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Abstract— Achieving energy-efficient dynamic walking has
become one of the main subjects of research on robotic bipedal
locomotion. Approaches based on passive-dynamic walkers
can accomplish bipedal locomotion. However, passive dynamic
walking has only been studied with the legs, and the effect of
an upper body has not been clarified. This paper investigates
the effect of an upper body on the efficiency and stability of
dynamic bipedal locomotion based on observations. We first
investigated a suitable upper body, which was a simple 1-link
torso with a bisecting hip mechanism that would not destroy
natural dynamics of the biped model. Second, we analyzed the
robot’s driving mechanism and chose underactuated virtual
passive dynamic walking as the method for generating an
efficient dynamic gait. We confirmed that efficient dynamic
walking was possible with a specific resistance of 0.01 and
investigated the effect of the physical parameters of the upper
body through numerical simulations.

I. INTRODUCTION

Passive-dynamic walkers are good examples of energy-

efficient dynamic walking [1]. They generally have only leg

links and no upper body. It is thus natural to consider how

to add an upper body to a passive-dynamic walker without

destroying the passive dynamics. This problem was first

discussed in McGeer’s early study [2], and several studies

considering passive dynamics on level dynamic walking with

a torso have since been reported. Spong et al. studied a

simple underactuated biped walker with a torso, but the

center of mass (CoM) of all links was positioned at the hip

joint [3]. Kinugasa et al. tried to realize passive dynamic

walking (PDW) by applying PD control to a torso whose

CoM was at the hip joint [4]. Narukawa et al. studied

underactuated level dynamic walking with a torso stabilized

through a PD control following McGeer’s idea [5]. Sasaki

and Yamakita investigated energy efficiency in virtual passive

dynamic walking (VPDW) with a torso [6]. These studies

reported that energy efficiency of dynamic walking grew

worse as a result of adding a torso. This is mainly caused

by joint torques to keep the torso upright under the influence

of gravity. If the upper body could be passively stabilized to

remain upright, this problem would be overcome. The answer

is to be found in the use of a bisecting hip mechanism (BHM)

[7][8]. A BHM is a mechanism to bisect the relative hip-joint

angle with respect to the torso passively as shown in Fig. 1.

Wisse et al. have already investigated PDW with a torso

implementing a BHM [7] and realized experimental level
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Fig. 1. Geometric relation between torso and legs according to bisecting
hip mechanism

dynamic walking [8]. However, they did not clarify the effect

of the torso on the dynamic gait and driving mechanism at

the CoM.

In this paper, we study the detailed mechanism, dynamics,

and effects of BHM through mathematical modeling and nu-

merical studies based on observations. We show that energy-

efficient level dynamic bipedal walking can be achieved with

a specific resistance of 0.01 [-] by utilizing the synergistic

effect of BHM and the effect of semicircular feet. We

then apply underactuated virtual passive dynamic walking

(UVPDW) to generate energy-efficient dynamic gaits and

confirm its validity in numerical simulations.

II. BISECTING HIP MECHANISM

This section describes the BHM and discusses its feasibil-

ity through development of a prototype.

Fig. 2 shows an overview of our prototype BHM. Although

there are many approaches to realize a BHM, we did so

with sprockets and chains. A sprocket is attached to the

inner leg, and its rotational motion is inversely transmitted

to another sprocket in the body through chains wound in the

shape of the letter “S”. One S chain loosens when the other

stretches, so there exists a dead-band and backlash around

the standing posture. The rotational motion of the sprocket is

then transmitted forward to another one attached to the outer

leg through another chain. The outer and inner legs then

symmetrically move in opposite to each other with respect

to the torso. Fig. 3 shows the symmetric motion of the legs.

We can smoothly move two legs and maintain the posture at

any angle. Back-drivability is almost completely achieved.

Although several dynamic walkers have already been

developed [8][9], the effect of the upper body on the gait

has not been theoretically clarified. The purpose of this paper

is to understand the mechanism and dynamics in detail. In
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Fig. 2. Overview of prototype bisecting hip mechanism

Fig. 3. Symmetric motion of legs

the following, we assume that the BHM does not have any

friction and the back-drivability is perfect. We describe a

simple biped model with a BHM and analyze the driving

mechanism and dynamics.

III. MODELING OF UNDERACTUATED BIPED

WALKING SYSTEM

This section describes the basic definitions and properties

of the biped model.

A. Dynamic equation

We deal with a planar underactuated biped model with

semicircular feet and a torso as shown in Fig. 4. We add

a 1-link torso as the upper body to the biped incorporating

a BHM. Its mass and inertia moment are mT [kg] and IT
[kg·m2]. The joint torques between the torso and stance-

leg, u1, and swing-leg, u2, are known. The central point of
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Fig. 4. Model of planar underactuated biped robot with semicircular feet
and torso

the foot circle is positioned on the leg link, and the foot

radius is R [m]. Let θ =
[
θ1 θ2 θ3

]T
be the generalized

coordinate vector; the dynamic equation of the biped model

then becomes

M (θ)θ̈ + h(θ, θ̇) = Su + JT
HλH , (1)

where JT
HλH ∈ R

3 denotes the constraint force vector

caused by the BHM. The control input vector Su ∈ R
3

is defined as

Su =

⎡
⎣ 1 0

0 1
−1 −1

⎤
⎦[

u1

u2

]
(2)

The geometric relation between the torso and legs according

to the BHM is given by

θ3 =
θ1 + θ2

2
+ ψ, (3)

where ψ [rad] is the offset angle of the torso and is a constant.

Fig. 5 shows the geometric relation. The time derivative of

Eq. (3) is

θ̇3 =
θ̇1 + θ̇2

2
. (4)

This can be simply rearranged as

JH θ̇ = 0, JH =
[
1 1 −2

]
. (5)

This leads to JH θ̈ = 0, and by substituting this into Eq. (1),

we obtain λH as

λH = −XH(θ)−1JHM(θ)−1

(
Su− h(θ, θ̇)

)
, (6)

XH(θ) = JHM (θ)−1JT
H . (7)

By substituting this into Eq. (1), we further simplify the

robot’s dynamic equation to be

M (θ)θ̈ = Y H(θ)
(
Su− h(θ, θ̇)

)
, (8)

where

Y H(θ) = I3 −XH(θ)−1JT
HJHM(θ)−1. (9)
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ψ

Fig. 5. Geometric relation of angular positions according to bisecting hip
mechanism

B. Transition equation

The heel-strike is modeled as an inelastic collision. We

introduce the extended coordinate vector, qi ∈ R
3, for the

two legs (i = 1 or 2) and torso (i = 3): qi =
[
xi zi θi

]T
.

Fig. 6 shows the configuration at the instant of the heel-

strike. The augmented coordinate vector is defined as q =[
qT

1 qT
2 qT

3

]T
, and the inelastic collision model is

M̄ (q)q̇+ = M̄ (q)q̇− − JI(q)TλI , (10)

JI(q)q̇+ = 07×1, (11)

where M̄ ∈ R
9×9 and JI ∈ R

7×9. λI ∈ R
7 denotes the

impact force on the robot. Eq. (11) implies the constraint

condition of the post-impact velocities, and we describe the

details in the following.

Leg 1’s and Leg 2’s hips are positioned the same as the

Torso’s, and their relations can be expressed as

x1 + (l −R) sin θ1 = x3, z1 + (l −R) cos θ1 = z3,

x2 + (l −R) sin θ2 = x3, z2 + (l −R) cos θ2 = z3.

O

−θ2

X

(x3, z3)

θ3 = ψ

(x2, z2)

Leg 1 Leg 2

(x1, z1)
l l

lT

Z

Torso

θ1

z1 = z2 = R

Fig. 6. Configuration at instant of heel-strike

Their time derivatives are

ẋ+

1 + (l −R)θ̇
+

1 cos θ1 = ẋ+

3 , (12)

ż+
1 − (l −R)θ̇

+

1 sin θ1 = ż+
3 , (13)

ẋ+
2 + (l −R)θ̇

+

2 cos θ2 = ẋ+
3 , (14)

ż+
2 − (l −R)θ̇

+

2 sin θ2 = ż+
3 . (15)

On the other hand, the conditions of rolling contact of Leg

2 with the ground are given by

ẋ+

2 = Rθ̇
+

2 , (16)

ż+

2 = 0. (17)

Furthermore, the constraint on the post-impact angular ve-

locities due to the BHM is given by

θ̇
+

1 + θ̇
+

2 = 2θ̇
+

3 . (18)

The above seven conditions can be formulated as a matrix

JI :

JI(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 J13 0 0 0 −1 0 0
0 1 J23 0 0 0 0 −1 0
0 0 0 1 0 J36 −1 0 0
0 0 0 0 1 J46 −1 0 0
0 0 0 1 0 −R 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (19)

where

J13 = (l − R) cos θ1, J23 = −(l−R) sin θ1,

J36 = (l − R) cos θ2, J46 = −(l−R) sin θ2.

C. Mechanical energy

The robot’s total mechanical energy is defined as the sum

of kinetic and potential energies:

E(θ, θ̇) =
1

2
θ̇

T
M (θ)θ̇ + P (θ), (20)

and its time derivative satisfies the following relation:

Ė = θ̇
T
Su =

(
θ̇1 − θ̇3

)
u1 +

(
θ̇2 − θ̇3

)
u2. (21)

By using Eq. (4), this can be rearranged as

Ė =
θ̇Hu1

2
−
θ̇Hu2

2
, (22)

where θH := θ1 − θ2 is the relative hip-joint angle.

D. Energy efficiency

The energy efficiency of a walking robot can be evaluated

in terms of specific resistance := p/Mgv [-], which implies

an expenditure of energy per unit mass and per unit length

traveled. M := mT + 2m [kg] is the robot’s total mass, and

g = 9.81 [m/s2] is the gravity acceleration. p [J/s] is the

average input power defined as

p :=
1

T

∫ T−

0+

∣∣∣θ̇Hu1

∣∣∣ +
∣∣∣θ̇Hu2

∣∣∣
2

dt, (23)

and v [m/s] is the average walking speed defined as

v :=
1

T

∫ T−

0+

Ẋg dt =
ΔXg

T
, (24)
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where T [s] is the steady step period, Xg [m] is the

X-position of the center of mass (CoM), and ΔXg :=
Xg(T

−) − Xg(0
+) [m] is the change in the CoM and is

equal to the step.

IV. DYNAMIC ANALYSIS OF BIPED MODEL

This section derives the reduced walking model and ana-

lyzes the driving mechanism.

A. Driving mechanism and control input

We first derive the reduced walking model. Let θ̄ =[
θ1 θ2

]T
be the generalized coordinate vector of the re-

duced walking system, the relation between this and the

original coordinate vector, θ̇, is

θ̇ = T ˙̄θ, θ̈ = T ¨̄θ, T =

⎡
⎣ 1 0

0 1
1/2 1/2

⎤
⎦ . (25)

θ3 can be eliminated by substituting Eq. (3), and using Eqs.

(25), we can rearrange Eq. (1) as

M (θ̄)T ¨̄θ + h(θ̄, ˙̄θ) = Su + JT
HλH . (26)

Here, note the relation,

JT
H ∈ Ker

(
T T

)
. (27)

By multiplying both sides of Eq. (27) from the left by T T,

we obtain

T TM(θ̄)T ¨̄θ + T Th(θ̄, ˙̄θ) = T TSu. (28)

We denote this system simply as

M �(θ̄)¨̄θ + h
�(θ̄, ˙̄θ) = S̄u, (29)

where M �(θ̄) = T TM(θ̄)T ∈ R
2×2, h�(θ̄, ˙̄θ) =

T Th(θ̄, ˙̄θ) ∈ R
2, and T TS = S̄ ∈ R

2. The relation between

the power and control inputs in the reduced walking system

then becomes

Ė = ˙̄θTS̄u =

[
θ̇1
θ̇2

]T [
1/2 −1/2
−1/2 1/2

][
u1

u2

]
, (30)

and the reduced control input vector is further simplified to

S̄u =

[
1/2
−1/2

]
(u1 − u2) . (31)

Thus, we can find that each joint torque actuates the hip-

joint alternately or these two control inputs are redundant

actuations for one joint. This conclusion is also supported

by Eq. (22).

B. Driving effects at CoM

We now analyze the driving mechanism of the joint-torque

u1 by transforming its effect into the translational force at

the CoM, which is called generalized virtual gravity (GVG)

[10]. This analysis pertains to a planar compass-like biped

model without redundancy.

We set the contact point (ZMP) of the stance foot with

the ground when θ1 = 0 as the origin O. The X-position of

the ZMP then yields Rθ1 [m]. Let r̄g ∈ R
2 be the positional

vector of the reduced model’s CoM, given by

r̄g =
[
Xg Zg

]T
, (32)

MXg = MR (θ1 − sin θ1) + (mT l +ma+ml) sin θ1

−mb sin θ2 +mT lT sin

(
θ1 + θ2

2
+ ψ

)
, (33)

MZg = MR (1− cos θ1) + (mT l +ma+ml) cos θ1

−mb cos θ2 +mT lT cos

(
θ1 + θ2

2
+ ψ

)
, (34)

and its time derivative is

˙̄rg = J̄g(θ̄) ˙̄θ =

[
J11 J12

J21 J22

] [
θ̇1
θ̇2

]
, (35)

where

MJ11 = MR (1− cos θ1) + (mT l+ma+ml) cos θ1

+
mT lT

2
cos

(
θ1 + θ2

2
+ ψ

)
, (36)

MJ12 = −mb cos θ2 +
mT lT

2
cos

(
θ1 + θ2

2
+ ψ

)
, (37)

MJ21 = −MR sin θ1 − (mT l +ma+ml) sin θ1

−
mT lT

2
sin

(
θ1 + θ2

2
+ ψ

)
, (38)

MJ22 = mb sin θ2 −
mT lT

2
sin

(
θ1 + θ2

2
+ ψ

)
. (39)

By using the Jacobian matrix, J̄g(θ̄), the control input

vector as an equivalent transformed torque of GVG can be

expressed as S̄u = J̄g(θ̄)Tf g. The inverse of J̄g can be

derived and the GVG vector, f g, can be then obtained as

fg = J̄g(θ̄)−TS̄u = −
1

2Δg

(
r̄g −

[
Rθ1
0

])
, (40)

where Δg := det
(
J̄g

)
. This shows that the GVG yields a

central force from the ZMP to CoM. As shown in Fig. 7, the

GVG drives the CoM as a centripetal force during the first

half cycle, and the rolling effect of the semicircular feet also

drives the CoM as the virtual ankle-joint torque whose value

is −MRg sin θ1 [N·m] [10]. The robot can thus overcome

the potential barrier at mid-stance, and after that, the GVG

acts as a centrifugal force.

X

Z

O

M

f g

f g

ZMP

M

u1

u1

ZMP

Fig. 7. Generalized virtual gravity mechanism
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V. UNDERACTUATED VIRTUAL PASSIVE

DYNAMIC WALKING

This section describes energy-efficient level walking

through UVPDW. The walking system’s performance with

respect to the physical parameters of the torso is numerically

analyzed.

A. Control law and typical gait

For simplicity, we assume u2 = 0 and a UVPDW

condition:

Ė =
θ̇Hu1

2
= Mg tanφẊg, (41)

where φ [rad] is the virtual slope angle. u1 is then uniquely

determined as

u1 =
2Mg tanφẊg

θ̇H

. (42)

This control input has a singularity at θ̇H = 0, however, this

singularity does not matter because the condition θ̇H > 0
always holds during the stance phases as we later show. In

the case of u1 = 0, we obtain u2 as

u2 = −
2Mg tanφẊg

θ̇H

, (43)

and this generates the same dynamic gait as that generated

by Eq. (42). For simplicity, we consider only the case of

u2 = 0 in the following.

Fig. 8 shows the typical gait of UVPDW where φ = 0.01
[rad]. Here, (a) is the angular positions, (b) the angular

velocities, (c) the control input (hip-joint torque), and (d)

the mechanical energy. The physical parameters were chosen

as in Table I. According to the UVPDW method, a stable

dynamic gait was successfully generated by restoring the

mechanical energy during the stance phases. Figs. 8 (a) and

(b) indicates that the torso stays at the center between the

two legs. This confirms the effect of Eqs. (3) and (4). Fig.

9 plots the stick diagram of one cycle, and we can see that

the torso is passively stabilized to stay upright through the

effect of the BHM.

Fig. 8 (b) shows that the singularity of θ̇H = 0 is

automatically avoided or that θ̇H > 0 always holds during

a cycle. This can be mathematically explained, but we

leave the details for another paper. Through this effect, the

control input does not diverge, and the maximum efficiency

condition is achieved. Moreover, the specific resistance is

p

Mgv
=

∫ T−

0+

(
θ̇Hu1/2

)
dt/T

MgΔXg/T
=
Mg tanφΔXg

MgΔXg

= tanφ.

Since we chose φ = 0.01 [rad] in this case, the specific

resistance is 0.01 [-].

TABLE I

PHYSICAL PARAMETERS OF BIPED ROBOT

mT 5.0 kg
m 5.0 kg
IT 0.001 kg·m2

I 0.001 kg·m2

lT 0.3 m
l (= a + b) 1.0 m

a 0.5 m
b 0.5 m
R 0.3 m
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Fig. 8. Simulation results for underactuated virtual passive dynamic
walking

Fig. 9. Stick diagram of steady walking pattern

B. Parametric study

This subsection numerically investigates the effect of vary-

ing the physical parameters of the upper body. The specific

resistance is kept constant (0.01 [-]) in all simulations, so its

plots are omitted and only the walking speeds are evaluated.

The physical parameters except the foot radius, R, were

chosen as in Table I.

1) Effect of lT : We first examine the effect of the torso

length, lT . Fig. 10 (a) plots the walking speed with respect

to lT for four values of R. There is a tendency that the

walking speed monotonically decreases as lT increases. This

is because the upper body incorporating the BHM affects

2445
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Fig. 10. Physical parameters of upper body versus walking speed for four values of R

as a counterweight and disrupts the leg-swinging motion,

and this effect increases as the Z-position of the CoM, Zg,

becomes high. Also notice that the larger the foot radius is,

the faster the walking speed becomes. This is because, as

previously mentioned, a large foot radius drives the CoM

forward more effectively and decreases mechanical energy

loss caused by heel-strikes [11]. These effects can also

be seen in the following two cases. Semicircular feet are

advantageous because they increase energy efficiency and

walking speed.

2) Effect of mT : Next, we examine the effect of the

torso mass, mT . Fig. 10 (b) shows the walking speed with

respect to mT for four values of R. In this case, there is

a tendency that the walking speed monotonically decreases

as mT increases. This can also be explained for the same

reason as in the case of lT ; i.e., the larger mT is, the higher

Zg becomes.

3) Effect of ψ: We finally examine the effect of the offset

angle of the torso, ψ. Fig. 10 (c) shows the walking speed

for four values of R. In all cases, the walking speed almost

monotonically increases with ψ. This is because a forward-

leaning posture causes forward acceleration or advantageous

to overcome the potential barrier at mid-stance. Whereas for

ψ < 0, a large foot radius, which produces large ankle-

joint torque virtually, is required to cope with the backward

acceleration. The results confirm that the stable range is

wider in the case with large R.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an approach to energy-efficient

dynamic bipedal locomotion with an upper body by means of

a BHM and UVPDW. The driving mechanism was clarified,

and the reduced walking system was easily dealt with as

a simple compass-like biped without an upper body. The

validity of the proposed method was confirmed in numerical

simulations. Although we achieved our purpose, we have not

investigated the utilization of the upper body dynamics yet.

Compared with humans, the stable range of the torso’s

physical parameters are not very wide. This is because

UVPDW does not have any desired trajectories for stabiliza-

tion in return for high energy efficiency. We should consider

how to enlarge the stable domain without destroying the

natural dynamics. We are currently developing a new walking

machine with an upper body having a BHM and we will

experimentally evaluate its gait features. The results of these

experiments will be reported in a future paper.
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