agents as

moving obstacles and chooses a velocity for itself that lies

outside any of the velocity obstacles induced by the other

agents (see, e.g., [2], [10]). However, this approach results

in undesirable oscillatory motions, as we show here.

Imagine the following situation. Two agents A and B are

moving with velocities vA and vB , respectively, such that

vA ∈ V OA
B(vB) and vB ∈ V OB

A(vA). Hence, continuing

along the current velocities will result in a collision. As a

result, agent A decides to alter its velocity to v′
A, such that it

is outside the velocity obstacle of B (i.e., v′
A 6∈ V OA

B(vB)).
At the same time, B alters its velocity to v′

B to be outside

the velocity obstacle of A (i.e., v′
B 6∈ V OB

A(vA)).

However, in the new situation, the old velocities vA

and vB are outside the velocity obstacles of B and A,

respectively (i.e., vA 6∈ V OA
B(v′

B) and vB 6∈ V OB
A(v′

B)).
This follows directly from Lemma 2. If both agents prefer

the old velocities, for instance because it leads them directly

to their goals, they will choose these again. In the next cycle,

it appears that these velocities will result in a collision, and

they will probably choose v′
A and v′

B again, and so on. Thus,

the agents oscillate between these two velocities when the

Velocity Obstacle approach is used to avoid each other (see

Fig. 1), even if the agents initially choose the same side to

pass each other.1

IV. RECIPROCAL VELOCITY OBSTACLES

In this section, we present a new concept called the

Reciprocal Velocity Obstacle to overcome the oscillation

problem mentioned above. It provides a simple approach to

safely and smoothly navigate multiple agents amongst each

other without explicit communication between them.

A. Reciprocal Velocity Obstacles: Definition

The basic idea is simple: instead of choosing a new

velocity for each agent that is outside the other agent’s

velocity obstacle, we choose a new velocity that is the

average of its current velocity and a velocity that lies outside

the other agent’s velocity obstacle.

We formalize this principle and propose the concept of the

Reciprocal Velocity Obstacle, which is defined as follows:

Definition 5 (Reciprocal Velocity Obstacle).

RV OA
B(vB ,vA) = {v′

A | 2v
′
A − vA ∈ V OA

B(vB)}.

The reciprocal velocity obstacle RV OA
B(vB ,vA) of agent

B to agent A contains all velocities for agent A that are the

average of the current velocity vA and a velocity inside the

velocity obstacle V OA
B(vB) of agent B. It can geometrically

be interpreted as the velocity obstacle V OA
B(vB) that is

translated such that its apex lies at vA+vB

2
(see Fig. 4).

1Note that these oscillations are fundamentally different from “reciprocal
dances”, which occur when there is no agreement among the agents about
which side to pass each other on.
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Fig. 4. The Reciprocal Velocity Obstacle RV OA

B
(vB ,vA) of agent B

to agent A.

B. Guarantees

We now prove that the Reciprocal Velocity Obstacles

can be used to generate collision-free and oscillation-free

motions for each agent.

1) Collision-Free Navigation: Let vA be the current ve-

locity of agent A, and let vB be the current velocity of agent

B, and let both A and B choose new velocities (v′
A and

v′
B) outside each other’s reciprocal velocity obstacle. The

following theorem proves that this is safe, provided that both

agents choose the same side to pass each other (the ‘
−→
/∈ ’ can

freely be replaced by ‘
←−
/∈ ’):

Theorem 6 (Collision-Free).

v′
A

−→
/∈ RV OA

B(vB ,vA) ∧ v′
B

−→
/∈ RV OB

A(vA,vB) ⇒

v′
A

−→
/∈ V OA

B(v′
B) ∧ v′

B

−→
/∈ V OB

A(v′
A)

Proof: v′
A

−→
/∈ RV OA

B(vB ,vA) ∧ v′
B

−→
/∈ RV OB

A(vA,vB)
⇔ {Definition 5 and Lemma 2}

2v′
A − vA

−→
/∈ V OA

B(vB) ∧ vA
−→
/∈ V OA

B(2v′
B − vB)

⇔ {Lemma 3}
2v′

A−vA−vB
−→
/∈ V OA

B(0)∧vA +vB−2v′
B

−→
/∈ V OA

B(0)
⇒ {Lemma 4, with α = 1

2
}

v′
A − v′

B

−→
/∈ V OA

B(0)
⇔ {Lemma 3 and Lemma 2}

v′
A

−→
/∈ V OA

B(v′
B) ∧ v′

B

−→
/∈ V OB

A(v′
A) �

2) Same Side: We can guarantee that both agents auto-

matically choose the same side to pass each other if each of

them chooses the velocity outside the other agent’s reciprocal

velocity obstacle that is closest to its current velocity.

This is proven by the following facts: (1) If for agent A,

vA + u is the velocity closest to vA outside B’s reciprocal

velocity obstacle, then for agent B, vB − u is the velocity

closest to vB outside A’s reciprocal velocity obstacle. (2) If

for agent A, this closest velocity appears to be on the right

(or left) side of B’s reciprocal velocity obstacle, then the

closest velocity for agent B is on the right (or left) side of A’s

reciprocal velocity obstacle as well. These facts both follow

from the following lemma (the ‘/∈’ can freely be replaced by

‘
−→
/∈ ’, ‘
←−
/∈ ’, or ‘∈’):

Lemma 7 (Same Side).

vA+u /∈ RV OA
B(vB ,vA) ⇔ vB−u /∈ RV OB

A(vA,vB)

Proof: vA + u /∈ RV OA
B(vB ,vA)

⇔ {Definition 5}
2(vA + u)− vA /∈ V OA

B(vB)
⇔ {Lemma 3 and Lemma 2}

2(vB − u)− vB /∈ V OB
A(vA)

⇔ {Definition 5}
vB − u /∈ RV OB

A(vA,vB) �

3) Oscillation-Free Navigation: Choosing the closest ve-

locity outside the other agent’s reciprocal velocity obstacle

also guarantees oscillation-free navigation. This is proven by

the following theorem:

Theorem 8 (Oscillation-Free).

vA ∈ RV OA
B(vB ,vA) ⇔ vA ∈ RV OA

B(vB−u,vA+u)

Proof: vA ∈ RV OA
B(vB ,vA)

⇔ {Definition 5 and Lemma 3}
2vA − vA − vB ∈ V OA

B(0)
⇔

2vA − vA − vB − u + u ∈ V OA
B(0)

⇔ {Lemma 3 and Definition 5}
vA ∈ RV OA

B(vB − u,vA + u) �

Hence, the old velocity vA of A is inside the new

reciprocal velocity obstacle of B, given the new velocities

vA + u and vB − u for agent A and B, respectively.2 The

same holds for agent B. Therefore, after choosing the new

velocity, the old (preferred) velocity is invalid and will not

be chosen (in contrast to when the orginal Velocity Obstacles

are used – see Section III-C). In fact, by choosing the closest

velocity outside the reciprocal velocity obstacle for both A
and B, the reciprocal velocity obstacles stay exactly in the

same position. Hence, the velocities vA +u and vB −u are

still the closest to the preferred velocities among all valid

velocities. As a result, no oscillations will occur (see Fig.

1).

C. Generalized Reciprocal Velocity Obstacles

In the above we have implicitly assumed that each agent

takes an equal share in the effort to avoid mutual collisions.

However, there may be natural priorities among agents that

motivate a different balance, and we can generalize the

Reciprocal Velocity Obstacle concept accordingly. Let us

denote the share of the effort agent A takes to avoid agent B
by αA

B . By definition, αB
A = 1− αA

B (thus far, we implicitly

assumed αA
B = αB

A = 1
2

).

The idea is that agent A chooses a new velocity that is the

weighted average of 1−αA
B of its current velocity vA and αA

B

of a velocity outside the velocity obstacle V OA
B(vB) of agent

B, and that agent B does exactly the opposite, i.e., choosing

a new velocity that is the weighted average of 1−αB
A = αA

B

of its current velocity vB and αB
A = 1 − αA

B of a velocity

outside the velocity obstacle V OB
A(vA) of agent A.

2There is a more generous set of new velocities that will not result in
oscillations. These are all pairs of velocities v

′

A
and v

′

B
, such that (v′

A
+

v
′

B
)/2 is both inside V OA

B
(vB) and inside V OB

A
(vA).
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Fig. 5. The Generalized Reciprocal Velocity Obstacle RV OA

B
(vB ,

vA, αA

B
) of agent B to agent A for various values of αA

B
.

The Generalized Reciprocal Velocity Obstacle of agent B
to agent A is defined as follows:

Definition 9 (Generalized Reciprocal Velocity Obstacle).

RV OA
B(vB ,vA, αA

B) =
{v′

A |
1

αA

B

v′
A + (1− 1

αA

B

)vA ∈ V OA
B(vB)}.

It can geometrically be interpreted as the velocity obstacle

V OA
B(vB), whose apex is translated to (1−αA

B)vA +αA
BvB

(see Fig. 4).

All the theorems we have proved above can easily be

extended for the Generalized Reciprocal Velocity Obstacles.

The main idea is that Lemma 4 not only holds for α = 1
2

but for any α between 0 and 1. So, also in the generalized

case, the generated motions are safe and oscillation-free.

V. MULTI-AGENT NAVIGATION

In this section, we show how the Reciprocal Velocity

Obstacle concept can be used to simultaneously navigate

a large number of agents to their goals in a common

environment containing both static and moving obstacles.

Given n (planar translating) agents A1, . . . , An, each agent

Ai has a current position pi (defined by its reference point), a

current velocity vi, a goal location gi, and a preferred speed

vpref
i . Furthermore, let there be a set of (planar translating)

obstacles O, where each obstacle O ∈ O has current position

pO (defined by its reference point) and velocity vO. Static

obstacles have zero velocity.

The overall approach is as follows. We choose a small

amount of time ∆t, which is the time step of the simulation.

In each cycle of the simulation, we select for each agent inde-

pendently a new velocity and update its position accordingly.

This process continues until all of the agents have reached

their goal positions.

We show in this section how to select a velocity for all

agents, such that they safely navigate towards their goals.

A. Combined Reciprocal Velocity Obstacles

In the forgoing, we have seen how the Reciprocal Velocity

Obstacle is defined for a pair of agents. If the concept is

applied for an agent moving among many other agents and

passively moving or static obstacles, the combined reciprocal

Fig. 6. The combined reciprocal velocity obstacle for the agent (dark) is
the union of the individual reciprocal velocity obstacles of the other agents.

velocity obstacle RV Oi for agent Ai becomes the union of

all reciprocal velocity obstacles generated by the other agents

individually, possibly with varying mutual priorities, and

the velocity obstacles generated by the (passively) moving

obstacles (See Fig. 6).

Definition 10 (Combined Reciprocal Velocity Obstacle).

RV Oi =
⋃

j 6=i RV Oi
j(vj ,vi, α

i
j) ∪

⋃
O∈O V Oi

O(vO).

Each agent can safely navigate by choosing a velocity outside

its combined reciprocal velocity obstacle.

B. Kinematic and Dynamic Constraints

Each agent Ai may be subject to kinematic and dynamic

constraints that restrict the set of admissible new velocities,

given the current velocity vi. We denote this set AV i(vi). It

may have any shape depending on the nature of the agent. For

example, if the agent is subject to a maximum speed vmax
i

and a maximum acceleration amax
i , the set of admissible

velocities is:

AV i(vi) = {v′
i | ‖v

′
i‖ < vmax

i ∧ ‖v′
i − vi‖ < amax

i ∆t}.

C. Selecting Velocities

In each cycle of the simulation, we start with computing

for each agent Ai its preferred velocity v
pref
i . This is the

vector with a magnitude equal to the preferred speed in the

direction of the target location. If the agent is close to its

goal, we set the preferred velocity to the null vector.

Subsequently, we select for each agent Ai a new velocity

v′
i. Ideally, this is the velocity closest to v

pref
i that is

outside the combined reciprocal velocity obstacle RV Oi and

inside the set AV i of admissible velocities. However, the

environment may become so crowded that the combined re-

ciprocal velocity obstacle fills up the entire set of admissible

velocities. To address this issue, the algorithm is allowed

to select a velocity inside RV Oi, but is penalized by this

choice. The penalty of a candidate velocity v′
i depends on

its distance to the preferred velocity and on the expected time

to collision tci(v
′
i) this velocity will give:

penalty i(v
′
i) = wi

1

tci(v′
i)

+ ‖vpref
i − v′

i‖,
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for some factor wi, where wi can vary among the agents to

reflect differences in aggressiveness and sluggishness.

The expected time to collision tci(v
′
i) can easily be calcu-

lated. For the original velocity obstacle V OA
B(vB), the time

to collision when A chooses velocity vA inside V OA
B(vB)

is computed by solving the equation λ(pA,vA − vB) =
B ⊕ −A for t (see Eq. (1)). This follows from Definition

1. For the reciprocal velocity obstacle RV OA
B(vB ,vA), the

expected time to collision when A chooses velocity v′
A is

calculated similarly by solving λ(pA, 2v′
A − vA − vB) =

B ⊕ −A for t. This follows from Definition 5. For the

combined reciprocal velocity obstacle, the expected time to

collision is the minimum of all expected times to collision

with respect to the individual other agents and obstacles, and

infinity when there is no collision.

We select the velocity with minimal penalty among the

velocities in AV i as the new velocity v′
i for agent Ai:

v′
i = arg min

v
′′

i
∈AV i

penalty i(v
′′
i ).

We approximate this minimum by sampling a number N of

velocities evenly distributed over AV i.

D. Neighbor Region

We do not need to take all other agents into account when

selecting a new velocity, as the penalty of the velocities will

not depend much, if at all, on agents that are far away.

Therefore, we define a neighbor region NRi around the

current position of agent Ai and only take into account

the agents and obstacles inside this neighbor region in the

combined reciprocal velocity obstacle. The optimal size of

the neighbor region depends on the average speed of the

agents and the obstacles, the size of the time step of the

simulation, etc.

A neighbor region not only provides a speed-up for the

computation; it may also be used to model natural (human)

behavior. For example, the neighbor region may be restricted

to the region that the agent can actually see, given the direc-

tion of motion of the agent, its view angle, and the position

of the static obstacles (and perhaps the other agents).

VI. EXPERIMENTAL RESULTS

We have implemented and tested our multi-agent naviga-

tion approach in three challenging scenarios:

• Circle: (See Figs. 7 and 8) A variable number of agents

are distributed evenly on a circle, and their goal is to

navigate to the antipodal position on the circle. In doing

so, the agents will form a dense crowd in the middle.

• Narrow passage: (See Fig. 9) Four groups of 25 agents

in each corner of the environment move to the opposite

corner of the environment. In the middle, there are

four square-shaped static obstacles that form narrow

passages. The groups with opposite goal directions meet

in the narrow passage.

• Moving obstacle: (See Fig. 10) A number of agents

cross a street on which a car is driving. The car is

considered to be a passively moving obstacle.

Fig. 7. The resulting paths in the Circle scenario using the original Velocity
Obstacle approach (left) and the Reciprocal Velocity Approach (right).

Fig. 10. Eleven agents cross a street on which a car is driving in the
Moving Obstacle scenario.

We performed our experiments on a Intel Core2 Duo

1.66 GHz with 1GByte of memory. For the first benchmark,

Circle, we started with an experiment containing 12 agents to

show the difference between the original Velocity Obstacle

approach and our Reciprocal Velocity Obstacle approach.

All of the agents are discs with equal radii, have the same

preferred and maximum speeds, and do not have constraints

on the acceleration. In both experiments, all parameters are

equal. The traces of the agents are shown in Fig. 7 for

both methods. As can be seen clearly from the figures, the

original Velocity Obstacle approach generates chaotic and

oscillatory motions. In contrast, the motions generated by our

method are smooth and straight-forward. Also, there were no

collisions among agents.

Next, we varied the number of agents in the Circle

benchmark to see how our approach scales when the number

of agents grows (see Fig. 8 and the accompanying video for

the experiment with 250 agents). In this case, we used a

circular neighbor region around each agent. We chose the

radius of this region such that the navigation of the agents is

still safe (which was 8 times the agent radius). The results

are given in Fig. 11.

Clearly, the amount of time needed to generate one frame

(i.e., process one cycle in the simulation) scales linearly with

the number of agents. Only the neighbor selecting routine

has a quadratic nature, but this step is negligible in the

total running time. The graph also shows that even for 1000

agents, we are able to generate more than 10 frames per

second. We chose the time step ∆t to be 0.25 seconds in

this experiment, so these results are obtained in real-time
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Fig. 8. The Circle scenario for 250 agents. Each agent moves to the diametrically opposite position on the circle (the zoom level varies between stills).

Fig. 9. Four groups in opposite corners of the environment exchange positions in the Narrow Passage scenario (the zoom level varies between stills).

frame rates. We note that the running time of our method

scales linearly with the value of parameter N , the number

of velocities sampled for each agent in each frame. We fixed

this value at 250 in our experiments. We believe that smarter

sampling can further improve the performance. Furthermore,

since we perform an independent computation for each agent,

the approach is fully parallelizable. We took advantage of

this feature and used two processors for performing the

experiments.

To see how our approach performs in presence of narrow

passages generated by static obstacles, we performed the

experiment in the Narrow Passage benchmark. The agents

from the different groups will meet inside the narrow passage

with opposite goal directions. Even though the passage

becomes very crowded (see Fig. 9), eventually all agents

reach their goals safely. We note that if the static obstacles

would form a U-shaped obstacle, the agents may get stuck

in there when using our method. To overcome this, the

method can be extended with a roadmap that governs the

preferred velocities of the agent (instead of the velocity

directed towards the goal) [22].

Finally, we show in the Moving Obstacle benchmark that

our approach easily deals with high-speed moving obstacles

(which do not react on their surroundings). Eleven agents

cross a street on which a car is driving. The ones that are not

able to cross in front of the car wait until it has passed. The

others move quickly before they are run over. See Fig. 10 for

a series of screenshots from this simulation. Although this

result could have been achieved using the original Velocity

Obstacle approach, many contemporary works in multi-robot

navigation cannot handle moving obstacles, especially when

they move at high speeds. This is because only their position

is taken into account and not their velocity.

Videos of these and other scenarios can be found at

http://gamma.cs.unc.edu/RVO.
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Fig. 11. Results of our experiments in the Circle scenario for a varying
number of agents. The diamond-marked graph gives the run time per frame
(right axis) and the square-marked graph gives the frame rate (left axis).

VII. CONCLUSION

In this paper, we have introduced the concept of Reciprocal

Velocity Obstacles for safe and oscillation-free navigation

among autonomous decision-making entities, as well as

static and moving obstacles. It has been applied to multi-

agent navigation and shown to compute smooth, natural

paths at interactive rates for more than 1000 agents moving

simultaneously in the same environment.

Although our current implementation is mainly for agents

translating in the two-dimensional plane, the orientation of

the agents can be can be inferred from the heading direc-

tion of the agent’s motion. In addition, Reciprocal Velocity

Obstacles can easily be extended for agents moving in the

three-dimensional space.

This method offers several advantages over the existing

techniques. First, our approach takes into account that other

moving entities react to the agent; thereby it prevents oscil-

latory motions resulting from the assumption that the other

entities are passively moving obstacles. Also, our approach

automatically deals with high-speed moving obstacles. Fur-

thermore, the Reciprocal Velocity Obstacle is a simple and

natural formulation that is generally applicable and easy to

implement. We plan to further investigate the application of

Reciprocal Velocity Obstacles for multi-robot navigation and

crowd simulation in complex, densely packed environments

(see [22]).
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