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Abstract— The remarkable ability of humans and animals
to perform dynamic maneuvers, such as a jump, is largely
attributed to series-elastic elements in skeletal muscle. Both
the degree of elasticity and the coordination of muscular
contractions have been shown to impact jump performance.
The objective of this paper is to use a genetic algorithm
(GA) to optimize the control and actuator parameters of a
series-elastic actuator (SEA), which is functionally analogous
to skeletal muscle, in an articulated leg to produce the highest
jump. Similar to skeletal muscle, the control and stiffness of the
SEA is found by the GA to affect jump performance, yielding
solutions with biological properties. In particular, the jumps
evolved by the GA made use of the stretch and shortening
cycle of the series-elasticity, which is commonly seen in nature
to increase the force of an explosive movement. The model
studied in this paper is of a prototype leg with series-elastic
actuation. A detailed leg and actuator model was developed
to include the important electrical and mechanical properties
of the DC motors as well as the characteristics of the motor
amplifiers.

Key words: dynamic maneuvers, jump, legged robot,
series-elastic actuation (SEA), evolutionary robotics.

I. INTRODUCTION

The need for explosive leg power is essential if legged
robots are going to be capable of performing dynamic
maneuvers. Dynamic maneuvers, which give humans their
agility, involve sudden changes in trajectory or speed. Typi-
cally, these maneuvers take the form of high-speed turning,
dodging, jumping, and starting quickly. The sudden changes
of trajectory, however, are associated with large accelerations
that must be realized with explosive leg power. At present,
actuator power is still a major limitation with legged ma-
chines; as such, dynamic maneuvers remain an elusive goal
in the field of legged robotics.

In exercise physiology, the ability to perform powerful
dynamic movements is attributed to the stretch and short-
ening cycle of muscles and tendons [1]. When a muscle
lengthens as a result of an eccentric contraction, it stores
elastic energy in the muscle’s fibers and tendons. If followed
immediately by a contraction, the additional stored energy
is available to do more work and allows the muscle to
shorten with a larger force. Numerous studies have shown
that tendon elasticity plays an important role in enhancing
muscle work output for a variety of movements [2], [3], [4],
[5], [6], [7]. Furthermore, Bobbert found that the human
squat jump performance was highly dependent upon the
stiffness of the series-elastic elements of the legs [8]. Also,

Fig. 1. Photograph of the prototype articulated leg on its vertical constraint
rails.

work done by Ettema showed that the timing of the muscle
contractions was crucial for the effective release of energy
stored in the series-elastic elements of skeletal muscle [9].
Biomimicry suggests that the series-elastic actuator (SEA),
which has a similar series-elastic element, could benefit from
the characteristics just described and will be addressed by
this paper.

This paper will study the light-weight articulated leg
with series-elastic actuation shown in Fig. 1 developed by
Remic [10], Curran [11], and Knox [12]. The leg has two
actuators fixed to the body that actuate the hip and knee
joints. The configuration is such that the leg is a two-link
serially connected mechanism, where each link is actuated
in parallel with respect to the body, through a cable-pulley
transmission.

The response of an SEA during impulsive movements
is highly nonlinear and difficult to model. Applying con-
ventional control and optimization techniques to determine
the crucial time to apply control inputs is generally not
feasible. Yet, through trial and error, nature has shown the
ability to discover or learn these optimum control inputs,
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Fig. 2. Kinematic and dynamic model of the prototype leg.

yielding Olympic athletes capable of performing an 8 ft.
high jump. To this end, intelligent control seeks to mimic
some of nature’s ability to learn and evolve by simplifying
the details needed to manage the dynamic maneuver. Krasny
and Orin demonstrated that an evolutionary algorithm with
a modular controller was capable of finding solutions for
complex behaviors in a quadruped such as a dynamically
stable 3D gallop, high-speed turn, and running jump [13].
At the same time, evolution has been used to optimize the
physical design of robotic systems under complex task-based
constraints [14], [15]. The results are impressive and show
that evolution is a fast and flexible design tool that performs
well with complex physical constraints.

Naturally, one focus should be to apply an evolutionary
algorithm to optimize the jump height of the prototype leg.
Previous high jumps of the leg were a result of simply
commanding full power to the leg during a crouch. How-
ever, biological evidence suggests that the timing of muscle
contractions during a jump is critical, and so this paper will
investigate if there are control strategies that can be used to
obtain a better jump. Likewise, Bobbert [8] found that jump
performance was highly dependent upon the stiffness of the
skeletal muscle. This will be explored in the prototype leg by
allowing an evolutionary algorithm to determine the stiffness
and gear ratio of the actuators at both joints.

The organization of this paper is as follows. First a model
of the actuators and prototype leg will be given followed by
a brief explanation of the genetic algorithm and it’s fitness
function. Next, the control parameters are evolved and then
the actuator parameters. Lastly, a summary and description
of future work is presented.

II. LEG AND ACTUATOR MODEL

A simplified model of the prototype leg is depicted in
Fig. 2. The total mass of the leg mb is 4.019 kg and
represents the combined mass of the body, thigh, shank, and
actuators. For the simplified model, this is shown by a point

mass located on the body coincident with the hip axis. The
length of each leg segment l is 0.1397 m. For the series-
elastic actuation at the knee, the knee motor adjusts the rest
position of the torsion spring by actuating θk. The torque
applied to the shank τs is a function of the spring deflection
Δθk = θk − θs and is expressed as τs = Ks · Δθk. Since
the thigh actuator is directly connected to the hip, the thigh
torque τt can be determined from the actuator model.

A compact, yet detailed actuator model was developed to
include the electrical and mechanical properties of the DC
motors as well as the characteristics of the motor amplifiers.
Combined, these properties are considered to accurately
model the dominate characteristics of the actuators during
a jump. The subscript m in the following equations indicate
that the respective parameter should be evaluated for either
the hip motor (h) or the knee motor (k). A list of the
parameters for the Maxon motors and gears can be found
in Table I.

TABLE I
MOTOR AND GEARBOX PARAMETERS

Parameter Units Knee Motor Hip Motor
Model EC 40 Model EC 32

Mass kg 0.503 0.284
Combined Rotor and

kg·m2 9.44× 10−6 3.00× 10−6
Gearbox Inertia (Jm)
Combined Rotor and kg·m2

s
8.60× 10−6 5.10× 10−6

Gearbox Damping (Bm)
Forward Gear − 0.75 0.70Efficiency (ηfm )
Torsion Spring Nm

rad
16.54 −Stiffness (Km)

Torque Constant (Kτm ) Nm
A

0.043 0.040

Winding Resistance (Rm) Ω 1.69 5.50

Gear Ratio (nm) − 66 : 1 33 : 1

The motor amplifiers (Advanced Motion Controls model
ZB12A8) limit the maximum obtainable current in the motor
armature circuit to Imax (7.5 A for hip and 12.0 A for
knee). Also, the commanded current ic is only realized in
the armature circuit as long as the voltage required to do so
does not surpass the supply voltage Vmax (48V). When the
motor velocity surpasses the critical velocity θ̇�

m expressed
as

θ̇�
m =

Vmax −Rmic
Kτm

, (1)

the damping effect of the back-emf voltage begins to restrict
the armature current. With these constraints in place, the
governing second-order motor equation can be expressed as

τ̄m = Jmθ̈m + B̄mθ̇m +
τ

η · nm
, (2)

where τ represents a joint torque (τ = {τh, τk}) and the
effective motor torque τ̄m and damping B̄m are given by

τ̄m =

{
Kτm

ic when θ̇m ≤ θ̇�
m

VmaxKτm

Rm
when θ̇m > θ̇�

m

(3)

B̄m =

{
Bm when θ̇m ≤ θ̇�

m

Bm +
K2

τm

Rm
when θ̇m > θ̇�

m .
(4)
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The approximate gearbox efficiency ηm is expressed by
ηm = ηfm

when θ̇mτm ≥ 0 and ηm = 1/ηbm
when

θ̇mτm < 0. A manufacturer’s backdrive efficiency ηbm
could

not be assigned for the Maxon planetary gearheads, so the
model will be evaluated at ηbm = ηfm/2.

The kinematic equations for the leg can be derived from
the two points, pf and pb, depicted in Fig. 2. The point
pf = [x, 0], where x is the horizontal position of the foot,
and pb = [0, y], where y is the vertical height of the body.

The upward motion of the leg is a result of the joint torques
creating a force on the body. The force vector f is defined
as f = [fx, fy]T , where fx is the horizontal force on the
foot, and fy is the vertical force. With the leg assumed to be
massless in the simplified model, f is also the force vector
on the body. Further, let the link torque vector τ = [τt, τs]T .
The force f is related to the link torque τ by f = J−T τ .
Since the leg is constrained by vertical rails, only fy affects
its motion, which can be simplified as

fy = ατt + βτs , (5)

where α and β are the following elements of the inverse
Jacobian transpose

α =
− cos(θs)

l sin(θt − θs)
, (6)

β =
cos(θt)

l sin(θt − θs)
. (7)

Finally, the dynamics of the rigidly connected hip actuator
can be lumped into the dynamics of the body using the
governing motor equation from Eq. 2. The result is a second-
order differential equation describing the body height as
follows

Mÿ = αηh

(
nhτ̄h + Cẏ2 − (αn2

hB̄h)ẏ
)
+ βτs−mbg , (8)

where M combines the body mass and hip rotor inertia, and
Cẏ2 is the centripetal acceleration of the hip inertia (both
reflected through the nonlinear transformation α) and are
defined as

M = mb + ηhn2
hα2Jh , and (9)

C =
n2

hJh

sin(θt − θs)
(
α2 cos(θt − θs) + β2

)
. (10)

Dynamic simulation was implemented in MATLAB� using
simple Newton-Euler integration with a 0.1 ms time step.

III. THE ADAPTIVE EVOLUTIONARY ALGORITHM

The best set of control and actuator parameters is found
using a genetic algorithm (GA). This work used the Genetic
Algorithm and Direct Search Toolbox 1.0.1 provided by
MATLAB�. The genetic algorithm is employed to optimize
a simulated jump while meeting certain physical constraints.
Specifically, it optimizes a scalar fitness function that is
proportional to the height of a jump but subject to fitness
penalties based on physical limitations. Certain refinements
to the algorithm were made to help prevent the search from

Fig. 3. Mechanical constraints enforced by the fitness function. In part (a)
the leg is at a hard stop (ΨkMIN

= 50.5◦), and in parts (b) and (c) the
cable pulley at the knee has made contact with the body (θtMAX = 70.5◦)
and the ground (θsMIN = −70.5◦), respectively.

converging to the many local optima that riddle the parameter
space. This was accomplished by adjusting the crossover
fraction pc = {pc1, pc2} (pc1 < pc2) and mutation rates
pm = {pm1, pm2} (pm1 > pm2) during evolution when
the diversity γ, or average Euclidean distance between the
parameters of the solutions, was determined to shrink too
early in the search process. This will be explained further
once a few terms used by the GA are introduced.

First, an “individual” refers to a single solution φj com-
prised of a vector of parameters to be optimized. The set
of S individuals represents the current working population
W (k), where k denotes the current generation. N is the total
number of generations. The number of children in the next
generation W (k+1) created by crossover is (S−χ)pc; except
for the elite individuals χ, the rest of the children in W (k+1)
are formed by mutation. If the diversity is less than γ and
k < N/2, then the crossover fraction is decreased to pc1

and uniform mutation is performed with the larger mutation
rate pm1 in order to promote exploration. Otherwise, the
crossover fraction is set at pc2 and Gaussian mutation is
performed with the smaller mutation rate pm2 to promote
exploitation by randomly perturbing each parameter with
a zero mean Gaussian distribution. As opposed to Zhang’s
adaptive genetic algorithm [16], this approach does not affect
the final convergence because it stops adjusting the crossover
and mutation when the solutions become too diverse or the
search is nearing completion. The refinement can be thought
of as a temporary tradeoff of the algorithm’s exploitation
ability for more exploration when the population diversity
becomes small. Without this technique the algorithm had
difficulty finding viable solutions in a reasonable number of
trials. Finally, note that 30 trials of the GA were run for each
optimization problem, with 200 generations per trial, and a
population size of 150 individuals per generation.

Fitness Function

The criteria used in the fitness function are critical in
achieving the desired behavior. By introducing weights based
on different rules, certain solutions can be either encouraged
or discouraged. As with any robotic mechanism, the proto-
type leg can only operate safely within a subset of the leg’s
joint space. Figure 3 depicts the three configurations where
the leg is at the boundary of the allowable joint space. All
three cases are considered unacceptable and are penalized by
the fitness function. In addition, foot slip with the prototype
leg is undesirable and as such can be penalized by the fitness
function. The dynamics of slip are not simulated, but the
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TABLE II
RANGES FOR EACH EVOLVED PARAMETER FOR THE JUMP.

Parameter Description Range
yb0 Initial Body Height [0.01, 0.28] m
tm Time Stamp [0.01, 0.75] s
ih Hip Current [−7.5, 2.0] A
ik Knee Current [−2.0, 12.0] A

presence of slip can easily be detected by inspection of the
foot force at the ground. If the resulting foot force (f ) is
outside of the arc defined by the friction triangle (2 tan−1 μ),
the foot will slip. The static coefficient of friction used is
μ = 0.51, which is close to the value for the aluminum foot
of the prototype on the rubber surface of the ground.

The fitness function f is ultimately what is being max-
imized by the genetic algorithm. The primary component
of the fitness function is h, the height of a jump using
parameters φj . The complete fitness function is given as

f = (f1 · f2 · f3 · f4) · h where 0 ≤ fi ≤ 1 . (11)

The weight f1 is used to penalize the solutions that slip and
the other three f2 . . . f4 are used to penalize solutions that
exceed the joint limits. They are computed as

fi =
(

1− Ti

T

)
, (12)

where Ti is the time the leg slipped or exceeded the joint
limit and T is the total time of the entire jump. It is possible
for more than one condition to be broken during a simulated
jump, in which case the height is heavily penalized. Since
allowing the leg to simulate past these joint limits or when
the foot would otherwise slip often resulted in higher jumps,
care was taken to assess the penalties so that these individuals
could still contribute their genetic material to the population.
Much like a simple proportional controller, this method
assigns a penalty that is proportional to the amount of time
spent slipping or outside the allowed joint space. The results
will show that the joint trajectories of the best solutions
temporarily converge to a few of the joint limits, but never
exceed them, therefore realizing the best jump within the
constraints of the joint space and with minimal slip.

IV. EVOLVING A BEST JUMP CONTROLLER

Work by Curran [17] studied how the physical parame-
ters of the SEA could be optimized to create the highest
jump. However, to simplify the analysis, the motors were
simply commanded maximum current for the entire jump.
This section will explore the effects of varying the current
commanded to each motor with time by introducing a current
profile. In general, a current profile commands a set of
currents imj

at time tmj
to motor m and is described by

im = [im0(0), im1(tm1), . . . , imn
(tmn

)] . (13)

The n current commands are combined with the n − 1
time stamps to give the current profile. Notice that one less
time parameter is needed because it is always necessary to
command a current at time t = 0.

TABLE III
EVOLVED PARAMETERS FOR THE JUMP WITH NO CURRENT PROFILE.

Parameters
Height yb0 ih0 (0) ik0 (0)
0.6756 m 0.119 m −7.50 A 12.0 A

A comparison will be made between a jump that is allowed
a very simple current profile (n = 1) and one with no
current profile (n = 0). First, only the mechanical constraints
of the joint space will be enforced by the fitness function,
and slip will be ignored so that the resulting behaviors
are independent of the surface friction. The foot will be
positioned directly beneath the hip axis, and the initial
body height and current profiles will be found using the
genetic algorithm. For the case where n = 0, the evolvable
parameters are:

φ1 =
[
yb0 , ih0 , ik0

]
, (14)

where yb0 is the initial body height. For the case where n =
1, the evolvable parameters become:

φ2 =
[
yb0 , ih0 , th1 , ih1 , ik0 , tk1 , ik1

]
. (15)

The search range for each parameter is given in Table II
and was determined heuristically after performing multiple
simulations. The body position yb0 and current range im are a
combination of physical limitations and experimental tuning.
In particular, large motor currents that pulled the leg into the
ground produced poor results and were removed from the
search space.

Evolutionary results for the case with the current profile
(parameters of Eq. 15) consistently gave two distinctly
different solutions with nearly identical fitness depending
upon the random initialization of the individuals in the first
population. The final evolved values and resulting jump
height of the parameters in Eq. 14 are listed in Table III,
and the evolved values and jump heights of the two modes
found from Eq. 15 are listed in Table IV. Simulation results
of the three solutions are given in Fig. 4.

The most defining characteristic of the two modes gener-
ated with the current profile are the different starting heights
of the body yb0 . One starts standing nearly straight up
at 27 cm, while the other is crouched almost as low as
possible. Not only did the current profile allow the GA to
find these two interesting modes, it also produced jumps
where the distance of the foot above the ground at the top
of flight (TOF) was approximately 20% higher than the case
without a current profile. For the crouch jump (no current
profile), evolution determined that the body must start at
yb0 = 0.119 m above the ground and apply maximum
current to each motor. At this starting height, the body is in
the configuration depicted in Fig. 3a, which is at one of the
physical limits of the leg’s joint space. In this case, starting
at a lower body height would result in a higher jump, but
is not feasible. As was stated earlier, this shows the ability
of the fitness function to converge to a solution that both is
optimal and enforces the mechanical constraints of the leg.
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TABLE IV
EVOLVED PARAMETERS FOR THE JUMP WITH A CURRENT PROFILE.

Parameters
Height yb0 ih0 (0) th1 ih1 (th1 ) ik0 (0) tk1 ik1 (tk1 )
0.7587 m 0.267 m −0.06 A 0.165 s −7.50 A −0.04 A 0.175 s 12.0 A
0.7576 m 0.127 m 1.470 A 0.099 s −7.50 A 9.77 A 0.103 s 12.0 A
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Fig. 4. Simulation results for the three solutions found by the GA before
liftoff. The catapult jump and countermovement jump were allowed a simple
motor current profile, while the crouch jump was not. Note that the plot of
τs vs. yb is useful for comparing the crouch and catapult modes.

In fact, the height of the body in all three solutions can be
observed in Fig. 4a to drop down to, but never go beneath,
this physical limit.

The two distinctly different solutions with nearly identical
jump heights were an unexpected result of evolving a jump
with a simple current profile. One solution found by the GA
was to start the leg standing nearly upright and perform what
is known in plyometrics to be one of the most explosive
movements, a countermovement jump [18]. A countermove-
ment jump (CMJ) begins in an upright stance and is depicted
in Fig. 5. First the legs are relaxed temporarily to allow
the body to fall toward the ground. Moments later, the leg
explodes into a jump. The energy of the falling body is stored
in elastic elements of the leg, then delivered before liftoff,
causing larger forces during the jump. In exercise physiology,
this is termed the stretch and shortening cycle and is one of
the underlying mechanisms of plyometrics [1]. All of these
significant indicators of a CMJ are present in Fig. 4 a-b. The
spring-recoil occurs when the motors apply full power while
the body is still falling and is ultimately what produces the
stretch phase of the cycle. Another variation of the stretch
and shortening cycle, similar to that observed in jumping
insects, occurs with the other solution.

Referred to as the catapult jump in Fig. 4, the second

Fig. 5. Illustration of a Countermovement Jump.

jump begins in a crouch slightly higher than the simple
jump evolved with no current profile. Instead of immediately
applying full motor power as in the crouch mode, the
current profile momentarily redistributes the joint torques by
retracting the thigh and further flexing the knee spring. The
body drops slightly as its weight is put onto the knee, and the
elastic element builds up additional torque to counter gravity.
Then seamlessly, both motors explode with full torque, and
the body quickly begins to accelerate upwards with a larger
torque than the crouch jump (Fig. 4 b). This motion is very
similar to the catapult action seen in a grasshopper jump [19],
[20]. First, with help from the two front legs, the insect leans
back onto the hind legs, and the body drops slightly just as in
Fig. 4. Then, the insect quickly thrusts upwards with a larger
force and releases the extra elastic energy stored during the
initial contraction. This is another variation of the stretch and
shortening cycle discussed earlier. In the catapult jump, the
stretch is a result of an active redistribution of torques, rather
than the recoil of the falling body in the countermovement
jump. The CMJ used only 32.25 J of energy, while the
catapult jump used 37.32 J . The difference in energy is
nearly the same as the change in potential energy of the body
for the CMJ from the initial stance to the recoil during the
crouch. Therefore, without the kinetic energy of the falling
body, the catapult jump must generate this additional energy
with the motors.

Eliminating Slip

In all three cases, the no-slip condition was not enforced
by the fitness function to allow for a raw comparison of jump
performance with and without a current profile. As a result,
the crouch jump would have slipped 67.5% of the time, the
catapult jump 95.6% of the time, and the countermovement
jump 58.0% of the time. However, by temporarily ignoring
slip, the GA was able to quickly find two interesting jump
modes using a very simple current profile. Nevertheless, in
keeping with the real constraints of the prototype leg further
evolution was done where the no-slip condition was enforced
by the fitness function. In addition to the body’s starting
height, the initial horizontal foot position was added as an
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TABLE VI
EVOLVED SEA PARAMETERS FOR THE BEST JUMP.

Parameters
Height yb0 ρ nh nk Kt Ks

1.1325 m 0.120 m 1 77.62 77.51 54.54 Nm/rad 54.74 Nm/rad

TABLE V
RANGES FOR EACH EVOLVED PARAMETER FOR THE SEAS.

Parameter Definition Range
yb0 Initial body height [0.01, 0.28] m

ρ
SEA at hip (ρ = 1), {0, 1}DDA at hip (ρ = 0)

nh Gear ratio for hip actuator [5 : 1, 1000 : 1]
nk Gear ratio for knee actuator [5 : 1, 1000 : 1]

Kt
Spring stiffness for hip SEA

[1, 500] Nm/rad(when ρ = 1)
Ks Spring stiffness for knee SEA [1, 500] Nm/rad

evolvable parameter to assist in the search for a slip-free
solution. Different foot positions allow the joint torques
to contribute more force in the vertical direction and less
in the horizontal direction, thus controlling slip. Unlike the
previous problem, the evolutionary search only found the
CMJ to be the optimal jump mode, but this was expected
since it had the least amount of slip in the previous problem.
The jump resulted in nearly the same 20% increase in jump
height (distance of the foot above the ground at TOF) with
slip occurring for only 4.27% of the jump. Slip was virtually
eliminated when the size of the current profile was increased
to n = 4.

V. EVOLVING ACTUATORS FOR A BEST JUMP

An analysis of liftoff performed by Curran [17] suggested
that replacing the direct-drive actuator (DDA) at the hip
with an SEA would greatly improve the jump height. To
investigate this further, the GA here was allowed to evolve
either a DDA or an SEA at the hip using the binary parameter
ρ. The gear ratio and spring stiffness of the DDA and SEA
are also left to the GA to be found; however, the spring
stiffness at the hip Kt will be ignored when ρ = 0 (no
SEA). Furthermore, to fully explore the optimization power
of the GA, the parameters of the SEA at the knee will also be
evolved. As was done in the last section, the no-slip condition
will not be enforced to allow for a raw comparison of jump
performance independent of the surface friction. The foot
will be fixed to be directly beneath the hip axis, but the
initial body height yb0 will be left to the genetic algorithm
to determine; however, the physical constraints on the joint
space will be enforced by the fitness function. Finally, the
motors will be commanded full current at t = 0 in order to
compare the solutions with the best solution from Table III.
To summarize, the evolvable parameters are:

φ5 =
[
yf0 , ρ, nh, nk, Kt, Ks

]
. (16)

The search range for each parameter is given in Table V
and was determined heuristically after performing multiple
simulations. It is important to note that the motor of the

SEA at the hip is that of the SEA at the knee. That is, when
ρ = 1, the parameters of the hip motor become Kτh

= Kτk
,

Rh = Rk, Jh = Jk, Bh = Bk, and ηh = ηk.
The final evolved values of Eq. 16 are listed in Table VI.

Note that the solution has an SEA at the hip (ρ = 1) and
resulted in a dramatically larger jump height than the original
parameters. In fact the actuators evolved here contributed
approximately 215% more to the jump height (distance of
the foot above the ground at TOF) than the original actuators.

An important attribute of the optimal solution is that the
two SEAs have nearly identical parameters. That is, the gear
ratio and spring stiffness of the hip SEA is very close to that
of the knee SEA. The other defining characteristic of the best
solution was that it was completely slip-free, even though the
no-slip condition was not enforced. In fact, evolution of the
same parameters of φ5 in Eq. 16 when the slip condition was
enforced consistently gave the optimal solution of Table VI
as the best solution. This means that identical SEAs at both
joints with the parameters given in Table VI will result in
the highest jump, which is also slip-free. Other suboptimal,
but still impressive, solutions found on different trials did not
have identical hip and knee SEA parameters and encountered
brief periods of slip. Therefore, it is reasonable to assume
that the complete elimination of slip is a result of having
SEAs at both joints with nearly identical gear ratios and
spring stiffnesses.

VI. SUMMARY AND FUTURE WORK

In this study, the genetic algorithm (GA) was presented
and was used to optimize a jump while meeting certain phys-
ical constraints. Specifically, it evolved a current controller
that discovered interesting jump modes and evolved optimal
SEA parameters. Certain refinements to the algorithm were
made to help prevent the search from converging to the
many local optima that riddle the parameter space. This was
accomplished by adjusting the crossover and mutation rates
during evolution when the diversity of the solutions was
determined to shrink early in the search process. The higher
mutation rates could be tolerated because the risk of losing
good solutions was minimized through an elitist strategy.

Like skeletal muscle, the timing of the control inputs
was found to be crucial in creating the highest jump. The
GA found that a simple current profile could produce jump
heights that were approximately 20% higher than jumps
when just full motor current was commanded. The current
profile produced two new jump modes that resembled the
explosive countermovement jump performed in plyometric
training and the catapult jump performed by insects. Both
modes developed additional torque in the spring by momen-
tarily compressing it before exploding into the jump. The
larger torque and additional spring energy result in higher
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liftoff velocities. In exercise physiology, this is termed the
stretch and shortening cycle and is one of the underlying
mechanisms of plyometrics. When the no-slip condition was
enforced and the foot position allowed to vary, the GA
found the countermovement jump to be the optimal mode of
control. In fact, it was able to reach nearly the same height
as the optimized jump when the no-slip condition was not
enforced.

Evolving parameters for the hip and knee actuators proved
to be an elegant solution to the problem of maximizing jump
height. Similar to Bobbert’s findings of the dependence of
human jump performance on elasticity in skeletal muscle [8],
the spring stiffness was found here to have a large impact on
the jump performance. The GA was able to dramatically in-
crease the jumping height and provide a completely slip-free
solution by placing nearly identical SEAs at both joints. In
fact, the actuators evolved by the GA resulted in a jump that
was approximately 215% higher than the original actuators.
Future jumping machines would benefit from having SEAs
at both joints.

Although this approach has generated some impressive
solutions, there is still more work that could be done. First,
the control solution found here that generates the counter-
movement jump should be tried in hardware and compared
to the crouch jump. Also, experimental results indicate that
the first few jumps of continuous hopping increase in height.
It is highly likely that genetic optimization would identify
this behavior and exploit it to produce a set of extremely
high jumps. However, in order to avoid damaging the actual
hardware, care should be taken to minimize the number of
jumps as well as to confine the behavior of each jump. This
could be accomplished by porting the best control modes
discovered by the GA in simulation to the actual hardware
and allowing the last stages of learning to proceed with a
GA or alternate strategy capable of online learning.

Finally, because full autonomy may be necessary in high-
speed robots capable of performing dynamic maneuvers, a
thorough analysis of power and energy should be performed.
It would be very revealing to allow the genetic algorithm
to optimize jump height and power consumption. The total
energy could be used to penalize the fitness function with
an adjustable weight. Such an analysis and optimization will
hopefully show that autonomy is possible and could give
estimates for battery sizes and weights. The insight provided
by this study in conjunction with future work will hopefully
lay the foundation for future implementation of legged robots
capable of autonomous high-speed locomotion and dynamic
maneuvers.
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