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Abstract— In this paper, we investigate characteristics of a
dynamic programming (DP) algorithm when it is applied to a
control problem of a chaotic system. We choose a height task
of the Acrobot, which is an underactuated robot. For various
reasons, a straightforward method of DP is thought that it
is not suitable for such a system. However, DP is attractive
because of its conciseness, versatility, and flexibility toward
boundary conditions. Our simulation results suggest that to
apply DP methods to the task is possible under some conditions.
Moreover, even when the conditions are not fulfilled, some
interesting behavior of the Acrobot can be found.

I. INTRODUCTION

Control of robots that have chaotic characters has been
one of the most difficult challenges in robotics. One of
the most important characteristics of chaotic systems is
sensitivity to differences of state [1]. When no control is
added to such a system, state transitions from two states in
a vicinity suddenly diverge after a few moments. This effect
is frequently referred to as the butterfly effect, or as sensitive
dependence on initial conditions. To forecast the state of a
system after a certain period of time, we must know an initial
state and the dynamics with complete accuracy.

It does not mean that such a system is uncontrollable.
In some cases, chaotic features can be eliminated by chaos
control methods as typified by Ott-Grebogi-Yorke (OGY)
control methods [2] and Pyragas’s methods [3], which have
been proposed in the 90’s.

In this paper, we handle a control method of a type of the
Acrobot defined in [4]–[9]. This robot is an underactuated
robot, which has two links and one actuator. In almost all of
the sets of parameters, its behavior without control has no
certain orbit. Its behavior is thus chaotic.

In many studies, the Acrobot has been successfully con-
trolled. Just as the above chaos control methods, kinds of
feedback control are used in [4], [10]. In some studies, on
the other hand, reinforcement learning methods are tested
on the Acrobot [9], [11]. The former tries regulating the
motion, like a vibratory control does. From that viewpoint,
controllers obtained by these methods are artificial. Though
the artificiality is not a problem, those methods sometimes
cannot deal with problems about boundary conditions, or
trivial constraints of hardware. The latter is rather natural.
Learning algorithms understand dynamics of the Acrobot
from some trials and make the Acrobot swing high or stand
up. In this regard, however, learning methods can consider
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only a part of possible states of the Acrobot. The states
exist infinitely in continuous space. Trials for learning are
hardly adequate when we consider the sensitivity. The cases
where the number of trials is adequate would be followings:
available torque and frequency of control are enough to
eliminate the sensitiveness, or almost all of the trials are
finished before the butterfly effect occurs.

Numerical calculation is located midway in the above
approaches. Some methods of dynamic programming (DP)
[12] can handle boundary conditions without fatal problems.
Moreover, some methods of DP must consider whole space
of states fatefully and it is sometimes possible. When we
try to apply DP with discretization to a chaotic system,
however, the problem is not perfectly solved for many
reasons. However, when we can use a powerful computer,
the conciseness, versatility, and flexibility toward boundary
conditions of DP are attractive.

The purpose of this paper is to find some characteristics of
a straightforward implementation of DP with discretization
when it is daringly applied to such a chaotic system. The
value iteration algorithm is used as the implementation. As
mentioned below, we find that DP can be successfully applied
to a chaotic system under some conditions. Moreover, some
interesting results are obtained when the conditions are not
fulfilled.

We remove heuristics from our implementation as far as
possible. In the case of the Acrobot, energy is used as such
a heuristic [8]. Though some assumptions are inevitably
required, they are usually in common with those of actual
robots. As a result, this research requires huge computational
resources. These results could never be obtained in previous
decades. Thus no one has ever obtained the calculation
results as far as we know. Though we have one result in
[13], an easy setting of parameters was used in the study.

This paper is composed of five sections. In Sec.II, a
problem of the Acrobot is defined. In Sec.III, our algorithm
is implemented. We discuss interesting phenomena shown
in the results of our algorithms in Sec.IV. This paper is
concluded in Sec.V.

II. ROBOT, TASK AND ASSUMPTION

A. Its Dynamics

The Acrobot is a two-link robot shown in Fig.1. Link 1
can swing freely at this joint. Torque τ can be given at Joint
2. Its pose is represented by the pair of angles (θ1, θ2). As
shown in the figure, the length of Link i is represented by
�i. �ci denotes the distance from Joint i to mass center of
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Fig. 1. The Acrobot and Its Parameters

Link i. The mass of Link i is mi. The moment of inertia of
Link i is then Ii.

The dynamics of this robot can be represented by

θ̈2 =
(τ + φ1d2/d1 −m2�1�c2θ̇1

2
sin θ2 − φ2)

(m2�2
c2 + I2 − d2

2/d1)
, and (1)

θ̈1 = −(d2θ̈2 + φ1)/d1, where (2)
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2
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1 + �2
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2
sin θ2 − 2m2�1�c2θ̇2θ̇1 sin θ2

+ (m1�c1 + m2�1)g cos(θ1 − π/2) + φ2, and
φ2 = m2�c2g cos(θ1 + θ2 − π/2).

The energy of this Acrobot can be calculated as

E(θ1, θ2, θ̇1, θ̇2) = m1�c1(1− cos θ1)g
+ m2�1(1− cos θ1)g + m2�c2(1− cos(θ1 + θ2))g

+ 1
2I1θ̇

2
1 + 1

2I2(θ̇1 + θ̇2)2 + 1
2m1(�c1θ̇1)2 + 1

2m2(�1θ̇1)2

+ 1
2m2(θ̇1 + θ̇2)2�2

c2 + m2θ̇1(θ̇1 + θ̇2)�c2�1 cos θ2 (3)

when we define as E(0, 0, 0, 0) = 0.
This paper handles a simulated robot that has identical

parameters with the Acrobot referred to in [7], [14]. The
parameters are shown in the figure. They are more severe for
the height task than the parameters used in [5], [8], and in
our work [13]. The most important difference between them
is the setting of inertia. The former regards the links as thin
rods. The latter sets a simple value to every inertia and it is
much larger than that of a thin rod. Since the values in [7],
[14], and this paper are small, it is difficult to swing up by
a large momentum when a speed limit is set as mentioned
below.

B. Boundary Conditions, and Other Assumptions

The following assumptions are added to the Acrobot due
to limitations of numerical calculations. These limitations
sometimes reduce performance of a robot. However, actual
robots sometimes require identical restrictions. On the other
hand, methods of mathematical analysis frequently cannot
deal with some kinds of limitation on actual robots (e.g.
boundary conditions).

• The maximum speeds are limited to ±4π[rad/s] at Joint
1 and ±9π[rad/s] at Joint 2. The set of these values is

shown in [5] and it is very interesting for a number
of reasons. The limitation is not only for reducing the
amount of calculations. It prevents hardware from burn-
ing up if we use an actual robot for experimentation.
Moreover, this limitation banishes brute force solutions.
The more the Acrobot charges its mechanical energy,
the riskier the trial is. For example, E(π, 0, 0, 0) = 5g ≈
49[N·m] and E(0, π, 4π,−π) = 14π2/3 ≈ 46[N·m]
when Eq.(3) is calculated with the parameters in Fig.1.
These values imply that the Acrobot that stands up has
enough energy to violate the limitation.

• Chances to change the torque τ visit every 0.2[s]. The
value of the torque at each time instant is chosen from
a finite set: T .

• The θ1θ2θ̇1θ̇2-space, which is written as X , is then
divided into 10[deg]×10[deg]×10[deg/s]×10[deg/s].
Though these values can be easily changed in the value
iteration mentioned below, we fix them beforehand.
That is because those values also become a limitation
on hardware (e.g. sensors, delay of information). By the
discretization, state space is divided into 60, 466, 176
discrete states when the speed limitation is considered.
A discrete state is symbolized as s. The set of these
discrete states are written as S. Each state in S has a
symmetry state, which is identical to when we observe
the Acrobot in Fig.1 from the back side of the paper.

C. Height Task under Boundary Conditions

The height task is given to the Acrobot in this paper.
The word height task can be shown in [8]. In this task, the
Acrobot is controlled so that the free end of Link 2 gets over
a target height. When the height of the free end of Link 2
is represented by y2 in the xy coordinate system defined in
Fig.1, the relation between y2 and the pair of (θ1, θ2) is

y2 = −�1 cos θ1 − �2 cos(θ1 + θ2). (4)

When the target height is denoted by h on the y-axis, y2 ≥ h
is the purpose of control.

A continuous state that fulfills y2 ≥ h is called a
successful final state in this paper. We define Xsuccess as the
set of all successful state. On the other hand, there are states
whose angular velocities violate the boundary conditions:
|θ̇1| > 4π[rad/s] or |θ̇2| > 9π[rad/s]. Such a state is called a
failure final state. Their set is written as Xfailure hereafter.

In this paper, the task is regarded as a problem of minimum
time control under boundary conditions. In this case, the
evaluation functional is defined as

J [τ ] = V (x(T )) +
∫ T

0

−1dt = V (x(T ))− T, (5)

where T is the first time when x ∈ Xsuccess or x ∈ Xfailure.
τ is regarded as a function that gives the torque at time
t (0 ≤ t < T ) in the above equation. V (x(T )) is defined as

V (x(T )) =

{
0 if x(T ) ∈ Xsuccess

vfailure if x(T ) ∈ Xfailure,
(6)

where vfailure is a large negative value, which means a penalty.
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III. VALUE ITERATION FOR HEIGHT TASK

Dynamic programming (DP), which has been established
by Bellman [12] is a group of methods for solving optimal
control problems and Markov decision processes (MDPs)
with numerical calculation. DP can solve optimal control
problems in discrete time and space. The value iteration
algorithm is an implementation of DP.

A. Approximation to Finite Markov Decision Process

A state of the Acrobot can be represented by x =
(θ1, θ2, θ̇1, θ̇2) ∈ X . This definition fulfills the Markov
property. In continuous space, the state transition is deter-
ministic and follows Eq.(1)-(2). When we want to obtain
a state x′ after torque τ is applied, the posterior state x′

after 0.2[s] can be calculated by a Runge-Kutta method, for
example. Though this is an approximation, this transition is
still deterministic.

However, when the continuous space X is discretized
into the discrete set S as mentioned in Sec.II-B, we must
handle state transitions as stochastic. A state transition can
be represented by Pτ

ss′ . This symbol denotes a state transition
probability that the posterior state x′ is contained in s′ ∈ S
by a torque τ . It is approximated as

Pτ
ss′ =

∫
x∈s

P (x′ ∈ s′)p(x|x ∈ s)dx. (7)

Since the conditional probability distribution p(x|x ∈ s) is
unknown, it is usually approximated as a uniform distribu-
tion. Therefore, calculations of Pτ

ss′ are approximation.
The set of Xsuccess has to be discretized too. The discrete

set is referred to as Ssuccess. We decide that all of continuous
states in s ∈ Ssuccess must be in Xsuccess. Xfailure is not
discretized since this set is outside of S.

In DP, the value of each state V ∗(s) ∈ � is defined.
This value denotes the expected value of the functional
Eq.(5) when the optimal torques are always chosen from
a continuous state in s. V ∗ is called the optimal state value
function. Values of V ∗ are fixed in the final states. That is
based on Eq.(6) and the definitions of Ssuccess and Sfailure. If
chaotic properties of the Acrobot are neglected, V ∗ fulfills
the following equation:

V ∗(s) = max
τ∈T

∑
s′
Pτ

ss′ [−0.2 + V ∗(s′)] (8)

(s ∈ S − Ssuccess; s′ ∈ S or s′ ⊂ Xfailure).

This equation is a Bellman equation. The word dynamic
programming (DP) [12] means the methodology or methods
to solve Bellman equations.

The value iteration algorithm [11], [15], [16] is one of the
most popular methods in DP. In this algorithm, the following
procedure:

V (s)←− max
τ∈T

∑
s′
Pτ

ss′ [−0.2 + V (s′)] (9)

is repeatedly applied to all states except for final states until
V converges to V ∗. When the above procedure is applied to
all s ∈ S − Ssuccess, the set of procedures is called a sweep.

The optimal policy, which give the best torque τ at s, is
then obtained by:

τ∗(s) = argmax
τ∈T

∑
s′
Pτ

ss′ [−0.2 + V ∗(s′)]. (10)

In this case, τ∗ is regarded as a mapping from S−Ssuccess to
T . Note that τ∗ can answer the torque at every continuous
state: ∀x ∈ s ∈ S − Ssuccess.

B. Calculation of State Transition Probabilities

Pτ
ss′ should be calculated in feasible time. To solve Pτ

ss′

with the procedure in Eq.(7), we need to investigate all
state transitions from all x ∈ s. However, this calculation
is intractable.

In our past work [13], only four continuous states in s were
used for the calculation. Though we change the number of
continuous states that are sampled in a discrete state, this
method is also used in this paper.

When μ continuous states x[i] (i = 1, 2, . . . , μ) are chosen
from s, Pτ

ss′ is regarded as

Pτ
ss′ =

1
μ

μ∑
i=1

I(x′[i] ∈ s′), (11)

where I = 1 if the argument is true. If it is false, I = 0.
x′[i] is the posterior state from x[i]. In our implementation,
this equation is used in the procedure Eq.(9) as

V (s)←− −0.2 + max
τ∈T

1
μ

μ∑
i=1

V (s′ 
 x′[i]). (12)

A 4th order Runge-Kutta method is used for the calcula-
tion of each posterior state in our implementation. To solve
one posterior state, this method uses hundreds of arithmetic
operations. However, there is no problem when the latest
computer technology is used.

The value of V ∗(s) should be

V ∗(s) = −E[T ]Psuccess − (E[T ′]− vfailure)Pfailure (13)

in an ideal calculation. E[T ] and E[T ′] are the expected
values of time to each type of final state with an optimal
policy, and Psuccess and Pfailure are the probabilities of success
and failure respective. Since the value function calculated
by value iteration without heuristics is directly related to a
meaningful quantity, its results have large reliability.

C. Expected Problems on Discretization

In a precise sense, the value iteration algorithm explained
above cannot solve problems on chaotic systems, which
include tasks of the Acrobot. We can understand the fact
from the following brief analysis.

1) Averaging of Values: Each value V ∗(s) is averaged
in discrete state s. That is a problem when it is calculated
toward a task of the Acrobot. Since its motion becomes
different with small difference of states, each continuous
state x ∈ s may have a much different value from the others.
Even if the system is continuous, a chaotic system fulfills

lim
ε→0
{V ∗(x)− V ∗(x− ε)} �= 0 (∀x ∈ s) (14)
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from any direction except for forward and inverse directions
of the state transition. It implies that a control that is obtained
with discretization cannot be confirmed not only as optimal
but also as good approximation. Even if the discretization is
extremely fine, it is impossible.

2) Accumulation of Errors: In value iteration, moreover,
the averaged value is used for calculating values of other
states. Therefore, errors diffuse and accumulate. We should
expect that values of discrete states that are far from all final
states cannot be calculated exactly.

D. Calculation

Though the problems are clear, we create global policies
with various combinations of available sets of τ and μ. The
target height is set to h = 2[m]. Though the computation
time sometimes reaches to tens of days, we do not think that
it is a problem. That is because once a global policy, which
is a look-up table, can be obtained, it can answer a torque
toward every state instantly even on a very cheap computer.

We prepare six sets of torques Ti (i = 1, 2, 3, 4, 5, all). In
other words, six kinds of actuator are prepared. i is directly
related to the values of torque τ [N]. When i = 1, 2, . . . , 5,
Ti = {±i, 0}. In the case of Tall, the Acrobot can choose all
of the torques. Hence, Tall = {±i|i = 0, 1, 2, . . . , 5}.

μ = 1, 4, 16, 81 are chosen as the numbers of sample
points. In every case, the problem is which continuous states
should be chosen as samples from a discrete state. When
μ = 1, the center point of each discrete state should be
sampled. When μ = 4, the center point is chosen on θ1θ2-
plane. In θ̇1θ̇2-plane, four corners of a discrete state are
chosen. This choice is identical with that of [13]. When
μ = 16, all corners of a discrete state is chosen. When
μ = 81, three points are sampled on each axis. By their
combinations from every axis, 81 continuous states can be
sampled. The three points are a midpoint and both ends of a
discrete states.In value iteration, vfailure = −1000[s] is given
as a large penalty. Though this parameter may change the
results of value iteration, we fix it in this paper.

The computer that is used for value iteration has the fol-
lowing resources: two Xeon-D5160 (3.9GHz), 8GB DRAM
(PC2-5300 CL5 DDR2), and two 250GB HDD. Our im-
plementation uses only one process, while four processes
are available on the computer. In the value iteration, the
difference of value by the procedure in Eq.(12) is checked.
If the maximum change is less than 10−4[s] in a sweep, we
regard it as convergence and the process is stopped.

Table I shows the computation time to the convergence.
The values in this table are rather rough because more than
two processes run on the computer at the same time. The
most important thing in this table is that all of the processes
converge. If the number of μ and available torques are
fixed, the difference of time occurs due to the difference of
the number of sweeps. From that perspective, small torque
induces many sweeps when μ = 16, 81.

The time consumption can be drastically reduced if all
state transitions are calculated and recorded in advance. If all
results of the Runge-Kutta method are cached, the algorithm

does not have to execute hundreds of operations to obtain one
state transition result in each sweep. In that case, however,
a huge amount of memory is required.

TABLE I
TIME TO CONVERGENCE

time (μ = 1: [min], the others: [day])
μ T1 T2 T3 T4 T5 Tall
1 5 5 7 7 7 29
4 0.2 0.1 0.2 0.1 0.2 0.2
16 3 1 0.8 0.6 0.7 4
81 11 6 4 3 3 11

E. Obtained Control Policies

We show parts of policies in Fig.2 and in Fig.3. A pose
of the Acrobot is illustrated in Fig.2(a). The angles are
(θ1, θ2) = (5, 5)[deg]. Fig.2(b)-(d) show parts of policies and
value functions that relate to the pose. From (b) to (d), T1, T3,
are T5 used respectively. Each figure from (b) to (d) contains
two kinds of gray scale image. The upper one gives the
torque for each pair of velocities: (θ̇1, θ̇2). Black and white
represent positive and negative torques respectively. The gray
part corresponds to τ = 0. The lower image represents the
value of each state. White represents V ∗(s) = 0 and black
represents V ∗(s) ≤ −60[s]. When −60 < V ∗(s) ≤ 0, the
strength of gray is in proportional to the value.

When the pose of the Acrobot is down as shown in (a), we
can intuitively imagine three phases: acceleration, braking,
and final swinging up. When both of the angular velocities
are small, the robot must enhance its energy by swing-like
motion. In each policy, black and white parts are changed
around the origin of θ̇1θ̇2-plain. This contrast represents this
motion. When the velocities are relatively high, there is a
danger of violation of speed after some seconds. Therefore,
the direction of torque at the high velocity region is different
from the region around the origin as shown in the images.
If the set of (θ̇1, θ̇2) is suitable for successfully finishing the
task, the torque should be decided so as to bring the toe of
the robot safely and quickly to the target height. From the
images, however, we cannot understand where that region
exists on each images.

In Fig.3(b)-(d), the set of torque is fixed to T5, while μ
is changed. Policies are sliced at θ1 = 85[deg] and θ2 =
175[deg]. The pose of this moment is shown in Fig.3(a).
The slice with μ = 1 is not shown here since no meaningful
pattern is obtained.

In every slice of policy, an area that is assigned the
negative torque exists in the θ̇1 > 0 and θ̇2 < 0 part. The
explanation of this white area is rather easy. From almost
all of this area, the Acrobot can finish the task successfully
without any control. By the negative torque, the Acrobot can
reduce the time consumption.

There is a vertical stripe pattern in the θ̇2 > 0 area of
each slice. The larger μ is, the sharper this pattern is. Since
this stripe is not strongly related to θ̇1, we cannot grasp why
such a control rule is obtained.
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Fig. 2. Parts of Value Iteration Results when μ = 81 (The length of each
axis is changed for visibility.)

IV. SIMULATION WITH DIFFERENT PARAMETERS

A. Simulated Acrobot

The dynamics of the Acrobot is simulated by the 4th order
Runge-Kutta method that is also used in the value iteration.
The time interval for computation is set to 0.01[s], which is
1/20 of the time interval for decision of torque. The accuracy
of this calculation can be evaluated from Fig.4. Since there
is only one trial, it is just for reference. This graph shows the
energy of the Acrobot that is not given torque. Unfortunately,
the energy is not constant but constantly reducing. If the
interval is shorter than 0.01[s], the simulation will be more
accurate. However, there may be no end to the accuracy.
Since the energy does not increase unnaturally, it is enough
to evaluate control policies.

Figure 5 shows each pose of the Acrobot on θ1θ2-plane
(two-dimensional torus, to be exact) at every time instant
when we measure the energy loss with 0.01[s] interval. The
Acrobot has no certain orbits and covers the torus except for
a high energy region.

B. The Purposes

There are three purposes of simulation:
• to evaluate the feasibility of the value iteration algorithm

toward the task,
• to investigate the performance with different numbers of

sampling points and different sets of available torques,
and

• to find some unique results.
In a trial of the simulation, the time from an initial state

to a final state in Ssuccess or Sfailure is recoded. The trials are
held with various initial states though we fix the velocities as
zero. Initial states are set to (θ1, θ2) = (3i, 3j)[deg] (i, j =

Fig. 3. Parts of Results for T5

Fig. 4. Reduction of Energy by Ap-
proximation Error

Fig. 5. Poses at Every 0.01[s]
Step

0, 1, 2, . . . , 119) and (θ̇1, θ̇2) = (0, 0). All final states and
symmetric states are removed from the set and 6, 399 trials
are held for each policy. We have to stop a trial if the Acrobot
does not finish the task for a long time. We set |vfailure| =
1000[s] as the limit.

As a reference, we have prepared a brute force control
policy for the height task, which can be also shown in [13].
When one of the sets Ti (i = 1, 2, . . . , 5) is used, the policy
is based on

τ =

{
−i if θ̇1 > 0
i otherwise

. (15)

This is a certain rule for increasing the energy. If policies
that are obtained by value iteration are poorer than the above
control rule, the policies are meaningless.

We think that more efficient policies will be obtained if
analytical methods in previous works are used for planning.
However, policies that are obtained by the straightforward
value iteration are meaningful in the point of versatility of
the method.
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C. Evaluation

Since a functional such as Eq.(5) tells only one evaluation
criterion, the values of the functional should be used for
evaluation. However, Eq.(5) does not consider a trial that
does not finish within the time limit. Moreover, since we
handle a harder problem than that of [13], failure occurs
more frequently.

In this paper, a control policy is evaluated by its success
rate and its average time needed at successful trials. We think
that the success rate is more important than the average time.
That is because a large penalty is given to the overspeed lim-
itation. Moreover, the average time can be exactly discussed
when all of trials can be successfully finished.

TABLE II
SIMULATION RESULTS (from 6,399 different poses)

(a) Percentage of Success [%]
μ T1 T2 T3 T4 T5 Tall
brute force 65.4 53.1 48.1 40.9 36.4 —
1 8.0 18.7 74.8 68.0 64.0 63.8
4 97.2 91.4 84.4 80.3 78.1 75.9
16 61.1 99.4 99.5 98.3 97.9 96.7
81 99.5 98.7 99.2 98.2 96.7 96.0

(b) Average Time on Successful Trials [s]
μ T1 T2 T3 T4 T5 Tall
brute force 8.2 4.5 3.2 2.5 2.1 —
1 208.6 138.6 158.2 17.8 9.6 9.6
4 43.4 13.6 7.2 5.0 3.7 4.2
16 405.6 74.0 13.2 7.4 5.3 14.3
81 147.9 47.4 10.8 6.7 5.1 11.1

The results are shown in Table II. Table (a) shows the
success probabilities. In Table (b), values of average time
are illustrated. These averages are calculated without failure
(overspeed or more than 1000[s]) trials.

In the table, we can grasp some understandable tendencies
though we have expected poorer results as explained in
Sec.III-C. The more points are sampled, the higher the
success probabilities become. In the cases of Ti (i =
2, 3, 4, 5), large numbers of sampling bring good results.
The higher torque we can use, then, the shorter the av-
erage time becomes. In the cases of μ = 1, low torques
(|τ | ≤ 2[N]) cannot cause many state transitions due to
rough discretization. Therefore, the success probabilities of

TABLE III
TIME FROM SLIGHTLY DIFFERENT INITIAL STATES

initial T1 = {±1, 0}[N] T3 = {±3, 0}[N] T5 = {±5, 0}[N]
θ1[deg] time[s] result time[s] result time[s] result
0.000 54 success 9.79 success 7.75 success
0.001 103 success 8.16 success 7.75 success
0.002 420 success 8.16 success 7.75 success
0.003 198 success 8.17 success 7.75 success
0.004 69 success 10.00 success 7.75 success
0.005 827 success 10.16 success 7.75 success
0.006 588 success 10.16 success 7.75 success
0.007 36 success 10.17 success 7.75 success
0.008 102 success 10.07 success 11.15 success
0.009 305 success 10.45 success 7.90 success

(μ, T ) = (1, T1), (1, T2) are much smaller than those of the
brute force method.

On the other hand, there are some unaccountable or unique
results in the figures. First of all, the averages of time are too
long when T1 and some cases of T2. If we use a feedback
method, such a long time solution may never obtained. Table
III implies the reason. These tables shows the required time
to finish from slightly different initial states with two policies
that are obtained with μ = 81. θ2, θ̇1 and θ̇2 are fixed to zero,
while θ1 is slightly changed with 0.001[deg] step (not [rad]).
This table shows the results with Ti (i = 1, 3, 5). As shown
in the cases of T1, the chaotic property cannot be eliminated
when the torque is small although all trials are successfully
finished over a long time.

Even when T3, time and orbits are changed by the slight
differences. Such a change of orbits is sometimes a fatal
problem for a control policy. That is because a policy must
prepare all of possible orbits. Since the policy with μ = 81
for T3 can deal with the changes and finish the task in short
time, it has good property as a policy that is obtained by
value iteration. In other words, it can give a proper torque
for every state without feedback.

In the case of T5, the task is finished before butterfly
effects appear until θ1 = 0.008[deg]. Since the Acrobot
is more powerful than the case of T3, this result is not a
surprise. However, as shown in Table II, the risk of overspeed
is larger than the policy for T3. Moreover, each policy for
Tall is not the best one in the policies that have identical μ.
When T is a subset of T ′, the optimal policy obtained for
T ′ is equal to or more efficient than the optimal policy for
T as a principle of DP. It implies that some problems as
mentioned in Sec.III-C gives bad effect to the policies.

Finally, we show the observed sensitivity in some trials
on Table III. They are orbits of the toe of Link 2 on xy-
plain. Figure 6(a) shows three orbits from (θ1, θ2, θ̇1, θ̇2) =
(i · 0.001[deg], 0, 0, 0) (i = 0, 1, 2). In this figure, the orbits
after about 14.5[s] are omitted. The deviance of orbits starts
suddenly. While the Acrobot is swinging like a pendulum,
these three orbits are virtually identical. After the pendulum
motion, the toe of the Acrobot draws complicated orbits.
When the toe starts swinging to the right side widely, the
orbit from θ1 = 0.000[deg] breaks away from the others.

Fig. 6. Different Orbits from Proximity States (Sensitive Dependence on
Initial Conditions)
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We can see the derailment at “A” in the figure. After that,
the orbits from θ1 = 0.001[deg] and θ1 = 0.002[deg] are
apart from each other at “B”. When these orbits come to
the left side, their difference become significant.

Even in the case of T5, the sensitivity can be observed.
Fig.6(b) compares the orbits from θ1 = 0.007, 0.008[deg].
The orbits are almost the same until the Acrobot from θ1 =
0.007[deg] is going to finish the task. In the case from θ1 =
0.008[deg], unfortunately, the toe of the Acrobot is drifted to
left of the orbit from θ1 = 0.007[deg]. We can see it at “C”.
After that, the trial from θ1 = 0.008[deg] can be successfully
finished with another swing.

V. CONCLUSION

This paper deals with the height task of the Acrobot, which
has the parameters shown in [7], [14] and the delicate bound-
ary conditions shown in [5]. From the straightforward usage
of value iteration, we can obtain the following knowledge.

• We have assumed a crude Acrobot in the simulation.
It must decide torques with the resolution of 10[deg],
10[deg/s], and 0.2[s]. Available torque is also limited.
However, some policies can bring the Acrobot to the
target height with more than 99[%].

• Even though the chaotic behavior is significant with
small torque, the Acrobot can reach the target height
with high probabilities for each conditions of torque.
Even when T1 = {±1, 0}[N], the success probability is
99.5[%] with μ = 81. The policy seems to concentrate
the Acrobot on avoidance of the overspeed.

• With T5 = {±5, 0}[N], 0.001[deg] difference does not
always cause the butterfly effect. That is because the
trials can be finished before the effect occurs.

• With T3 = {±3, 0}[N], the success rate is 99.5[%]
with μ = 16. In this case, the orbits are drifted by
the 0.001[deg] difference of initial states. However, the
time to finish is not too long (13.2[s] with μ = 16 and
10.8[s] with μ = 81). This result suggests the task can
be finished without elimination of chaos.

• The problems mentioned in Sec.III-C cause bad effect
for value iteration. The evaluation results of policies for
Tall imply this fact.

• Even though accurate values cannot be calculated, the
number of sampling points should be large as far as we
can see from the results in Table II.

• It takes 11[days] to obtain a policy with one process
of a Xeon-D5160 processor (3.9GHz) when T1 =
{±1, 0}[N] and 81 sampling points.
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