
Trajectory Generation for Dynamic Bipedal Walking
through Qualitative Model Based Manifold Learning

Subramanian Ramamoorthy
School of Informatics

The University of Edinburgh
Edinburgh, EH9 3JZ, UK

Email: s.ramamoorthy@ed.ac.uk

Benjamin J. Kuipers
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712, USA
Email: kuipers@cs.utexas.edu

Abstract— Legged robots represent great promise for transport
in unstructured environments. However, it has been difficult to
devise motion planning strategies that achieve a combination
of energy efficiency, safety and flexibility comparable to legged
animals. In this paper, we address this issue by presenting
a trajectory generation strategy for dynamic bipedal walking
robots using a factored approach to motion planning - combining
a low-dimensional plan (based on intermittently actuated passive
walking in a compass-gait biped) with a manifold learning
algorithm that solves the problem of embedding this plan in
the high-dimensional phase space of the robot. This allows us to
achieve task level control (over step length) in an energy efficient
way - starting with only a coarse qualitative model of the system
dynamics and performing a data-driven approximation of the
dynamics in order to synthesize families of dynamically realizable
trajectories. We demonstrate the utility of this approach with
simulation results for a multi-link legged robot.

I. INTRODUCTION

Achieving a combination of task-level flexibility and a
measure of reliability is one of the most significant challenges
in robotics. As researchers explore the use of innovative robot
concepts in applications ranging from rescue to planetary ex-
ploration, these concerns become all the more pressing. Owing
to the fact that humanoid robots represent great promise for
operation in unstructured environments, just like us humans,
they have captured the imagination of the researcher and the
lay-person alike, and resulted in several decades of intense
research activity. Yet, we are far from motion planning algo-
rithms that allow us to replicate the efficiency and flexibility of
human walking over natural unstructured terrains, e.g., while
stepping over a sequence of rocks on a pond.

In our view, such operation in unstructured environments
requires two major elements: (a) efficient representations for
task encoding, i.e., ways to specify the task of walking that
remain applicable despite variation in the environment and
(b) techniques for dealing with imprecision in models of
the system dynamics and the environment. In this paper, we
present an approach to trajectory generation that incorporates
these elements.

In recent years, there have been a number of excellent
attempts to address the broad issues raised above, through
innovations in planning and control techniques. One set of
techniques [1], [2] has involved the use of nonlinear control
theory, including feedback linearization and sliding mode

algorithms, to compensate the nonlinear dynamics of the robot
so that the resulting linear system can be controlled along
specific trajectories. The trajectory to be followed is designed
by specifying constraints on key variables, such as the center
of mass, and computing the motion of all degrees of freedom
to satisfy these constraints. This is achieved using numerical
optimization [1], symbolic planning [2] and other related
techniques. A closely related procedure is that of dynamics
filtering [3], which accepts the output of purely kinematic
planned trajectories [4] and ‘corrects’ them through a model-
based optimization process. All of these techniques yield the
very desirable result of task-level control. However, the user of
these methods must develop detailed and accurate analytical
models of the system and environmental dynamics and use
them to design the high-bandwidth controllers that compensate
nonlinearities and enforce desired trajectories. In practice, to
the extent that robots are engineered machines, it is reasonable
to assume some knowledge of the kinematic structure of the
robot, and perhaps also of the coarse structure of the dynamics.
However, the external environment that the robot must interact
with and its dynamic properties are often poorly understood
and models of these effects (e.g., friction, impact, slip) can be
unreliable. As robots are expected to quickly and seamlessly
fit into new environments, it is desirable to explore approaches
that can accommodate significant imprecision in these models
of dynamics.

An alternative is found in methods based on machine
learning. Recently, there have been many attempts to au-
tonomously learn control strategies for dynamic walking [5],
[6], [7]. Many of these techniques have achieved promising
success in structured environments. However, they do not yet
provide sufficient leverage over task level variables, e.g., foot
placement, that are crucial in unstructured environments.

Another very promising approach to walking is passive
dynamic walking. Emphasizing minimalism and simplicity,
these robots avoid the need for high-bandwidth control by
utilizing the natural nonlinear dynamics of the robot instead
of actively compensating for it. It has been shown [8], [9] that
bipedal robots may be constructed to walk down slopes with
no actuation or computing elements at all. Actuated versions
of such robots have also been constructed to achieve level
ground walking. In the same spirit, [10] describes a strategy
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for bipedal walking that is based on ’intuitive’ local strategies.
This is very desirable and represents one of the keys to
replicating the efficiency and grace of natural bipedal walkers.
However, it has been difficult to dictate task-level goals within
the passive dynamic walking framework without resorting
to significant simplifying assumptions about the task and
terrain conditions. An approach to addressing this problem is
presented in [11], where one finds a strategy for intermittently
actuated passive walking that achieves task-level control in the
context of a canonical template model, the compass gait.

The primary focus of the current paper is a solution to the
problem of how a low-dimensional task-level control strategy,
such as in [11], can be lifted to the more complex morphology
and dynamics of a higher-dimensional legged robot - despite
significant imprecision in models of its dynamics. In other
words, given only qualitative insights regarding the underlying
nature of a complex behavior, how does one utilize it to shape
learning in a high-dimensional dynamical system? We present
an algorithmic solution to this problem wherein we solve
a data-driven manifold approximation problem in the high-
dimensional phase space and regularize the approximation
using the qualitative model. So, the low-dimensional model de-
scribes the essential nature of the motion plan - at each footstep
and in response to a changing environment, decoupling this
issue from the high-dimensional approximation problem which
only needs to address the problem of learning dynamics from
data. This approach bears an essential similarity to previous
work such as [10] and [1] in its use of an abstract model to
define the task. The primary difference lies in our focus on
data-driven methods for acquiring and improving the control
strategy.

The high level structure of the argument in this paper is
diagrammed in figure 1. Following this, we begin in section
II, with a brief discussion of low-dimensional template models
and what they provide to our problem. In section III, we will
discuss how these low-dimensional task encodings relate to
the high-dimensional dynamics of the robot. In essence, the
abstract plan induces a submanifold in the phase space of the
robot. This submanifold is difficult to characterize analytically
but it can be learned from experimentation, as we will show
in section IV. In section V, we will present simulation results
for a planar multi-link legged robot, demonstrating that the
approach of this paper enables the robot to achieve the difficult
goal of traversing irregular terrain, while also achieving energy
efficiency comparable to versions of passive walkers such as in
[10]. We conclude with a brief discussion of the significance
of these results in section VI.

II. BACKGROUND: TEMPLATE MODELS FOR DYNAMIC
BIPEDAL WALKING

Humanoid robots are complex mechanisms, involving many
links, actuators and other elements that render it a high
dimensional nonlinear system. Directly modeling this system
as a general dynamical system is difficult, especially for a task
such as walking in unstructured environments where agent-
environment interaction effects are critical but imprecisely

Fig. 1. Block diagram schematic representing the proposed approach. A
low-dimensional template model is used to synthesize a plan. The template
model is known to be equivalent to the bipedal robot and the properties of
the plan can be established through systematic analysis [11]. The process of
embedding this plan in a high-dimensional robot system involves a manifold
approximation problem, which forms the focus of this paper.

known. However, viewed as a specific behavior to be achieved,
the task of walking has a simple underlying structure.

This structure can be understood in several ways. Biologists
studying the mechanics and energetics of walking [12], [13],
[14], [15] have found that human walking is consistent with
a simple model based on the dynamics of a pendulum, called
the compass gait. In fact, it has been argued in the biological
literature that many tasks involving locomotion [15], [16] and
manipulation [17] are structured hierarchically in terms of a
template model, involving the minimum number of variables
required to express task requirements, and an embedding
mechanism to anchor the resulting plan in the more complex
morphology.

Even if one were not interested in these facts about bi-
ological behavior, one could perform a simple experiment
with one’s favorite walking robot to verify this assertion -
by acquiring motion capture data of relevant kinematic and
dynamic variables. Analyzing the resulting data using various
nonlinear dimensionality reduction techniques, e.g., [18], [19],
will show that walking involves a low-dimensional subman-
ifold structure. This fact has been utilized in recent work
[7], [20], where a specific observed trajectory is projected
onto a low-dimensional space in which tracking controllers
may be designed. This is a desirable direction. However,
existing results are primarily focussed on local adjustments
to specific observed trajectories, as opposed to the issue of
handling large variations and families of trajectories that are
required for walking in unstructured environments. Also, since
the low dimensional space is chosen somewhat arbitrarily, as
the output of a statistical algorithm, the resulting behaviors
can be fragile (in terms of generalization ability).

In [11], a planning and control strategy is presented that is
compatible with biological models and yields low-dimensional
trajectories that are amenable to principled analysis. In
essence, the strategy is based on the observation that walking
involves two coupled subsystems - an inverted pendulum
(the torso vaulting over a rigid stance leg) and a swinging
pendulum (the retracted swing leg moving from the rear to the
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Fig. 2. Above: Conceptual schematic of the compass gait model of human
walking (Reproduced with permission from Kuo, A.D., Science 309:1686-
1687, 2005); Below: Synthesis of trajectories in the phase space of this model.
Here φ, θ refer to the stance leg and swing leg angles (with respect to the
vertical axis) respectively.

forward foot placement point). Figure 2 depicts this model and
the corresponding phase space picture of the trajectories. The
low-dimensional (template) space is the product space of the
phase spaces of these pendulum subsystems. Each subsystem
can evolve passively along a periodic orbit, requiring actuation
only to switch between these families of orbits at footfall. The
process of walking involves synchronized evolution of these
two orbits.

For the purposes of the current paper, all we need to know
about the template level strategy is that it is a predictive control
algorithm that takes as input a finite-horizon goal - location
of the next desired footfall, and produces trajectory segments
corresponding to the template variables (angles, lengths and
angular velocities, i.e., SL ≡ 〈φ, θ, φ̇, θ̇, lst, lsw〉 ⊂ <6).
This algorithm can be invoked at each foot step, given the
desired location of the next footstep, and a finite horizon
trajectory can be obtained to achieve this goal. We would like
to point out that this template-level strategy could be replaced
with any equivalent strategy, perhaps based on an alternate
control design framework, without significantly altering the
subsequent argument of this paper.

During the finite horizon, the dynamics of the template have
the structure of a mapping, ML : SL 7→ SL. An important
aspect of the control strategy in [11] - which mirrors biological
observations - is that with the exception of the brief periods

of time in double support (when a switch is made between
different instantiations of ML) no actuation is required. In
double support, the combination of actuation and impact forces
have the effect of enforcing a jump in state space - which
sets up the boundary conditions for the next finite-horizon
template-level trajectory generation problem mentioned above.

Concretely,ML (from [11]) can be represented in terms of
the following phase space trajectories:
• Stance leg trajectory:
φ̇ =

√
2E1

mtorsol2st
+ 2g

lst
(1− cosφ), where E1 is the energy

which may be used as a parameter.
• Swing leg trajectory:
θ̇ =

√
2g
lsw

cos θ − 2E2
mlegl2sw

, where E2 is the energy
parameter.

• Swing leg length:
Instantaneous extension/retraction is not physically real-
izable, so it is approximated by a quadratic of the form
lsw = min{αφ2 + lswmin, lswmax}.

• Stance leg length: Essentially a rigid pendulum of length
lst, perhaps with a minor correction for plantar-flexion of
the form, lst = εφ+ lstnom, 0 < φ < φmax

The above set of equations are a canonical parameterized
representation of the family of trajectories that could be
synthesized with the template model. A leg might begin by
executing the stance leg trajectory, retract after footfall to
become the swing leg, execute the swing leg trajectory and
finally extend to touch down and return to the stance leg role.
Given a foot placement goal for a particular step, the template
algorithm instantiates specific numerical values for parameters
(E1, E2) in the above equations. When combined with start
and end poses of the legs, (φ, θ)ini,fin, this constrains the
space within which feasible realizations of high-dimensional
trajectories must lie.

III. EMBEDDING TEMPLATE MODEL BASED PLANS IN THE
HIGH-DIMENSIONAL DYNAMICS OF THE ROBOT

The main problem being addressed in this paper is that
of trajectory generation for dynamical robots operating in
unstructured environments, despite significant imprecision in
models of the dynamics of the environment or of the robot
itself. We factor this problem into the subproblem of task
variation, and the subproblem of imprecision in models of
dynamics. The template strategy mentioned in the previous
section addresses the problem of task variation - given a
task level goal, what is the qualitative nature of the resulting
trajectory. This then reduces the overall problem to that of
learning models of dynamics from experimental data.

In order to learn this model, we realize that the task of
walking corresponds to the restriction of the high-dimensional
trajectories to a submanifold [19], [7]. Even before a robot
has mastered the strategy required to execute a sophisticated
behavior such as walking precisely over an irregularly spaced
sequence of footholds, it can provide useful data through a
process of motor babbling and other exploratory attempts to
traverse irregular terrains. This provides us with a collection of
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short trajectory segments (in a high-dimensional phase space)
that capture the possible dynamics of the robot (including
specific constraints imposed on it by the environment). Given
a start and end pose (based on foot placement goals), planning
amounts to selecting and interpolating between appropriate
segments from this set. However, given the randomized nature
of the data, this often leads to spurious trajectories that corre-
spond to some realization of the dynamics of the robot, but do
not lead to achievement of the desired task. For instance, the
observations include several trajectories that end up with the
robot falling over on its face. A naive approach that follows
the nearest observed trajectory segment can end up with the
same result. This problem is handled by regularizing the
approximation such that the generated trajectory MH agrees
with the low-dimensional plan ML. In the following, we will
expand on these ideas and present the overall algorithm.

The bipedal robot, executing a gait, is a high-dimensional
nonlinear dynamical system whose behavior over time can be
represented as the map, MH : SH 7→ SH , where SH ⊂ <12

is the set of all joint angles and velocities, {qi, q̇i}.
The essence of our approach to computing high-dimensional

trajectories is to establish an equivalence between the maps
MH and ML. Due to the fact that MH is a much more
complex higher-dimensional system, we will take this equiv-
alence to be in the nature of an approximation. Over each
finite horizon between footfalls, we require that the following
diagram must commute:

SH
MH−−−−→ SHyπ yπ

SL
ML−−−−→ SL

In practice, the maps will certainly not agree exactly, so
at any point along the step, it is possible to define an error,
ecomm = f(π(ρ) − η), ρ ∈ SH , η ∈ SL. The projection π(ρ)
can be computed from simple geometric/kinematic considera-
tions, so this error can be evaluated along a desired path. In
particular, it is clear that this error can be defined for arbitrary
trajectory segments lying anywhere in phase space. If one were
to fix a phase space trajectory in SL, then it is possible to
associate an error with every trajectory segment lying in SH .
This induces a vector field in SH in terms of geodesic paths
that satisfy the commutativity requirement stated above.

Now, ML is explicitly defined above but MH is not
assumed to be known analytically. It will need to be learned
from experience. In other words, we know MH only as a
set of observations of the form 〈ρ−, τ, ρ+〉i (where τ is a
vector of torques) acquired over very small time intervals
(e.g., 10 ms), as the robot performs some random sequence of
actions in order to explore the phase space. So, the trajectory
generation challenge is to compute the sequence of ρj , given
the start and end poses for a foot step, such that

∑
j ecomm is

minimized. From kinematic considerations, a foot placement
goal corresponds to an end pose. By iteratively solving this
trajectory generation problem at each foot step, the robot is

able to achieve a sequence of foot placement goals and nav-
igate irregular terrain. Note that the core calculation involves
a trajectory from a start to end pose, selecting from a family
of possible trajectories. External effects such as impact and
dissipation are naturally handled - as perturbations to the start
pose from which the computation for the current foot step is
performed.

This problem can be addressed in the general framework of
manifold learning [18]. Traditionally, the manifold learning
problem is posed as one of dimensionality reduction. In
fact, we have the opposite goal in mind - to embed a low
dimensional plan in a high-dimensional system. In order to do
this, we adopt the following procedure:

1) Allow the robot to perform a sequence of random
actions and acquire a collection of points 〈ρ−, τ, ρ+〉i.
In practice, it is often quicker to begin with some ad hoc
strategy that serves as a seed for reasonable behaviors1.
However, the procedure will work even for much more
random scenarios - given sufficient trials to provide
suitable coverage of state space.

2) Organize observations in the form of a graph. Weight
each edge of the graph in terms of the error ecomm (see
Algorithm 1). This endows a manifold structure on the
observations with the error acting as the metric.

3) Compute shortest paths in this graph, i.e., geodesics on
the manifold, to obtain a sequence of ρj .

We make the following remarks at this point.
• This is a general procedure so that ML may be any

suitably smooth vector field whose effect on the states
can be evaluated in the form η+ = fδt(η−) (in particular,
it can differ from the one described in section II, if so
desired) and the main requirement onMH is that we have
a sufficiently distribution of observations 〈ρ−, τ, ρ+〉i.
By continually updating a database of observations, this
procedure can naturally handle variations in system and
environmental dynamics.

• As posed, the graph/manifold may be endowed with
convergence to a desired trajectory in the sense that if
the system is disturbed away from the desired trajectory
(a sequence of desired ρj), moving it to a new point ρ̂,
then it can correct its course by following the shortest
path from this new position to the goal, via a sequence
of ρ̂j .

• The primary role of ecomm is to filter out spurious paths
that do not result in stable walking. If the observations
were obtained exclusively from an already experienced
stable walker capable of performing all behaviors of
interest, then this weight is redundant. However, when
observations are noisy and error-prone, this term is nec-
essary for task achievement.

1As a practical matter, one may adopt a sequential strategy for experiments
- going from entirely randomized experiments on a simulator to a laboratory
floor to an outdoor environment which may be the ultimate target for
operation. This allows for sufficient data to be collected from all conditions
while still minimizing the exposure of a physical robot to the harshness of
exploratory behaviors.
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Fig. 3. Conceptual structure of the approximation problem. The observations
are depicted as thin dashed lines - each dash representing a segment of
experience. The desired trajectory is the circular arc. In order to achieve
the desired trajectory, the system makes use to observed trajectories along
the heavy line. Also, note the presence of spurious observed trajectories that
could connect start and end points, but do not follow the curve.

IV. ALGORITHM FOR QUALITATIVE MODEL BASED
MANIFOLD LEARNING

The nature of the nonparametric approximation problem
being solved by the manifold learning algorithm may be
understood in terms of the conceptual picture in figure 3.
In this picture, the plan trajectory, i.e., the sequence of ηj
(∈ ML), is the circular arc. The observed trajectories lie
along the dashed lines and, by themselves, none of them is
sufficient to execute the desired behavior. However, suitable
portions of these observed trajectories may be synthesized
into a trajectory that approximates the desired plan. As the
density of these observations goes up, quality of approximation
improves. Moreover, the database can contain many spurious
trajectories - possible in some realization of the dynamics of
the robot but incompatible with the specifications of the task.
In our scheme, they will be penalized (i.e., higher ecomm) more
than any of the other observations and will not feature in the
geodesics - in effect, spurious observations will be rejected.

Based on this scheme, we present the procedure (see
Algorithms 1, 2 and 3) for nonparametric approximation of
the high-dimensional dynamics and its use in generating the
trajectory for each foot step.

Figure 4 visually depicts the key steps in algorithm 1.
Note that this depiction is really a caricature in that the
dimensionality of the problem being solved is much higher.

Lastly, we note that the generated geodesic sequence ρj is
a dynamically realizable trajectory that not only accounts for
kinematics but also the dynamics and constraints applicable
to the robot - due to the fact that it is synthesized as a
composition of actually observed motions. These observations
also included torques (recall that we have 〈ρ−, τ, ρ+〉i). This
data can be utilized to generate a corresponding profile of
torques as outlined in algorithm 4.

V. EXPERIMENTS

The motivation for this work comes from the task of
achieving a specified sequence of footholds, using trajectories
that mimic the passive nature of human walking. Towards this
end, we began with a template model and a corresponding
low-dimensional plan that is known to be sufficient to achieve

Algorithm 1 Nonparametric approximation of MH

INPUT: Observations of {ρ−, τ, ρ+}i, i = 1, . . . , N , Spe-
cific realization of ML

OUTPUT: Weighted graph representing MH

Project the observed points (η = π(ρ)) to obtain {η−, η+}i
Compute inverse covariance matrix, Σ−1

H using the set {ρ−i }
Define connectivity graph, G = (V,E).

for all i do
Add vertex Vi ≡ ρ−i

end for

for all Vi do
Determine k-nearest neighbors Vj
using the Mahalanobis distance

(
D =√

(ρ+
i − ρ

−
j )′Σ−1

H (ρ+
i − ρ

−
j )
)

for all Vj do
Add edge Ek(Vi, Vj)

end for
end for

for all Ek do
Determine

∑
j ecomm =‖ ηdesj − π(ρ+)j ‖

where ηdesj is computed using ML

Set the weight of edge Ek to ecomm
end for

Algorithm 2 Generate geodesic sequence ρj
Given initial and final poses, ρini, ρfin
Given weighted connectivity graph G = (V,E)
Compute ρj = ShortestPath(ρini, ρfin)

specified footholds using an intermittently actuated passive
gait. Then the focus of this paper has been on algorithms that
generate high-dimensional trajectories that may be realized on
a multi-link legged robot. To demonstrate the utility of this
algorithm, we will show the result of this computation for
different final poses. At the beginning of a step, when the
robot has both feet on the ground and is in an initial pose
ρini, the location of the upcoming foothold is equivalent to
the specification of a corresponding end pose ρfin. So, we
will show that it is possible to achieve a set of ρfin using
our procedure. Iteratively computing such trajectories at the
beginning of each foot step endows the robot with the ability to
navigate the desired sequence of footholds. In particular, since
the high-dimensional trajectory is synthesized from observed
data, the resulting trajectory is realizable without additional
corrections.

Our experiment is based on a physically realistic simulated
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Algorithm 3 Generate geodesic sequence ρj (Handling Dis-
turbances)

Given initial and final poses, ρini, ρfin
Given weighted connectivity graph G = (V,E)
Once for each step: Compute All-Pairs Shortest Paths

while ρfin has not been reached do
Decode and execute Path(ρcurrent, ρfin)

end while

Fig. 4. Top: The nature of the approximation problem. The surface on the
left depicts the manifold that needs to be approximated. What we actually
have are short trajectory segments, some of which lie on the task manifold
(shown in blue) and some that do not (shown in magenta). Bottom: The
approximate geodesics generated using algorithm 1. The observed trajectory
segments are organized into a nearest-neighbors graph (depicted here using
only a few edges). By weighting these edges with ecomm and computing
weighted shortest paths, we are able to restrict shortest paths to the desired
geodesics (shown in green) as opposed to spurious paths (shown in red).

robot based on [10]2. We begin by collecting data from this
simulated robot as it executes an ad hoc strategy for walking.
This strategy is highly noisy (deliberately injected) and not
capable of achieving more than 3-4 foot steps before stumbling
and falling over. However, this strategy is sufficient to acquire
relevant data (quicker than random search in state space).
Further, for the purposes of computational convenience and
to demonstrate that our proposed algorithm does not need
to begin with very dense or sequentially ordered sets of

2We use the Yobotics Simulation Construction Toolset for this experiment.
The simulated robot is based on a variant of the planar Spring Flamingo robot
- with rotational joints at human-like hips, knees and ankles. The simulated
robot has a heavy torso (12 kg) on light legs (1 kg distributed between three
links).

Algorithm 4 Generate Torque Profile (for each joint)
INPUT: Trajectory sequence {ζj}, j = 1, ..., N, ζj ∈ SH
and a set of observations O = {ρ−i , Ti, ρ

+
i }, ρi ∈ SH , Ti ∈

AH ⊂ <6, i = 1, ...,M (where T is a 6-dim vector of
torques and ρ is a 16-dim vector of states)
OUTPUT: Sequence of torques {τj}, time-integrated torque
Tint and energy, E
for j = 1 : N − 1 do

Find K (e.g., = 20) points from the set O defined by the
distance ‖ ζj − ρ−i ‖, including a set of K torques for
the chosen joint, {τ̂k}
for k = 1 to K do

With d− =‖ ζi− ρ−k ‖ and d− =‖ ζi+1− ρ+
k ‖, define

the average distance, dMk = d−+d+

2 (where ‖ . ‖ is
the Mahalanobis distance)

end for
τj =

∑K
1 exp(−dM k)τ̂k∑K
1 exp(−dM k)

end for
To compute time-integrated torque:
Tint =

∑N−1
1 τj .δt

To compute energy:
Apply Savitzky-Golay filter to de-noise velocity profile
Compute E =

∫
τj .żj (e.g., using Simpson’s 3/8 rule).

Fig. 5. Coverage obtained by the data collection process adopted in our
experiment. Solid squares correspond to individual points, η−, in the angle -
angular velocity phase space corresponding to the stance and swing legs. A
typical plan trajectory (corresponding to the conceptual scheme in figure 2) is
superposed. Also, note the data points corresponding to inter-step transitions,
leading in the vertical (increasing velocity) direction.

observations from perfectly stable walking, we subsample the
data (by low-discrepancy uniform sampling in time) down to
a scrambled database of 1000 points. The coverage obtained
with this process is indicated in figure 5.

Using this data, and applying the algorithms in section IV,
we are able to generate the trajectories depicted in figure 6.
Note that we are able to generate trajectories with various
end poses corresponding to different step lengths. This is an
improvement over many existing machine learning based re-
sults that are limited to mimicry of specific temporally ordered
observed trajectories, or to local smoothing. Instead, we are
able to utilize a wide variety of noisy trajectories, representing
many different gaits, to synthesize a parameterized family of
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Fig. 6. Trajectories generated using the proposed algorithm. We have depicted
captures from three different gaits corresponding to different foot placement,
and hence end pose, goals.

Fig. 7. Comparison (in the ML phase space) between the plan (dotted line)
and actual (solid line) trajectories corresponding to the longest step instance
in figure 6. Start and End points (denoted S and E respectively) are chosen
so as to also illustrate the process of inter-step transition (”vertical segments
away from the plan trajectory”).

gaits. Figure 6 depicts three specific instances from this family.
Lastly, we point out that the algorithm presented above is

not only able to handle the irregular footholds requirement, but
also it does this without using much more energy than other
actuated versions of passive walkers. In order to make this
point, we compare the energy consumption of our strategy
against three variations of the strategy outlined in [10]. We
compare against the basic periodic gait (Passive), a perturbed
version of this gait that yields quasi-periodic behavior (Passive
Period-2) and a variant that involves adaptive control of the
swing leg (Fast). As shown in table I, the manifold approx-
imation procedure yields trajectories that are comparable to
(and slightly better than) the variants that are capable of
achieving anything other than a purely periodic gait. In fact,
we emphasize that only the manifold approximation strategy
is capable of achieving the precise sequence of irregularly
spaced footholds - so it is all the more reassuring that this
is being achieved with comparable energy efficiency to the
other passive strategies.

TABLE I
COMPARISON OF cost of transport - COMPUTED AS TOTAL EXPENDED

ENERGY, E , NORMALIZED BY ROBOT MASS, m, AND DISTANCE

TRAVELED, x.

Manifold Appr. Passive Passive Period-2 Fast

cot =
(
E

mx

)
1.636 1.367 1.682 1.652

VI. DISCUSSION

A. Extension to on-line and continuous learning

In this paper, we described an off-line learning algorithm
using a batch of observational data. However, the represen-
tation and algorithmic procedure can be adapted to on-line
applications. To be precise, what we are assuming is that we
are able to observe the dynamics of the robot as it performs
randomized trials in an environment that induces a variety of
different foothold conditions. The set of observations are being
collected over many trials, each one ending in failure after
some amount of stumbling around. The goal of the algorithm
presented in this paper is to go from this level of (lack of)
skill to a robust strategy that can achieve any foot placement
goal within a suitably large interval. So, collectively, the ob-
servations provide a wide variety of foot placement conditions
from which the algorithm generalizes to a strategy that can
reliably achieve any other foot placement goal within a suitable
interval. Moreover, the proposed algorithm is not affected by
the presence of spurious data. This means that in a changing
environment, a higher level process could easily discard stale
data without impacting performance. Once the robot has a
suitable corpus of data, sufficient to get it going, the set can
be continually updated by logging all subsequent experiences
as the robot actually walks - and continually updating all
data structures at appropriate time intervals. Also, we use a
nonparametric representation of the task manifold, as a graph.
This has the benefit of enabling future improvements, such
as multi-resolution algorithms that make tradeoffs between
data density (hence approximation quality) and computational
complexity.

B. Merging the benefits of analytical modeling and machine
learning

Bipedal walking is one instance of a larger class of dynam-
ically dexterous behaviors in high-dimensional, constrained,
nonlinear systems. There are a number of other behaviors
that we would like to achieve - ranging from dynamic object
manipulation to full-body locomotion in tightly constrained
spaces. In these general problem spaces, it is often the case that
we do not understand all the dynamic effects well enough to be
able to synthesize motion strategies using traditional model-
based control design techniques. At the same time, model-free
machine learning methods are still quite far from addressing
such demanding problems, partly because the search spaces are
too large and unconstrained. In this work, we have explored
one approach to finding a middle ground, by merging a
hand-crafted template strategy with a data-driven learning
algorithm. In fact, our specific choices for template strategy
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and implementation of the learning algorithm may be modified
without significantly affecting this larger argument.

VII. CONCLUSIONS

We propose a technique for trajectory generation that
simultaneously addresses two goals - (i) incorporation of
biologically inspired principles such as the passive/ballistic
nature of human walking and (ii) planned walking with foot
placement goals, such as on irregular terrain. We solve this
motion planning problem without requiring detailed analytical
models of the multi-link legged robot dynamics. Instead, we
rely on a combination of data-driven learning and planning
with a simpler abstract model. We demonstrate the utility of
this approach using simulation results from a multi-link legged
robot.
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