
  

  

Abstract—This paper presents a control scheme of a class of 
under-actuated systems with saturation using hierarchical 
sliding mode. This class with a single input and multiple outputs 
is made up of several subsystems. Based on this physical 
structure, the hierarchical structure of the sliding mode surfaces 
is developed as follows. The sliding surface of every subsystem is 
defined. Then the sliding surface of one subsystem is selected as 
the first layer sliding surface. The first layer sliding surface is 
used to construct the second layer sliding surface with the 
sliding surface of another subsystem. This process continues till 
all the subsystem sliding surfaces are included. The hierarchical 
sliding mode control law is deduced by using Lyapunov theorem. 
On account of saturation nonlinearity of the single input, 
asymptotic stability of the control system is proven by nonlinear 
small gain theorem. Parameter ranges of the subsystem sliding 
surfaces are also given. In practice, simulation and experimental 
results show the validity of this control method. 

I. INTRODUCTION 
HERE has been an increasing amount of attention to 
control problems of under-actuated systems in recent 

years [1]. Under-actuated systems with less control inputs 
than degrees-of-freedom are rich in extensive applications. In 
this paper, we focus on a class of under-actuated systems. 
This class with a control input and multiple outputs is rather 
large, including inverted pendulum systems, Pendubot, 
Acrobot, TORA, overhead crane, etc. These systems are often 
used for researches in various control methods and for 
education in various concepts [2]. Numerous control methods 
have been presented [2]–[6]. In fact, a normal state space 
expression can depict them. Thus, we can consider 
developing a general control method for the class. 

Sliding mode control (SMC) is a robust control method [7]. 
The SMC provides a good candidate for control design of this 
class. But designing a common sliding surface for the control 
of under-actuated systems is not appropriate [8]. As far as 
physical structure is concerned, the class of mechanical 
systems consists of several subsystems. Based on this 
structure, some control methods have been presented. Lin [9] 
proposed a hierarchical fuzzy sliding mode control scheme. 
But they did not consider the stability of the subsystem 
sliding surfaces. In [10], a decoupled fuzzy sliding mode 

 
Manuscript received September 12, 2007. This work was partly supported 

by the NSFC Projects under Grant No. 60575047, 60475030, and 60621001; 
National 863 Program (No.2007AA04Z239); the Outstanding Overseas 
Chinese Scholars Fund of Chinese Academy of Sciences (No. 2005-1-11). 

 

D. Qian, J. Yi, and D. Zhao are with the Laboratory of Complex Systems 
and Intelligence Science, Institute of Automation, Chinese Academy of 
Sciences, Beijing, 100080, P.R. China (E-mail: dianwei.qian@ia.ac.cn). 

control law was designed. But it could only be applied to 
2-level control. Wang [11] developed a cascade sliding mode 
control approach. But some controller parameters needed to 
be frequently switched for guaranteeing the system stability. 
[8] designed a hierarchical sliding mode controller with the 
entire stable sliding surfaces, but the method in [8] could not 
be general for under-actuated systems with more subsystems 
than two. By considering the stability of subsystems, the 
parameters of the subsystem sliding surfaces in the above 
mentioned control methods were selected as positive 
constants. To our knowledge there is no solution to the 
problem of the upper boundaries of these parameters. 
Moreover, the single control input of the class was considered 
as an ideal one in the above papers, and the input saturation 
was neglected. However, the reliable operation and 
acceptable performance of most control systems must be 
assessed in light of actuator saturation. In recent years, the 
problem of input saturation has received a mount of attention. 
Especially, nonlinear small gain theorem in [12] provides a 
good design tool.  

Under considering saturation constraint of the control input 
of this class of SIMO under-actuated systems, this paper 
develops a control method using hierarchical sliding mode. 
The remainder is organized as follows. Section 2 describes 
the presented control method. On account of input saturation, 
stability analysis is presented by nonlinear small gain 
theorem in Section 3. Simulation and experimental results in 
Sections 4 and 5 show the feasibility of this control method, 
respectively. At last, conclusions are derived in Section 6.  

II. CONTROL DESIGN 
Consider the state space expression of this class of SIMO 

under-actuated systems with n subsystems as 
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Here X = [ x1, x2, … , x2n ]T is the state variable vector; fi and bi 
(i=1, 2, … , n) are the nonlinear functions of the state 
variables; and u is the single control input. 

Equation (1) can express the class with different n, fi and bi. 
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If n=2, (1) can represent a Pendubot, an Acrobot, a TORA, 
etc; if n=3, it can express a series or parallel double inverted 
pendulum system; if n = 4, it can be considered as a series 
triple inverted pendulum system; etc. Physical structure of the 
class is that they can be treated as being made up of several 
subsystems. For example, a series triple inverted pendulum 
system consists of four subsystems: upper pendulum, middle 
pendulum, lower pendulum, and cart. According to this 
viewpoint, such a system as (1) can be divided into n 
subsystems. The state equation of the ith subsystem is 
represented by 
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                                (2) 

Define its sliding surface (a linear function) as 

2 1 2i i i is c x x−= +                                (3) 

Here ci is a positive constant. Differentiating si with respect to 
time t in (3), we have 

2 1 2i i i is c x x−= +                                (4) 

Substituting (2) into (4) gives 

2 f bi i i i is c x u= + +                             (5) 

Let 0is = in (5). Then the equivalent control of the ith 
subsystem is gotten as 

eq 2( f ) / bi i i i iu c x= − +                           (6) 

According to diverse combinations of the subsystem 
sliding surfaces, a variety of hierarchical sliding mode control 
laws can be designed [8], [11]. And other control methods 
can be combined with the hierarchical sliding mode method 
[9], [10]. In this paper, the hierarchical structure of the sliding 
surfaces is designed in the following manner. The sliding 
surface of one subsystem is chosen as the first layer sliding 
surface S1. Then S1 is used to construct the second layer 
sliding surface S2 with the sliding surface of another 
subsystem. This process continues till all the subsystem 
sliding surfaces are included. Without loss of generality, the 
subsystem sliding surface s1 is selected as S1. The hierarchical 
structure of the sliding surfaces is shown in Fig.1. 

 

x2n-1 x2n 

x1  x2 x3  x4 

x5  x6 

s3 

s2 S1 

S2 

Sn 

Sn-1 sn 

 
Fig. 1. Hierarchical structure of the sliding surfaces 

In the presented hierarchical structure, we know that the ith 
layer sliding surface includes the information of the 
ith-subsystem sliding surface and the other i-1 lower layer 
sliding surfaces. As a result, the ith-layer sliding surface Si 
and its control law ui can be defined as follows. 

1 1i i i iS S sλ − −= +                                (7) 

1 eq swi i i iu u u u−= + +                           (8) 

Here λi-1 (i = 1, 2, … , n) is a constant; λ0 = S0 = 0; u0 = 0 ; uswi 
(i = 1, 2, … , n) is the switching control of the ith-layer sliding 
surface. From the recursive formulas (7) and (8), we have 
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Here for a given i, aj = λ j (j≠i ) is a constant; and aj = 1 (j=i ). 
The control law can be derived from Lyapunov theorem. The 
Lyapunov function of the ith layer is selected as 

2( ) / 2i iV t S=                               (11) 

Differentiating Vi with respect to time t obtains 

i i iV S S=                                  (12) 

Differentiating Si with respect to time t in (9) and substituting 
it into (12) yield 
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Substituting (2), (4), and (10) into (13) obtains 
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In order to have the stability of the ith-layer sliding surface, 
let 
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where ki and ηi are positive constants. We have the switching 
control law uswi from (15). 
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Substituting (16) into (10) and letting i = n, we can obtain the 
hierarchical sliding mode control law (17). 
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From (17), only the switching control of the nth layer 
works. The switching controls of the other n-1 lower layers 
are merged in the deduction. In the reaching mode stage, 
when any state of a subsystem deviates from its own 
subsystem sliding surface, the switching control of the nth 
layer will drive it back. From the above control design, 
Lyapunov stability theorem can guarantee that Si is 
asymptotically stable if there is no saturation constraint on the 
single control input. Moreover, si is also asymptotically stable. 
(If si is not asymptotically stable, then this contradicts the fact 
that Si is asymptotically stable in (9).) However, input 
saturation is a common constraint and all actuators of 
physical devices are subject to amplitude saturation. By 
considering this constraint, the single control input should be 
written: 

sat( )nu u=                                 (18) 

Here sat(•) is a saturation function. sat( un) = un as | un| <σ and 
sat(un ) = σsgn( un ) as | un| ≥σ, where σ is the amplitude of the 
saturation function. 

III. STABILITY ANALYSIS 
The following definitions, such as asymptotic L∞-norm, 

asymptotic bound, gain function, Lipschitz well-posed 
system, and finite escape time, were defined in [12].  

Lemma 1: Consider a Lipschitz well-posed interconnected 
system where the output of the hth subsystem (h=1,2) 
satisfies an asymptotic bound from Xh with gain γh and 
restriction Δh, here Xh is the state vector of the hth subsystem; 
γh is a gain function; Δh is a non-negative real number (or 
possible ∞). Suppose that for all initial conditions in Xh, there 
are no finite escape times. If a) Δ2 = ∞, b) γ1(∞) ≤ Δ1, c) the 
composition of γ1 and γ2 is a simple contraction, then both the 
outputs of the two subsystems are of asymptotic bound. 

Proof: See Theorem 2 in [12]. Teel considered an 
interconnected system with external disturbances. But here 
we consider the interconnected system with no external 
disturbances as a special case of Teel’s conclusion. Further, 
“subsystem” in this lemma is not a part of the under-actuated 
system, but a part of the interconnected system.                    ■ 

Theorem 1: Consider the SIMO under-actuated system (1) 
with the sliding surfaces (3), (7) and the hierarchical sliding 
mode control law (16). Suppose that for those initial state 
vectors X, there is no finite escape time. If σ > | X |a is satisfied, 
here σ is the amplitude of the saturation function and | X |a is 
the asymptotic L∞-norm of the state vector X, then the control 
system is asymptotically stable. 

Proof: The controlled plant with gain γ1 and restriction Δ1, 
and the controller with gain γ2 and restriction Δ2 make up of 
an interconnected system. 

1). The interconnected system coincides with Lipschtz 
well-posed condition. 

Since there exists the discontinuous switching control (16), 
the interconnected system is not globally Lipschtz. But the 
switching control does not work when the state variables keep 
sliding on the sliding surfaces and converge to the origin. The 
interconnected system satisfies the local Lipschtz condition at 
that time. Thus, we conclude the interconnected system is 
Lipschtz well-posed. 

2). The controller is of asymptotic bound. 
Due to the saturation nonlinearity of the controller output, 

the controller is of asymptotic bound and its gain is less than σ. 
Its gain function can be defined as 

γ2 ( | X |a ) = min{ | X |a , σ }                   (19) 

3). The controller restriction satisfies Δ2 = ∞. 
The controller input is the output of the controlled plant, 

namely the state vector X. During the control design, this 
vector has no constraint. Thus, the controller restriction 
satisfies Δ2 = ∞. 

4). γ1(∞) ≤ Δ1 is satisfied. 
For the interconnected system, we have Δ1 = σ. And the 

gain function of the controlled plant can be defined as 

γ1 ( | un |a ) = min{ | un |a , σ }                  (20) 

Thus, there exists γ1(∞) ≤ σ = Δ1. 
5). From (19) and (20), we have that the composition of the 

gains γ1 and γ2 is a simple contraction. 
With the above five conditions, both the controlled plant 

and the controller are of asymptotic bound by the lemma 
(nonlinear small gain theorem). Namely, | X |a ≤ γ1( | un |a ). 
Hence, let σ > | X |a during the design, then the interconnected 
system is of asymptotic bound. 

If the interconnected system is of asymptotic bound and 
does not converge to the origin, then the interconnected 
system is in the reaching mode stage. In this stage, the 
switching control makes the interconnected system arrive at 
the sliding mode stage. In the sliding mode stage, the system 
states keep sliding on the last layer sliding surface and 
converge to the origin. Moreover, the states of every 
subsystem keep sliding on the subsystem sliding surface itself 
and converge to its subsystem origin. Therefore, by 
combining the conception of the hierarchical sliding mode 
control, the presented control method can result in an 
asymptotically stable control system.                                    ■ 
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Remark 1: The conditions | X |a < σ and Δ2 = ∞ seem 
contrary. In fact, they do not contradict each other. By 
considering the interconnected system, the controller input is 
the state vector X and there is no constraint for X. 
Furthermore, the inequation σ > | X |a is for control design. It 
can guarantee the interconnected system is stable. But we 
don’t know the value of |X |a actually. As a result, we should 
give a desired value of | X |a and modify it during simulations. 

Theorem 2: Consider the SIMO under-actuated system (1) 
with the hierarchical sliding mode control law (15) and the 
ith-subsystem sliding surface (3), assume that all the state 
variables are equivalent infinitesimals of each other at a 
certain neighborhood of the origin, then the range of the 
parameter ci should be 0 < ci < | lim X→0 ( fi / x2i ) |, where X is 
the state variable vector. 

Proof: When the states of the ith subsystem keep sliding on 
the subsystem sliding surface itself, we have the following 
equation. 
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                   (21) 

1). Lower boundary of ci 
Replacing x2i in (21a) by (21c), we have 

2 1 2 1 0i i i is c x x− −= + =                        (22) 

Eigenvalue of (22) should be negative for guaranteeing the 
stability of the ith subsystem. Thus, the lower boundary of ci 
is ci > 0. 

2). Upper boundary of ci 
Substituting (21d) into (21b), we obtain 

2 1 2 2 eqf b 0i i i i i i i i is c x x c x u−= + = + + =            (23) 

Further, we have 

eq 2 eq 2| (f b ) / | (| f | | b |) / | |i i i i i i i i ic u x u x= + ≤ +      (24) 

When the states of the ith subsystem keep sliding on its 
own sliding surface and converge to a certain neighborhood 
of the origin, this subsystem can be treated as an autonomous 
system. Thus, we have ci ≤ | fi /x2i |. 

Further, ci0 = | lim X→0 ( fi /x2i ) | can be calculated in light of 
the assumption in Theorem 2 that all the state variables are 
equivalent infinitesimals of each other at a certain 
neighborhood of the origin. As a result, the range of the 
parameter ci should be 0 < ci < ci0.                                             ■ 

Remark 2: Although Theorem 2 can not calculate the 
precise value of ci, it points out a direction to select the 
parameter ci. On the other hand, if a self-adaptive tuning law 
of ci is designed, ci may not be in the open interval (0, ci0) 
when the system states are far from the origin. But ci will 
converge to this open interval as the system states converge to 
the origin. 

IV. SIMULATION RESULTS 
The series double inverted pendulum system in Fig. 2 

belongs to this class. Its structure contains three subsystems: 
the upper pendulum, the lower pendulum, and the cart. In this 
section, we shall demonstrate this control method is 
applicable to stabilization control of the series double 
inverted pendulum system. Control objective is to balance 
both of the pendulums upright and put the cart to the rail 
origin by moving the cart [9].  

 
Fig. 2. Structure of the series double inverted pendulum system 

The symbols in Fig. 2 are defined as follows: x1 is the lower 
pendulum angle with respect to the vertical line; x3 is the 
upper pendulum angle with respect to the vertical line; x5 is 
the cart position with respect to the origin; u is the control 
force. Let n=3 in (1). Then we have its state equation, where 
x2 is the angular velocity of the lower pendulum; x4 is the 
angular velocity of the upper pendulum; x6 is the velocity of 
the cart; [10] gave the expressions of fi and bi (i=1, 2, 3). 

The structural parameters are chosen as the cart mass 
M=1kg, the lower-pendulum mass m1=1kg, the 
upper-pendulum mass m2=1kg, the lower-pendulum length 
l1=0.1m, the upper-pendulum length l2=0.1m, the 
gravitational acceleration g=9.81m·s-2, all of which are the 
same as [9]. The boundaries of c1, c2 and c3 are calculated as 
294.39, 98.31 and 11.44, the expressions of which are shown 
below. 
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(25) 

Here A = M+m1+m2, B = m1l1/2+m2l1 and C = m1l1l1/3+m2l2l2. 
The controller parameters are chosen as c1=184.26, 

c2=15.96, c3=0.72, a1= -0.06, a2=0.45, k3 =37, η3=0.3 and 
σ=70 after trial and error. Fig. 3, 4, 5 show the state variables 
from the initial state vector X0 = [π/6, 0, π/18, 0, 0, 0]T to the 
desired state vector Xd = [0, 0, 0, 0, 0, 0]T, the entire sliding 
surfaces, and the control force, respectively. The simulation 
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results verify the feasibility of the control method. 
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Remark 3: Lo’s control method [10] could only realize 
two-level control. Consequently, the controller in [10] could 
only balance the two pendulums, but failed to put the cart to 
the origin at the same time. Compared with [10], our control 
objective is more difficult. The controller parameters in Lin’s 
method [9] were modified by fuzzy logic, but the fuzzy logic 
made it difficult to analyze system stability. Compared with 
[9], our curves are smoother and the cart moves shorter under 
the same physical parameters, the same control objective and 
the same initial condition. 

V. EXPERIMENTAL RESULTS 
In this section, the control method is implemented on 

transport control of an overhead crane testbed system. The 
1-dimension crane belongs to this class and is made up of two 
subsystems: the trolley and the load. Control objective of the 
transport control is to move the trolley to required position 
and implement the anti-swing control at the same time. [13] 
gave the introduction of this testbed in detail. 

The physical parameters are determined as the trolley mass 
M=37.32kg, the load mass m=5.00kg, the rope length 
l=1.05m, the gravitational acceleration g=9.81m·s-2. Let n=2 
in (1). We have its state equation, where x1 is the trolley 
position with respect to the origin; x3 is the swing angle of the 
load with respect to the vertical line; x2 is the trolley velocity; 
x4 is the angular velocity of the load; u is the single control 
input; fi and bi (i=1, 2) were given in [8].  

The controller parameters are chosen as c1=1.1, c2=10.3, 
a1= -2.9, k2=1.3, η2=0.06 and σ = 40. c10 and c20 are calculated 
as 1.34 and 10.59 from Theorem 2, the expressions of which 
are shown below. 
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=⎧
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                      (26) 

Fig. 7 shows all the state variables of the 1-dimension 
crane system from the initial vector [0.9, 0, 0, 0]T to the 
desired vector [0, 0, 0, 0]T. Fig. 8 and Fig. 9 display the curves 
of the entire sliding surfaces and the single control input 
added to the trolley, respectively. These results in Figures 7, 8, 
and 9 coincide with Theorems 1 and 2, which verify the 
feasibility of the control method. 

In Fig. 9, there is one saturating point in the beginning of 
the simulation transport process, but there are still other 
saturation points in the experimental transport process 
besides the beginning. The reason is as follows. The crane 
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mathematic model was deduced under some assumptions, 
such as no friction, point mass, etc. But the physical testbed 
system would not move if there were no friction. These 
unmodeling and unknown factors make the testbed system 
need a larger force. Thus, the experimental force curve has 
more saturation points. The physical experiments show that a 
small-power actuator could be used to realize the same 
control objective for a physical system. This case is 
meaningful for reducing the cost and saving power. 
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VI. CONCLUSION 
The control scheme of a class of SIMO under-actuated 

systems with saturation using hierarchical sliding mode has 
been developed. According to the physical structure of the 
class, the hierarchical sliding surfaces are designed and the 
hierarchical sliding mode control law is deduced. Due to 
saturation nonlinearity of the control input, the asymptotic 
stability of the control system is proven by nonlinear small 
gain theorem theoretically. The parameter ranges of the 
subsystem sliding surfaces are also given. In simulation 
researches, this control method is demonstrated through the 
stabilization control of a series double inverted pendulum 
system. In experimental researches, this control method is 
applied to the transport control of a 1-dimension overhead 
crane testbed system. The above two under-actuated systems 
belong to this class with different n, fi and bi. Both 
simulations and experiments confirm the controller’s validity 
and generalization. 
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