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Abstract— The presented work is related to previous de-
velopment of the holonomic wheeled mobile robot C3P. This
paper focuses on the platform implementation and the kinemat-
ics/dynamics solutions used for its position control structure.
The platform prototype is proposed in detailed description
concerning its construction and configuration. A controller
based on feed forwarding the inverse dynamics torques with
the inverse kinematics to overcome the platform singularities is
proposed. The based controllers practical experiments results
illustrate the position controller performance and its efficiency.

I. INTRODUCTION

The Wheeled Mobile Robots (WMRs) research area has

a high speed of development and implementation through

the last decades [1], [2], [3] and [4]. The development

of the WMR is inspired by many objectives; the main

objective is developing a wheeled mobile robot with the best

motion behavior. Such target released the ideas and creativity

of the researchers to over come the mobility problems

without taking in consideration the complexity and hardware

construction of the platforms and their actuation. The WMR

illustrated in this paper is influenced by the main objective

of ”Developing a holonomic wheeled mobile robot, which

is simple in construction and efficient in performance”.

A holonomic configuration implies that the numbers of

robot velocity DOF (Degrees Of Freedom) are equal to the

number of position coordinates. The WMR normally drives

on a planner surface with three position co-ordinates: X , Y
and rotational angle around Z which is θz . Therefore, the

holonomic WMR is the robot that can drive in three degrees

of freedom (3DOF) [5].

WMR are among the most complex engineering systems

to be designed [6][7] and the hardware simplicity affects

the WMR mobility characteristics. As a result many prob-

lems may be found, for example singularities and actuator

conflicts are the two main problems facing different config-

urations of holonomic mobile robots. Such problems affects

the kinematic and dynamic properties, which are challenging

from the theoretical and practical point-of-view.

This paper is an extension for previous work, which

concentrated on the theoretical and methodological part

of developing the holonomic mobile robot C3P (Caster 3

wheeled Platform). The C3P theoretical problem was found

and analyzed previously in [8]. The robot dynamic model

was developed for the simulation process based on Euler

Lagrange method in [9]. The inverse dynamics problem was

proposed and compared to the inverse kinematics problem

in [10].

In this paper the practical implementation and configura-

tion is described in section II. In section III the singularity

problem is formulated with an overview about the theoretical

kinematics and dynamics modeling. A combination between

the inverse kinematics and inverse dynamics solution is

proposed to develop a based velocity and position controller

for the C3P in IV. The results of practical experiments

illustrating the behavior of the proposed based controller are

shown in section IV-B. The proposed combined controller

shows its efficiency on the practical implemented prototype.

II. HARDWARE CONFIGURATION

The C3P platform is realized in the Automation Labo-

ratory. The practical platform used in this paper is the first

prototype of the C3P configuration shown in Fig.1.

Fig. 1. The C3P prototype

The platform has three caster wheel units, each unit

contains four main components; i) Brush-less DC motor

for the wheel angular velocity actuation, ii) incremental

encoders for sensing the angular velocity of the wheels, ii)

absolute encoders for measuring the wheel steering angle,

and iv) slip rings for signal transfer between the motors and

the control cards. The caster wheel unit has two levels; the

upper level (attached to the platform) and the lower level

(attached to the wheel). The lower level is shown in Fig.2

with the DC-Servomotors, which are mounted on the driven

axis of each wheel along with the incremental encoders.

The wiring of each motor and each encoder is connected

to a slip-ring mounted on the upper level of the caster
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Fig. 2. The lower level of the caster wheels units

wheel unit Fig.1. The slip ring has 12 rings with 16 Amper,

and below the slip-ring the absolute encoder is mounted.

The motors are controlled by a velocity/torque control cards

mounted on the platform body. The controller is 4-Quadrant

PWM Servo Amplifier, 24 V power supply with rated speed

40,000 r/min. The sensed and control signals are transferred

to an industrial computer with 1 GHz speed running under

QNX operating system.

A. Geometric Configuration

The C3P WMR is a holonomic mobile robot, which

is previously discussed in [11]. The C3P has three caster

wheels attached to a triangular shaped platform with smooth

rounded edges as shown in Fig.3. Each caster wheel is

attached to each hip of the platform. The platform origin co-

ordinates are located at its geometric center, and the wheels

are located with distance h from the origin and α1 = 30o,

α2 = 150o, and α3 = 270o shifting angles,

Fig. 3. C3P platform configuration

where

X, Y, φ : WMR translation and rotation displacement.

θsi
: the steering angle for wheel i.

r, d : the wheel radius and the caster wheel offset.

The conventional Caster wheel has three DOF due to

the wheel angular velocity θ̇xi
, the contact point angular

velocity θ̇ci
and the steering angular velocity θ̇si

. The C3P

has modular actuation by only the angular wheel velocities

(θ̇xi
), the steering angular velocities (θ̇si

) are not actuated.

III. PROBLEM FORMULATION AND MODELING

In order to analyze the mobility and to control the robot

platform , first the system is modeled on the kinematic

level. Furthermore, calculating the velocity and acceleration

variables are important in the dynamics modeling proce-

dures. In order to analyze and derive the C3P mathematical

models, some variables are assigned, such as the follow-

ing: the robot position vector p = [X Y φ ]
T

, the wheel

angles vector qx = [θx1
θx2

θx3
]
T

, the steering angles

vector qs = [θs1
θs2

θs3
]
T

, and the contact angles vector

qc = [θc1
θc2

θc3
]T . By differentiating the robot and wheel

vectors with respect to time, the robot and wheel velocities

are

ṗ =
dp

dt
, q̇x =

dqx

dt
, q̇s =

dqs

dt
, q̇c =

dqc

dt
. (1)

A. Kinematics Modeling

From the generalized inverse kinematic solution de-
scribed in [12], the wheel angular velocity inverse kinematic
solution is

q̇x = Jinx ṗ

Jinx = 1

r

2

4

−S(θs1
) C(θs1

) h C(α1 − θs1
)

−S(θs2
) C(θs2

) h C(α2 − θs2
)

−S(θs3
) C(θs3

) h C(α3 − θs3
)

3

5

(2)

while the steering angular actuation is

q̇s = Jins ṗ

Jins = −1

d

2

4

C(θs1
) S(θs1

) −h S(α1 − θs1
) + d

C(θs2
) S(θs2

) −h S(α2 − θs2
) + d

C(θs3
) S(θs3

) −h S(α3 − θs3
) + d

3

5

(3)
and the contact angular velocity inverse solution is

q̇c = Jinc ṗ

Jinc = −1

d

2

4

−S(θs1
) C(θs1

) −h C(α1 − θs1
)

−S(θs2
) C(θs2

) −h C(α2 − θs2
)

−S(θs3
) C(θs3

) −h C(α3 − θs3
)

3

5

(4)

where ”C” stands for ”cos” and ”S” stands for ”sin”. The

solution (2) shows singularities for some steering angles con-

figurations. The singularity appears only when the steering

angles are equal. For example, when the steering angles

are −90o, the robot velocity Ẏ is not actuated (Fig. 4-a),

and when they are 0o the velocity Ẋ is not actuated (Fig.

4-c). The steering configuration in Fig. 4-b gives singular

determent for the matrix Jinx
with −45o steering angles

although all the robot DOFs are actuated.

Obviously, the direction of [−1 1 0]
T

is not actuated,

which result the conclusion; if all steering angles yield the

same value, then the robot is not actuated in the direction

parallel to the wheel axes. Fig.4-d represents a non-singular

steering wheels configuration condition.

The forward sensed kinematics used in [13] shows that

the sensed variables are sufficient for robust sensing and

slippage detection through the following equation
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Fig. 4. Different steering angles configurations

ṗ = Jfx
q̇x + Jfs

q̇s, (5)

where Jfx
and Jfs

are the sensed forward solutions for the

wheel angular and steering angular velocities respectively.

The derivative of equation (5), yields the robot accelerations,

p̈ = Jfx
q̈x + Jfs

q̈s + g(qs, q̇x, q̇s), (6)

from equations (2), (3) and the inversion method proposed

in [12] the inverse actuated kinematic accelerations is
[

q̈x

q̈s

]

=

[

Jinx

Jins

]

p̈ − gcs(qs, ṗ) (7)

B. Dynamics Modeling

The inverse dynamic solution proposed was used previ-

ously in the velocity control loop to overcome the singularity

with a simpler velocity controller and better performance

[10]. The inverse dynamic equation depends on the platform

constraints, which are described in the forward kinematic

solution. They are combined using Lagrangian formulation

[14] and the dynamic torque equation

τ =
d

dt

(

∂L

∂q̇

)

−
∂L

∂q
, (8)

to obtain the described wheel torques equation

τxa
=

[

Mxa
Msa

]

[

q̈x

q̈s

]

+ Gsxa
(q̇x, q̇s, qs) (9)

where τxa
is the vector of actuated torques. The matrix

Mxa
is the inverse dynamic solution for actuating the wheels

torques τxa
, while the matrix Msa

is the inverse dynamic

solution for actuating the steering angular acceleration q̈s

using the wheel torques τxa
. The inverse dynamics solution

is a relation between the desired robot velocities and accel-

erations (q̇, q̈) as an input and the actuated applied torques of

the wheels (τxa
) as an output. However, the dynamic torque

equation (9) is a function of q̈x, q̈s, q̇x, and q̇s. By using

the velocity and acceleration inverse kinematic solutions(2,

3, 4 and 7), the desired torque equation is found and the ac-

tuation characteristics of the steering angular velocities and

accelerations are included in the inverse dynamic solution

as well. As a result the actuated torques equation will have

the robot velocities ṗ and accelerations p̈ as input variables

τxa
= Mx(qs)p̈ + Gxi(qs, ṗ) (10)

Mx =
[

Mxa
Msa

]

[

Jinx

Jins

]

, (11)

Gxi(qs, ṗ) = Gsxa
(qs, ṗ)−

[

Mxa
Msa

]

gcs(qs, ṗ) (12)

IV. DYNAMICS AND KINEMATICS BASED POSITION

CONTROLLER

The C3P motion control consists of two main cascaded

controllers; velocity controller and position controller. In

this section, the inverse kinematic and the inverse dynamics

solutions are used in the velocity and position controllers

structure as shown in Fig.5.

Fig. 5. Different steering angles configurations

The Axes level control loop is applied on the torque

control of each wheel (T.Ctrl). The controller is already

implemented on the DC Driver card as a regular proportional

controller. The velocity controller (Vel.Ctrl.) is used to cal-

culate the required error in acceleration (ë), which is added

to the reference robot acceleration p̈r (Fig.5). The reference

robot velocities ṗr and accelerations p̈r + ë are used in
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the inverse dynamic solution to deliver the actuated wheels

torques τxa. The position controller is used to calculate the

reference velocity vector ṗr needed to drive from initial co-

ordinates pi to goal co-ordinates pg.

In the practical implementation the usage of the inverse

kinematic solution for the singularity problem may not

be effective. Therefore, the inverse kinematics solution is

used as the steady state solution and the inverse dynamics

solution is used to feed-forward the kinematics in case of

singularities. The combined inverse solution is shown in Fig

(6).

Fig. 6. Dynamics and Kinematics fusion block

The ” Dynamics and Kinematics fusion ” block has one

main function, fusing between the inverse kinematics (1)and

the inverse dynamics solution (2). In the case of using the

inverse dynamic solution separately the wheel torques found

in the vector τD are not symmetrically accumulated in the

torque controller signal due to the friction and slippage

problem. These unsymmetrical accumulations results in un-

stable behavior of the C3P, therefor the inverse kinematic

solution is used to stabilize the behavior and over come the

instabilities (Fig. 6). The fusion criterion depends mainly

on the effect of each solution, for example the inverse

dynamic solution main function is solving the singularity

problem, therefore it is needed in the transient phase in case

of a singular condition. The inverse kinematic solution is

sufficient in the steady state phase in case of non-singular

condition. As a result, the fusion equation is a function of

the singularity indicator Ψ as described below

τxa = (1 − cos(|Ψ|))λ1τD + cos(|Ψ|)λ2τK , (13)

where τD is the wheel torque resulted from the inverse

dynamic solution and τK is the torque resulting from the

wheel velocity axes control. The fusion parameters λ1 and

λ2 are tuned manually according to the operator desgin.

The singularity indicator |Ψ| detects the robot singu-

larity conditions. The angle Ψ = δ − β, where δ =
arctan(−Ẏa, Ẋa) and β = arctan(−Ẏr, Ẋr).

Ẋa, Ẏa : The measured robot Linear velocities in X and

Y directions

Ẋr, Ẏr : The reference robot Linear velocities in X and

Y directions

Fig. 7. The geometric representation for obtaining Ψ

The indicator |Ψ| works as a sensor for the C3P singular-

ity condition. The condition of |Ψ| = 90o indicates for pure

un-actuation in the desired linear velocity direction (Ẋ, Ẏ ).
And the condition of |Ψ| = 0o or |Ψ| = 180o stands for full

ability of motion in the desired direction.

A. Position Controller

The position controller has 3 main controlled vari-

ables, Ẋ , Ẏ and Φ̇. The position control problem can be

stated as follows. Given position goal co-ordinates vector

pg =
[

Xg Yg Φg

]
T

and initial position reference co-

ordinates vector pi =
[

Xi Yi Φi

]
T

.

The robot is assumed to drive in straight line between the

initial and the goal points Therefore, there is another variable

should be controller, which is δer . The variables δer = ϑ−
δg , where ϑ = arctan(

−Yg

Xg
) and δg = arctan(−Ye

Xe
) (Fig.8)

Fig. 8. Robot Position representation

Where pe = pg − pi =
[

Xe Ye Φe

]
T

is the dis-

placement error vector in the 3DOFs . From the previous

section, the velocity controller succeeded in driving the robot

in the floor co-ordinates but aiming for wrong goal point

with distance error. The angle δer is the difference angle

between the direction of the robot and the error vector with

reference to the mass point of the robot at every instant.

1675



The controller deliver robot reference velocities value to

the velocity controller. Such is exponentially a function of

the robot displacement error as the following

Ẋ = sign(Xe)Kx(1 − e(−µx‖Xe‖)), (14)

Ẏ = sign(Ye)Ky(1 − e(−µy‖Ye‖)), (15)

and the rotation angular signal will be the same

Φ̇ = KΦΦe + Kerδer (16)

The parameters µx and µy are tuned according to the

required smoothness of the robot velocity signal while the

robot reaches the goal point.

B. Practical output

Before demonstrating the practical results, all the robot

and controller parameters are set for the used experiments

as shown in Table I.

TABLE I

THE C3P PARAMETERS

C3P Parameters Value Units Ctrl. Par. Value

h 0.343 m Kx,Ky 0.5, 0
d 0.04 m KΦ,Ker 0.2, -0.3
r 0.04 m µx ,µy 1.2, 1.2

Mp (Pl mass) 30 Kg λ1,λ2 0, 0

Ip (Pl inertia) 3.51 Kg m2 θsi
0o

The first experiment for the position controller imple-

mentation is to drive from initial point pi = [0 0 0]
T

to goal

point co-ordinate of pg = [4m 0m 0o]
T

. The initial steering

angles are all around value of 0o which is an singular starting

condition and the controller parameters are shown in Table

I. The robot results are shown in Fig. 9, where the steering

angles took around 2 seconds to adjust their values to drive

in the desired direction (X-axis) (Fig. 9 a).

The same interval of time took the robot velocities to

reach their desired reference values, which are generated by

position controller as shown in Fig.9b& c. The goal point

has a zero error area, since the practical prototype is hard

to reach the exact goal point. This zero area is a circle with

radius of 5cm, when the mass center point of the robot

reaches this zone, the robot velocities will be zero. From

Fig.9b it is clear that goal zone is reached after 20 seconds.

The robot trajectory is shown in Fig.9e, where the robot

drives around the reference trajectory with error of ±4cm
till it reaches the goal zone.

As it was mentioned before, the behavior of the C3P

depends on its initial variables such as the initial steering

angles values, the initial angular velocities and the initial

steering angular velocities. This can be shown using a

triangle shape as shown in Fig (10e) The experiment is

divided into three stages to show the C3P performance in

a homing application. Stage number one is to drive from

P1 = [0m 0m 0o]
T

with initial steering angles or zero
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Fig. 9. The position controller behavior for driving from from pi =

[0 0 0]
T

to pg = [4m 0m 0o]
T

degrees to P2 = [0m 3.5m 0o]
T

. Stage two is driving from

P2 to P3 = [3m 3.5m 0o]
T

, then the final stage is to drive

back to the starting point P1. The experiment illustrates the

performance of the position controller in 3DOFs.

From the steering angles values shown in Fig. 10a, the

direction of the C3P can be easily observed, where they are

zero during the first stage (driving in Y direction) then the

value switch to −900 (driving in X direction) then they had

the value around −225o which represents driving in (-X,-Y)

direction. But the values of the steering angles are sensed

with respect to the C3P frame of co-ordinates. The response

of the linear velocities Vx or Ẋ and Vy or Ẏ (Fig. 10-b &

c) are sensed with respect to the floor co-ordinates. They

show that the output velocities follow the reference signal

with delay at the second 17.5 till the second 19 because of

the steering angle switching. Oscillations are noticed as well

due to the floor friction, steering torques and slippage. These

three factors exist in the practical implementation, while the

are absence in the inverse solutions and simulations. That

is the reason they are common to appear in practical ex-

periments. The C3P trajectory shown in Fig. 10-e illustrates

that the robot achieves its goal in the three stages. First it

reached point P2 with ending displacement error of 2 cm,

and stage three with error of 5 cm, finally it reached the

starting point again with error of 20 cm. The robot drove

for about 11 meter with relative error of 1.8%, which is
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Fig. 10. C3P behavior for driving in triangle shape

acceptable with the absence of friction, slippage and steering

torque modeling.

Fig.11 shows the robot results for driving in double circle.

This experiments shows the quality of the robot velocity

controller for curvature motion.

For smooth behavior of the used prototype

platform, the robot will drive in the Y direction

with respect to the robot frame of co-ordinates.

Therefore the robot frame velocities are ṗC3P =
[0 0.3(m/s) 0.2(r/min)]

T

and floor frame velocities are

ṗFloor = [0.3 cos(Φ)(m/s) 0.3 sin(Φ)(m/s) 0.2(r/min)]
T

.

Such input robot velocities will drive the robot in a

complete circle, when the C3P finishes the circle the Φ̇ will

be −0.2(r/min) to drive in the other circle as shown in

Fig.11). Such step change shows the controller response in

the rotational velocity output.

V. CONCLUSION

This paper presents the practical implementation of the

holonomic wheeled mobile robot C3P. The C3P has the

problem of singularity, which is the un-ability of driving

in any direction parallel to the wheels driving axes when

all the the steering angles have the same value. This paper

illustrates the fusion between the inverse kinematics and

inverse dynamics solution to be used in the velocity and

position control loops. The based controller showed its

feasibility in the velocity control loop and to reach the goal

co-ordinates of the position controller.
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