
 
 

 

  
Abstract—This paper focuses on developing a robust neural 

network (NN) based sliding mode controller (NNSMC) to solve 
the trajectory tracking problem of a redundantly-actuated 
omnidirectional mobile manipulator. The SMC is designed to 
be robust to disturbances assuring the stability of the system. 
The NN is used to identify the unstructured uncertainty of 
system dynamics. The stability of the closed-loop system, the 
convergence of the NN weight-updating process, and the 
boundedness of the NN weight estimation errors are all strictly 
guaranteed. Through theories analysis, we know the controller 
is also capable of disturbance-rejection in the presence of time 
varying disturbances. Finally, simulation results demonstrate 
the proposed NNSMC approach can guarantee the whole 
system’s convergence to the desired manifold with prescribed 
performance. 

I. INTRODUCTION 

Dynamic modeling and trajectory tracking of 
omnidirectional mobile manipulator was investigated in [1]. 
There were also other contributions in this field [2,3]. But 
because omnidirectional mobile manipulator is 
characterized as redundantly-actuated mobile platform, and 
complex coupling mechanism between the platform and its 
mounted manipulator, it is still a challenging problem to 
develop effective control strategies for such system. 

It is well known that the main advantages of using sliding 
mode control (SMC) include fast response, good transition, 
and robustness with respect to system uncertainties and 
external disturbances. Therefore, it is attractive for many 
highly nonlinear uncertain systems [4,5], such as the 
holonomic and nonholonomic constrained mechanical 
systems. Neural network (NN), one of the most popular 
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intelligent computation approaches, has an inherent learning 
ability and can approximate a nonlinear continuous function 
to arbitrary accuracy. This feature is crucial in the controller 
design for complex model identifying and unstructured 
uncertainties compensating. Thus, in the past two decades, 
the development of intelligent control, especially neural 
network control (NNC) in robotic fields has attracted 
considerable interest. Polycarpou [6] presented a systematic 
methodology to identify a nonlinear system using an NN. 
Lewis [7] proposed an NN control scheme that guaranteed 
the closed-loop performance in terms of small tracking 
errors and bounded controls. An NN based control 
methodology was proposed for the joint space position 
control of a mobile manipulator in [8], which comprised a 
linear control term (classical PID) and an NN compensation 
term. Hu [9] proposed a control scheme which consisted of 
an SMC and an NNC, and the contribution proportion of 
these two parts was determined by a fuzzy supervisory 
controller. Adaptive control scheme of robot manipulators 
using Chebyshev neural network under actuator constraints 
was developed in [10]. 

In this paper, we focus on a redundantly-actuated 
omnidirectional mobile manipulator with holonomic 
kinematic constraints. A robust control scheme using an NN 
combined with an SMC (NNSMC) is proposed to solve 
trajectory tracking problem. This control scheme not only 
overcomes the unstructured uncertainties, but also has the 
capability of disturbance rejection in the presence of 
unknown bounded disturbances.  

II.  DYNAMIC MODEL 
The mobile manipulator considered here moves on the 
horizontal plane which is in the global frame OXY. It is 
cylinder-shaped; three identical castor wheels are axed 
symmetrically on the bottom of the platform and a two links 
manipulator locates on the gravity center C (which 
coordinate is defined as [ ]Tx y θ ) of the platform, as 
shown in Fig.1. The angle displacements for wheel rolling 
and steering are iϕ  and iη , and the details are listed in [1]. 1l  
and 2l  are the lengths of the two links, and 1θ  and 2θ  are 
the angle displacements of this two links, respectively. 
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Fig.1 Mobile manipulator assembly 
According to the above description, we first define the 

following state variables for easy references: 
[ ]1 1 2

Tq x y θ θ θ= --- The pose of the mobile 
manipulator 

[ ]2 1 1 2 2 3 3
Tq ϕ η ϕ η ϕ η= --- The drive variables 

of the platform 

[ ]
1 2

1 2 1 1 2 2 3 3

TT T

T

q q q

x y θ θ θ ϕ η ϕ η ϕ η

⎡ ⎤= ⎣ ⎦

=
 

[ ]1 2 1 1 2 2 3 3
Tζ θ θ ϕ η ϕ η ϕ η= --- The drive 

variables of the mobile manipulator 
0m n× --- The m n×  zero matrix 

n nI × --- The n n×  identity matrix 

min ( )λ ∗  and max ( )λ ∗ --- The minimum and maximum 
eigenvalues of ( )∗ . 

Based on the kinematic model proposed in [1], the 
dynamic equations of this mechanical system with external 
disturbances can be derived as: 

( ) ( , ) ( ) ( ) ( ) ( )TM q q C q q q G q d t B q u A q λ+ + + = +     (1) 
The kinematic constraints are considered independent of 

time and can be expressed as: 
( ) 0A q q =                                     (2) 

Here nu R∈  is the vector of the generalized input torques; 
nnRqM ×∈)(  is the symmetric bounded positive definite 

inertia matrix; nRqqqC ∈),(  represents the vector of 
centripetal and Coriolis torques; nRqG ∈)(  is the 
gravitational torque vector; nRtd ∈)(  denotes the external 
disturbances; ( ) n nB q R ×∈ is a full rank input transformation 
matrix and is assumed to be known because it is a function of 
fixed geometry of the system; nmRqA ×∈)(  is the kinematic 
constraints matrix, mR∈λ  is a constraint force vector. 

Here, the effect of the kinematic constraints can be 
viewed as restricting the dynamics on a constraint manifold 
as: 

{( , ) : ( ) 0 }n nq q R R A q qΩ = ∈ × =                  (3) 
The presence of m  kinematic constraints causes the system 
to lose m  degrees of freedom; hence, the system only has 
n m−  degrees of freedom left. Based on the kinematic 
model, we know 1( ) n mq t R −∈  is the vector of the 
independent generalized coordinates of the mobile 
manipulator system.  
Property 1: Define 3 3 20H I ×⎡ ⎤⎣ ⎦=  and 

1
( )

T
T TH JqR q ⎡ ⎤

⎢ ⎥⎣ ⎦
= . From [1], the matrix ( ) ( )TR q B q  is of 

full rank, so the Moore-Penrose inverse matrix of ( )R q  
always exists. 

In order to reduce complexity of the whole system, 
applying the projection of the dynamic model into the null 
space of the constraints, we can obtain 

                  1

1 1

( )

( ) ( , ) ( ) ( )

q R q q

M q q C q q q G q d t Eu

=

+ + + =
             (4) 

where ( ) ( ) ( ) ( )TM q R q M q R q= , 1( , ) ( ) ( , )TC q q R q C q q= , 

1( , ) ( ) ( ) ( , ) ( )C q q M q R q C q q R q= + , ( ) ( ) ( )TG q R q G q= ,

( ) ( ) ( )Td t R q d t= , ( ) ( ) ( )TE q R q B q= . (2) and (3) lead to 

1( ) ( ) 0A q R q q = . In other words, ( ) ( ) 0A q R q = , since 
( ) ( )A q R q  is of full columns and the configuration of the 

whole system has n m− degrees of freedom. For (4), some 
fundamental properties are addressed below. 
Property 2: The matrix ( )( ) ( ) ( )TM q R q M q R q=  is 
symmetric and positive definite. 
Property 3: ( ) 2 ( , )M q C q q−  is skew-symmetric, i.e., 

( )( 2 ( , )) 0T M q C q qξ ξ− = , n mRξ −∀ ∈ . 
Property 4: There exist positive scalars )5,,1( =iiβ  such 

that nn RqRq ∈∀∈∀ , : 1( )M q β≤ < ∞ , 

2 3 ( , )C q q qβ β≤ + , 4)( β≤qG  and 5
0

( )
t

d tsup β
≥

≤ . 

III. NEURAL NETWORK BASED SLIDING MODE CONTROL 
DESIGN (NNSMC) 

This section considers the trajectory tracking problem of the 
above redundantly-actuated mobile manipulator system 
discussed above.  
Assumption 1: The vectors 1q , 1q  are bounded and 
uniformly continuous derivatives up to the second order. 
Moreover, the matrices ( )R q  and ( )R q  are also bounded as 

6( )R q β≤ , 7 ( )R q qβ≤ , where ( 6,7)i iβ =  are 
positive constants. 

1θ  
(xA, yA) 

3η

2η
 

θ

1η
 F1 

F2 

F3 

(xB, yB) 

2θ

X  
O  

Y  

C  
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Remark 1: According to Wang’s claim [12], if 1( )q t  is 
bounded, then ( )R q  is bounded. If 1( )q t is bounded, then 

( )R q  is bounded. 
The trajectory tracking control objective is: on the basis of 

the vector 1q  and 1q , given a desired 1dq  and 1dq , develop 
a controller such that for any ( (0), (0))q q ∈ Ω  in (3), 1( )q t  
and 1( )q t can asymptotically converge to a manifold dΩ  
specified as: 

1 1 1 1 1{{ ( ) }d d dq,q)| q q ,q q ,q R q q  Ω = = = =     (5) 
Here, the vector 1( )q t  can be considered as mn −  “output 
equations” of the system. 
Assumption 2: The desired reference trajectory 1dq  is 
assumed to be bounded and uniformly continuous, and has 
bounded and uniformly continuous derivatives up to the 
second order. So there exists the constant Bq , that 

1 1 1
T T T
d d d Bq q q q≤  always holds. 
In the following, some variables are defined as: 

1 1de q q= −                                       (6) 

1 1r dq q e= − Λ                                    (7) 
where e  and 1rq denote the tracking error and a set of 
auxiliary signals, respectively. Λ  is a positive definite 
matrix  which eigenvalues are strictly in the right-hand of 
complex plane. Then a sliding variable is defined as: 

1 1rs q q e e= − = + Λ                             (8) 
Remark 2: From Assumptions 1 and 2, there exist positive 
scalars ( 8,9)i iβ =  such that 1

n m
rq R −∀ ∈ , 1

n m
rq R −∀ ∈ : 

1 8rq eβ≤ + Λ , 1 9rq eβ≤ + Λ . 
When the sliding surface 0=s , according to the theory of 

SMC, the sliding mode is governed by the following 
differential equation: 

ee Λ−=                                      (9) 
Obviously, the behavior of the system on the sliding surface 
is determined by the structure of the matrix Λ . In other 
words, when 0=s , the tracking error transient response is 
completely governed by the above equation. 

Based on (1) and the first equation of (4), the system in 
terms of the sliding variable s  can be obtained by: 

1 1 1

1

( ) ( ) ( ) ( ( ) ( ) ( , )

( ) ( )) ( , ) ( )
r r

T

M q R q s B q u M q R q q C q q q

G q d t C q q s A q λ

= − +

+ + − +
   (10) 

Multiplying left ( )TR q  and using Property 2 lead to: 

1 1( ) ( ) ( , , , , ) ( , )r rM q s E q u H q q q q t C q q s= − −        (11) 

( )1 1 1 1

1 1 1 1 1

1 1 1

( , , , , ) ( , , , ) ( )

( , , , ) ( )( ( ) ( ) ( , ) ( ))

( ) ( ) ( )( ) ( ) ( , )( )

( ) ( )
( )

T
r r r r

T
r r r r

T T
d d

T

H q q q q t H q q q q R q d t

H q q q q R q M q R q q C q q q G q

R q M q R q q e R q C q q q e

R q G q
H x

= +

= + +

= − Λ + − Λ

+
=

     

(12) 

where 3 ( ) 2
1 1 1[ ]T T T T T T n m n
d d dx q q q q q R × − + ×= ∈ .  

Because the omnidirectional mobile manipulator moving 
in the horizontal plane, ( ) ( ) 0TR q G q ≡ . For the 
omnidirectional mobile manipulator system, there is a 
unique function : n m mR Rϑ − → ,  such that the holonomic 
constraint can always be expressed explicitly as [13]: 

2 1( )q qϑ= . Then we can easily obtain that the uncertain 
( )H x  defined in (12) can be rewritten as this form 

1 1 1 1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( , ) ( )T T
r rH x R q M q R q q R q C q q R q q= +       

               (13) 
where 4 ( )

1 1 1 1[ ]T T T T T n m
r rx q q q q R × −= ∈ . 

During the development of the controller, we assume 
1( )M q  and 1 1 1( , )C q q  are completely unknown. In respect 

that NN has ability to approximate a nonlinear continuous 
function to arbitrary accuracy and can be used to identify the 
unstructured uncertainty of system dynamics, a NN 
approximator is derived to approximate the integrated 
uncertain term ( )H x  in (12). Then an effective control 
method NNSMC is addressed. 

A. Robust NNSMC Scheme Design 
For any given real continuous functions on a compact set 

U , define a smooth function ( ) : nf U R⋅ →  . If we choose 
( ) ( )rf x C U∈ , where ( )rC U  is the space of the continuous 

functions, there exists a radial basis function neural network 
(RBFNN) system in the following form 

( ) ( ) ( )Tf x W x xφ ε= +                              (14) 

Nε ε<                                        (15) 
where W  is the weight matrix of the RBFNN, ( )xφ  is the 
excitation function vector, Nε  is a constant. 

The universal approximation ability of the RBFNN makes 
it possible to solve almost any nonlinear modeling problems. 
Thus, ( )H x  defined in (12) can be identified using the 
RBFNN with enough number of hidden layer neurons such 
that 

( ) ( ) ( ) ( )TH x H x W x xφ ε= = +                 (16) 
where h kW R ×∈  is assumed to be constant and bounded by 

BW W≤                                     (17)  
where BW  is one known positive constant. The basis 
function vector ( )xφ  is usually chosen as the Gaussian 
functions. 

The estimate of the uncertain term ( )H x  is expressed as  
ˆ ˆ ˆ( ) ( ) ( )TH x H x W xφ= =                        (18) 

where Ŵ  is the tuning parameter matrix of the network and 
is adjusted in the learning process. 
Assumption 3: In the RBFNN estimator, the input vector 
x (defined in (13)) is used to identify the uncertain term 

( )H x , i.e. ( )H x . There exist positive constants 0c  and 1c , 
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such that the following expression holds: 
0 1( ) (0) ( )Bx t q c s c s t≤ + +                     (19) 

where s  is defined in (8). According to the definitions in (6) 
and (7), assuming that (16) holds, we know that all x  are in 
the compact set { | }x xx x bΩ ≡ < , where x Bb q> . Define 

the compact set as 0 1{ | ( ) /( )}s x Bs s b q c cΩ ≡ < − +  with 
(0) ss ∈ Ω . Thus the NN approximation property always 

holds for all s  in the compact set sΩ . 
Using the NN on-line estimator to identify the uncertain 

term ( )H x . For any ( (0), (0))q q ∈ Ω  and desired trajectory 

1 ( )dq t , we take the control scheme as 
ˆ( ) sgn( ) ( )T

sE q u Ks K s W xφ= − − +                (20) 
ˆ ˆTW s s Wαφ µα= − −                              (21) 

Where K  and sK  are )()( mnmn −×−  positive definite 
gain matrixes determined by the designer, α  is a positive 
constant representing the learning rate of the network, µ  is 
a small positive design constant. 
Theorem: For the uncertain dynamic system (4), there 
exists appropriate parameters in the NNSMC, and the 
following performance can be achieved. 
1. With suitable positive gain constants K  and sK , the 
tracking error e  will be uniformly ultimately bounded. 
2. With sufficient large sK , the tracking errors e  and e  
will asymptotically converge to 0. 
Proof: 
1. Consider a Lyapunov candidate function as 

1 1 { }
2 2

T TV s Ms tr W W
α

= +                         (22) 

where ˆW W W= − . According to the matrix trace, inner 
product, and Frobenius norm theory, the following property 
holds 

2ˆ{ } { ( )}T T
FF F

tr W W tr W W W W W W= − ≤ −   (23) 

By substituting (20) and (21) into (11), the time derivative 
of V  leads to: 

2

min 6 5

2

min 6 5

2
2

1 1 { }
2

( sgn( ) ( ) ( ) ( ))
ˆ{ )}

( sgn( ) ( ) ( ) ( ))

( )

( ( )

( ))

( ( )

( )
2 4

T T T

T T
s

T

T T
s

FF F

s N

BF F

s N

B B
F

V s Ms s Ms tr W W

s Ks K s x R q d t

s tr W W

s Ks K s x R q d t

s W W W

s K s K

W W W

s K s K

W W
W

α
ε

µ

ε

µ

λ ε β β

µ

λ ε β β

µ µ

= + +

= − − − −

+

≤ − − − −

+ −

≤ − + − −

+ −

= − + − −

+ − − )

 (24) 

From the above proof process, in order to ensure the 
approximation effect of the NN estimator, we know that if 
the following expression (25) holds, the sliding variable 
should be always constrained in the compact set sΩ . 

2

6 5

min

4
( )

B
N s

s

W K
s b

K

ε β β µ

λ

+ + −
> ≡              (25) 

This can be achieved by choosing suitable positive 
constants to construct the gain matrix K  to satisfy  

2

6 5 0 1

min

( )( )
4( )

B
N s

x B

W K c c
K

b q

ε β β µ
λ

+ + − +
>

−
     (26) 

Therefore, the compact set defined by ss b>  is 
constrained by sΩ . As a result, the approximation property 
of the NN estimator always holds. 
2. Furthermore, if we choose a sufficient large sK  such that 

2

6 5

min

4 0
( )

B
N s

W K

K

ε β β µ

λ

+ + −
≤                  (27) 

Since 0s ≥  and min ( ) 0Kλ > , we know  
2

min ( ) 0V K sλ≤ − ≤                             (28) 
Define 

2
min0

( ) ( ( ) ( ) ( ) )
t

RV V t V K s v dν λ ν= − +∫           (29) 

Its time derivatives up to the second order are 
2

min

2
min

min

( ) ( ) ( )

( )

2 ( )

R

T
R

V V t V t K s

K s

V K s s

λ

λ

λ

= − −

= −

= −

                       (30) 

We can conclude that RV  is bounded and RV  is 

continuous. We know that ( )V t  is bounded from (22) and 
the second term of RV  is a finite integral. Thus, RV  is 

bounded. In addition, 
0

( ) ( ) (0)
t

R R RV d V t Vν ν = −∫  is also 

bounded. Then, according to Barbalat’s lemma,  
2

min ( ) 0RV K sλ= → , when t → ∞ . 
Therefore, according to the above analysis, the sliding 

variable 0s → , when t → ∞ . Thus, the tracking error e  
and e  asymptotically converge to 0 as t → ∞ . 
Remark 4: For the controller (20), once the control 
parameters such as K , sK  are determined, the input torque  

( )u t  is bounded for all 0t > . If we choose a sufficient large 

sK , we can ensure the asymptotically stability, but ( )u t  
may be larger than the maximum output torque of driving 
motors. In addition, large sK  also causes severe chattering. 
Therefore, when we design a suitable controller, there is a 
critical trade-off between the actual input torque and the 
tracking performance.  
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B. Partitioned Neural Networks 
Given a holonomic constrained mechanical system, it is 

desired to select a set of basis functions and determine the 
NN reconstruction error bound so that (16) holds; that is, 
determine a basis function vector ( )xφ  so that the uncertain 
term defined in (12) can be expressed by (16). But when we 
face a complex mechanical system like the omnidirectional 
mobile manipulator studied in this paper, the inputs and 
outputs dimensions of the NN are large, and the computation 
burden of the learning process is big. These above two 
problems severely prohibit the application of single NN in 
practical system. 

From [14] we know that the NN controller allows one to 
design partitioned NNs to achieve the same performance as 
single NN. For (13), there are two separated parts 
( 1 1 1 1( ) ( ) ( )T

rR q M q R q q , 1 1 1 1 1( ) ( , )T
rR q C q q q ) in the ( )H x , 

i.e., ( )H x . Therefore, we can apply two separated NNs to 
identify them respectively. Using the similar analysis 
method as [14,15], we can derive that 

ˆ ˆ ˆ ˆ ˆ( ) MT T T T
M C M M C C

C

H x W W W W
φ

φ φ
φ

⎡ ⎤⎡ ⎤= = +⎢ ⎥⎣ ⎦ ⎣ ⎦
       (31) 

It is easy to know that the partitioned decoupled NNs can 
be tuned respectively. Then the learning algorithm (21) can 
be rewritten as 

ˆ ˆT
M M M M M MW s s Wα φ µ α= − −                  (32) 

  ˆ ˆT
C C C C C CW s s Wα φ µ α= − −                      (33) 

Remark 5: In essence, the uncertain term ( )H x  that we pay 
attention to is a vector, not a matrix. Using the partitioned 
structure is to simplify the NN design process and accelerate 
the tuning speed. The partitioned NNs in [14] and 
partitioned fuzzy logic systems in [15] require Kronecker 
product to construct the new basis function for identifying 
the uncertain matrix ( 1 1 1( ) ( ) ( )TR q M q R q ). Compared to 
directly using NN to identify the uncertain integrated vector 
( 1 1 1 1( ) ( ) ( )T

rR q M q R q q ), employing Kronecker product to 
estimate the whole uncertain matrix increases the 
computation burden of tuning weight matrixes obviously, 
especially to the complex mechanical systems. Thus, their 
method only partitions the structure of the NN approximator, 
but does not simplify the tuning procedure. In this paper, we 
employ two separated NNs to directly approximate two 
decoupled parts ( 1 1 1 1( ) ( ) ( )T

rR q M q R q q , 1 1 1 1 1( ) ( , )T
rR q C q q q ) 

of the uncertain term ( )H x . This method does not need 
Kronecker product so the weight matrixes structures are 
more compact and tuning speed is faster. 

IV. SIMULATION RESULTS 
As an example to verify the proposed approach, this section 
discusses the simulation of the dynamic model and trajectory 
tracking controller. The physical parameters are the same 
with that in [1]. 

Let the desired output trajectory dγ be: 
2cos( / 2)dx t= , 2sin( / 2)dy t=  , 2sin( / 2)d tθ =  

1 sin( )d tθ =  , 2 cos( )d tθ =  and assume the disturbances is 

[ ]1 620sin( ) 20cos( ) 20cos( ) 3sin( ) 2cos( ) 0 Td t t t t t ×= . 
A NNSMC controller is designed to be comprised of two 

separative NNs approximating the uncertain terms 
1 1 1 1( ) ( ) ( )T

rR q M q R q q  and 1 1 1 1 1( ) ( , )T
rR q C q q q . 

The basic function of the first NN is designed as 
2

2exp[ ]         ( 1, 2, ,5)     
2

M j
M j

j

x c
jφ

σ

−
= − =    (34) 

where input state vector 1 1

TT T
M rx q q⎡ ⎤= ⎣ ⎦ , the centre vector 

is [ ]1 2 5[ , , , ] 3, 1.5,0,1.5,3 TTc c c = − − , and the width vector 

is [ ]1 2 5[ , , , ] 3,3,3,3,3 TTσ σ σ = . ˆ
MW  is a 5 11×  matrix and 

all elements are initialized to zero. 
The basic function of the second NN is designed as 

2

2exp[ ]         ( 1, 2, ,7)     
2

C j
C j

j

x c
jφ

σ

−
= − =    (35) 

where input state vector 1 1 1

TT T T
C rx q q q⎡ ⎤= ⎣ ⎦ , the centre 

vector is [ ]1 2 7[ , , , ] 3, 2, 1,0,1, 2,3 TTc c c = − − − , and the 

width vector is [ ]1 2 7[ , , , ] 2, 2, 2, 2,2,2, 2 TTσ σ σ = . ˆ
CW  is a 

7 11×  matrix and all elements are initialized to zero. 
    Now the estimate of the uncertain term ( )H x  is 
concretely described by (31). Then the control law is 
modified as 

ˆ ˆ( ) ( ) sgn( )T T
M M C C sE q u Ks W W K sφ φ= − + + −        (36) 

For the convenience of simulations, choose the control 
parameters as [2,2, 2, 2,2]diagΛ = , 100Mα = , 0.1Mµ =  

200Cα = , 0.1Cµ = , [300,300,300,20, 20]K diag= , and 
[10,10,10,5,5]sK diag= , respectively. 

The designed approach is applied to the omnidirectional 
mobile manipulator system and the simulation results are 
shown in Figs.2-4. The computed trajectory of the platform 
is shown in Fig.2. Position tracking errors are shown in Fig.3 
and Fig.4. From the above explanations, it is clear that the 
system converges to the desired trajectory quickly and 
achieves good tracking performance. 

V. CONCLUSION 
In this paper, the trajectory tracking problem is addressed for 
a redundantly-actuated omnidirectional mobile manipulator 
system with uncertainties and external disturbances. Then an 
neural network based sliding model control scheme is 
presented. The stability and convergence of the control 
system are proved using Lyapunov theory and related 
lemmas. From the discussion and simulation results, the 
following conclusions can be reached. 
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1. The NNSMC can take advantage of the fast transient 
response of SMC and the self-learning and nonlinear 
mapping properties of NNs to deal with both structured and 
unstructured uncertainties. 
2. Learning processes of NNs are online. It is effective in 
dealing with unpredictable disturbance. 
3. The NNSMC combines SMC and NNC to take advantage 
of both of them to get better trajectory tracking performance. 
4. The NNSMC requires no information of the mathematical 
model and/or the parameterization of the mechanical 
dynamics. 
5. Although the overall structure of the NNSMC looks 
complicated, it is very suitable for real-time application after 
adopting the partitioned structure, because the partitioned 
structure developed in this paper simplifies the NN design 
process and accelerates the tuning speed. 
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Fig.3 Trajectory of the mobile platform 
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Fig.4 Position errors of X  and Y  
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Fig.5 Position errors of θ , 1θ  and 2θ  
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