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Abstract— In this paper, an array of biologically inspired
elementary motion detectors (EMDs) is implemented on an
FPGA (Field Programmable Gate Array) platform. The well-
known Reichardt-type EMD, modeling the insect’s visual signal
processing system, is very sensitive to motion direction and has
low computational cost. A modified structure of EMD is used
to detect local optical flow. Six templates of receptive fields,
according to the fly’s vision system, are designed for simple ego-
motion estimation. The results of several typical experiments
demonstrate local detection of optical flow and simple motion
estimation under specific backgrounds. The performance of the
real-time implementation is sufficient to deal with a video frame
rate of 350 fps at 256 x 256 pixels resolution. The execution
of the motion detection algorithm and the resulting time delay
is only 0.25 µs. This hardware is suited for obstacle detection,
motion estimation and UAV/MAV attitude control.

I. INTRODUCTION

Highly accurate real-time stabilization and navigation of

humanoids and vehicles is a major research focus of robotics

and automation. An important aspect is the use of high-speed

visual servoing control loops running at framerates of several

100Hz controlling and stabilizing the motion of the system.

This paper contributes an implementation of a high-speed

motion estimation model.

A fly’s panoramic vision system comprises at its front end

several thousand photoreceptors feeding into a 2D array of

motion detecting neurons which the animal uses for dynamic

visuomotor pose and gaze stabilization and navigation in

6 degrees of freedom. The Reichardt detector [1] [2] [3]

[4] [5] [6] is a well-known model which describes, at an

algorithmic level, the process of local motion detection in the

fly, leading from non-directional input to a direction selective

output. In a structure of the fly brain called ’lobula plate’

large neurons are found which integrate these local motion

signals and additionally form extensive connections amongst

themselves [7][8]. These neurons have large receptive fields

and respond best to particular flow-fields such as occurring

during certain maneuvers of the fly in free flight [9] [10]. In

engineering applications such as robotics, driver assistance

systems or surveillance systems, a camera system is usually

used as a sensor to gather information about the environment.

Motion perception based on the fly’s vision system is com-

putationally cheap and, thus, particularly suited for real-time

applications.

In addition to optimizing the motion estimation algorithm,

it is also required to select a suitable hardware. In [11] a

new EMD circuit implemented on micro-air vehicles (MAV)

has been designed by using Field Programmable Analog

Array (FPAA). Besides, several EMDs-based models were

developed based on Very-Large-Scale-Integrated (VLSI) cir-

cuits. In [12], a low-power VLSI chip was described which

consists of a one-dimensional array of EMDs to perform

motion computation. In [6], a biologically inspired VLSI

system for measurement of self-motion was introduced. Later

on, Harrison designed and tested a single-chip analog VLSI

sensor that could detect imminent collisions [13]. Recently,

FPGAs are favoured by engineers to implement EMDs. In

[14], a real time algorithm for estimating motion vectors

has been implemented. In [15], a FPGA implementation of

a bio-inspired visual sensor is introduced. However, these

implementations perform motion estimation with relatively

low resolution and low frame rate.

In this paper, an array of biologically inspired EMDs

is implemented on an FPGA platform exploiting its major

advantages: the execution of massive truly parallel computa-

tions in only one processing cycle and the pipeline structure

in data processing. Based on [16] two new simple templates

of receptive fields for rotation detection are proposed to

facilitate specialized motion detection and cover all types

of movement. The performance of the implementation is

sufficient to deal with video frame rates of 350 fps or above

for a frame size of 256 x 256.

The remainder of this paper is organized as follows: firstly,

in Section II, the basic and elaborated EMD models are

introduced. In Section III, we added two templates of recep-
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tive fields based on [16] and simulations are conducted. The

implementation of the elaborated EMD model and receptive

fields on an FPGA platform is introduced in Section IV.

Experimental results are shown in Section V. Conclusions

are given in Section VI.

II. MOTION DETECTION WITH EMDS

Motion detection is one of the most basic tasks a visual

system has to perform. Motion information is not explicitly

represented at the output level of retinal photoreceptors. In-

stead, it has to be computed from the changing retinal images

by the nervous system [17]. Using an elaborated motion

detector model and some receptive fields, some properties

of the biological visual system have been converted into a

computational model for engineering applications to estimate

ego-motion.

A. The Reichardt Model

The earliest and probably the most famous model of mo-

tion detection inspired by biological systems was developed

by Reichardt and Hassenstein in 1956 [1]. Fig. 1 presents a

simplified version of the correlator model.
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Fig. 2: The elaborated EMD

A1 and A2 are two photoreceptors. Their outputs are

temporally delayed by a low-pass filter D. With A1(t) and

A2(t) representing the input signals at the left and right

inputs, and B1(t) and B2(t) representing the corresponding

filtered signals, one obtains the output R(t) of a motion

detector:

R(t) = A2(t) ·B1(t)−A1(t) ·B2(t). (1)

The detector generates a direction sensitive response be-

cause of the subtraction between the two symmetric detector

halves. As shown in Fig. 3, a positive peak-like signal is

generated for the motion to right and a negative peak-like

signal is generated for the motion to left. The response is

zero when no motion exists. However, the response of the

Reichardt detector is not always as simple as a peak. For

example, as shown in Fig. 3, the sign of the response in f)

does not directly indicate motion direction.

B. The Elaborated EMDs

The simple Reichardt detector has two major drawbacks: i)

its response is sensitive to edge contrast, reducing robustness
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Fig. 3: Response of the Reichardt detector to a moving peak

and to a moving pulse [16]; a) a peak moving to right ; b) a

peak moving to left; c) a pulse moving to right; d) response

to a); e) response to b); f) response to c).

to lighting conditions; ii)its response to step edges is com-

plicated, making scene interpretation difficult. Therefore, the

simple detector has been improved and two preprocessors

are added:

• logarithmic transformation is applied in order to reduce

the sensitivity to lighting conditions directly after the

receptors;

• this is followed by a temporal high pass filter in order

to obtain a simple response to the most common edge

type as step edge in natural images.

The elaborated EMD is shown in Fig. 2, which is similar

to the one proposed by [16]. The moving pulse signal c) in

Fig. 3 (or equivalently a moving step edge) is transformed

by the temporal HP filter into a moving peak as shown on

the left of Fig. 4, leading to a simple response as shown on

the right of Fig. 4.
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Fig. 4: Response of the elaborated motion detector to a pulse

moving to right [16].

C. Two-Dimensional Motion Detection

As previously explained, an EMD can only detect one-

dimensional motions along the line connecting its receptors.

In [14] one simple algorithm is implemented to realize two-

dimensional motion detection.

In order to detect two-dimensional motions, a pair of

EMDs are combined as shown in Fig. 5. The vertical motion

vector component is observed by receptors PV and PC while

the horizontal motion vector component is observed by

receptors PH and PC. The outputs of receptor PC are labeled

RV and RH in the right picture of Fig. 5. Following [18], this

EMDs pair is a combination of two types of EMDs:
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• H-type EMD responding to local horizontal motion.

• V-type EMD responding to local vertical motion.

Motion direction can be estimated by computing the ratio

of RV and RH as illustrated in Fig. 6 and formulated as:

θ = arctan(
RV

RH

). (2)

D. The Receptive Field for Motion Estimation

In neurobiology, the receptive field of a sensory neuron

is a region of space in which the presence of a stimulus

will alter the firing of that neuron. The receptive fields of

the so-called motion-sensitive wide-field neurons in the fly

brain are targeted in this project. Motion sensitive neurons

are cells in a fly’s visual system and they have been found

to be involved in optical flow (obtained by the proposed

EMDs) processing. These neurons can be classified by their

sensitivities to different kinds of motions. For example, some

of them are more sensitive to horizontal motion, while some

others are more sensitive to vertical motion in their receptive

field. Then, these neurons integrate the signals of EMDs

spatially in their receptive fields, where each single EMD

only analyzes the local motion along its sensitive direction.

Four simple templates (a, b, d and e in Fig. 7) have been

proposed in [16]. a) and d) are used for translation detection

and b) and e) are used for expansion detection.
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Fig. 7: The six simple templates of receptive fields

III. DEVELOPMENT OF RECEPTIVE FIELD TEMPLATES

AND SIMULATION RESULTS

A. Development of Receptive Field Templates

Based on [16], two additional templates of receptive fields

for rotation detection are proposed in this paper: c) is

sensitive to the rotation of vertical edges and f) for horizontal

edges. By adding these two templates, the system is supposed

to cover all types of movements. We can use the templates

to detect motion in images. Each template demonstrates a

receptive field which is sensitive to a certain motion.

B. Simulation Results

To validate our designed templates of receptive fields for

rotation detection, a simple simulation with Interactive Data

Language (IDL, CREASO) is conducted. The input of this

simulation is a series of pictures captured by a camera which

was fixed on the end effector of a robot arm (Stäubli) and

moved in front of a static background composed of black

and white squares. Through the operation of the robot arm

various movements of the camera can be executed, such as

translation and rotation. Fig. 8 shows the results of rotation.

Fig. 8: Optical flow of rotation. Left: real picture with

background; right: optimized result without background.

Horizontal translation Horizontal expansion Horizontal rotation

Vertical translation Vertical expansion Vertical rotation

Fig. 9: Responses of the templets of the respective field of

Fig. 7 to the rotation of a camera.

Fig. 9 shows the outputs of the six templates. The outputs

of the templates of the horizontal rotation and the vertical

rotation are more obvious than those from the other four

templates. The negative values indicate that the camera

moves in an anticlockwise direction. Due to the symmetry

of the background, the responses of both receptive fields for

the rotation detection are almost equal. But in the natural

world, they are sensitive to horizontal and vertical edges.

This simulation shows that these proposed six templates can

estimate simple translations and rotations successfully.
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IV. IMPLEMENTATION ON FPGA

This section deals with the implementation of the algo-

rithm mentioned above on an FPGA platform.

A. Development Environment

The system structure is shown in Fig. 10. Firstly, the image

is continuously captured by a High speed camera (MC1311,

Microtron). Then, the image is transmitted to the Tsunami

FPGA platform (SBS technologies) with Altera R© Stratix R©

EP1S40 FPGA processors. The elaborated motion detector

and algorithm of the receptive fields are implemented on the

FPGA and the image is processed here. After processing of

the image, the results of the EMDs and related outputs of

the receptive fields are sent to host PC (AMD Opteron242

with 2GB RAM).

Host PC

PCI-XCamera

High-Speed

camera

Tsunami PCI

FPGA Processor 

Link

Fig. 10: Hardware platform

Fig. 11 shows the overall physical system hierarchy illus-

trating the communication between different modules. The

main focus of this study, namely FPGA implementation

of the model and algorithm in VHDL (Very High Speed

Integrated Circuit Hardware Description Language), is high-

lighted by the red dashed rectangle of Fig. 11.
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Fig. 11: Hardware system hierarchy [19]

B. Architecture of the VHDL Program

The VHDL program architecture is shown in Fig. 12. All

the image processing is performed along with the data flow.

Firstly, the image data (8-bit iDATA) is provided by the

camera. Secondly, the 8-bit iDATA is fed into the EMDs

module, which performs the optical flow calculation in both

horizontal and vertical directions. The other inputs of the

EMDs module are the previous outputs of the filters that are

saved in the on board M-RAM. Then, the outputs of the

EMDs are connected to two modules: the ”data insert mod-

ule” and the ”receptive field calculation module”. Finally, all

of the results are written back to original data flow which

is transferred to host PC subsequently. All of these modules

will be introduced briefly in the next part.

iFVAL, iLVAL, iDVAL (frame and line signal)

EMDs

On board 

M-RAM

iDATA (8-bit image data flow)

Write results into 

original data flowDisplay

Rv & Rh

log log

HP HP

τ τ

Receptive field 

calculation module 

Fig. 12: VHDL program architecture of the elaborated model

Besides, there are three signals relevant to images: frame

signal - iFVAL, line signal - iLVAL and data signal - iDVAL.

These signals going with the images data flow will also be

sent to all control modules in order to synchronize the image

processing.

C. Components Design

The elaborated motion detector proposed in Section II

has mainly five components that should be programmed

in VHDL: logarithmic transformation, high-pass filter, low-

pass filter, multiplication and subtractor. The design of a

recursive single pole temporal high-pass filter is based on

a temporal low-pass filter, in this part the structures of them

are introduced together. The designs of multiplication and

subtractor are relatively simple and neglected in this section.

The algorithm of the six receptive fields is also imple-

mented on FPGA. Besides, a special module, called data

insert module, is designed to write the calculated results back

to the original data flow. The structures of these modules are

also briefly introduced here.

1) Logarithmic transformation: In this project, the mod-

ule of logarithmic transformation is realized through a look-

up table. The output of the photoreceptor is an 8-bit value

and has a range between 0 and 255. For more precision,

the values are extended to 16 bits in the following form:

the highest bit indicates the value being either positive or

negative, bits 14 to 6 belong to the integer part, and the last

6 bits are the fraction part.

2) High-pass filter: The high-pass filter selected for this

project is a recursive single pole temporal high-pass filter.

Fig. 13 shows the expression and structure of the filter.

Firstly, a single pole temporal low-pass filter is designed

which is defined by yi = xi/τL + (1 − 1/τL)yi−1. The pa-

rameter τL is changed to τH when it is assumed to be a

high-pass filter. As a high-pass filter and a low-pass filter

are running at the same time in the model, there are two

parameters τH and τL. For this project, these two parameters

are designed to be configurable dynamically in order to adapt

to different situations. When given the result of the low-pass

338



DATA in Subtractor

-

M-RAM

DATA out

yn = xn - LPτH(xn) High-pass filter:

yi = xi/τL + (1- 1/τL)yi-1

Low-pass filter:

Fig. 13: The architecture of the high-pass filter

filter, subtracting the input signal by the output value of the

low-pass filter is the result of the high-pass filter. The current

output of the low-pass filter is saved in the on-board memory.

3) M-RAM controller: In Fig. 12, an on-board M-RAM

is required to save the output values of filters. An M-RAM

controller is designed to distribute the read address, write

address and write enable signals.

It has to be mentioned that, because using less line pixels

can not increase the image capture frequency, the input frame

from the camera is set up to the resolution of 1280 x 256

pixels, but only 256 x 256 pixels will be processed in our

approach. The write enable signal is used to perform this

selection and a pixel counter (calculates the pixel number in

a line) is needed. When the pixel counter is between 512

and 767 , the output values of the filters are stored with the

M-RAM controller.

4) Receptive field calculation module: As illustrated in

subsection III-A, six templates of the receptive field (Fig.

7) are designed for motion estimation. The output of each

template for each image is designed to be a signed 40-

bit value (5 bytes). The highest bit indicates that the value

is positive or negative. The total output values of the six

templates have 30 bytes.

5) Data insert module: In order to analyze and display

the results on a Host PC, a data insert module is designed to

write the results of both H-type EMD and V-type EMD in

the selected 256 x 256 range back to the original data flow.

The image data which are not in the region of interest are

replaced by the results of EMDs as well as the outputs of the

six templates. When the data flow is sent to the host PC, the

results can be read from it and thus the local motion vector

is drawn over the original frame. The results of the receptive

field template are also read out and plotted in realtime.

The main frequency of the FPGA system is 160 Mhz.

For each image (1280 x 256) the transfer from the camera

to FPGA takes approximately 2ms. Only 40 system-clocks

(about 0.25µs) are totally charged additionally for the whole

implementation on FPGA. Thus, this system can work ideally

at more than 450fps. In this respect, our system is more

efficient than some already existing solutions, such as the

VLSI sensor in [13] (132-pixels image, 30pfs) and the FPGA

implementation in [14] (88 x 88 pixels, 29fps).

V. REAL-TIME EXPERIMENTAL RESULTS

The system is successfully tested in several experiments.

Different motion manners are detected under various back-

grounds. In our experiments, the backgrounds were always

fixed in front of the camera while the camera was mounted

on the end-effector of a 6 DOF Stäubli robot arm moving

along some simple trajectories.

A. Horizontal and Vertical Translations

The left picture of Fig. 14 shows the optical flow on the

background when the camera translates horizontally. The

arrows (green line with yellow head) represent the local

optical flow detected by the elaborated EMDs. Almost all

of them are pointing right. Since the output of the EMD is

influenced by several parameters, such as velocity, luminance

and contrast, the lengths of the arrows are not identical

throughout the whole picture. In addition, the spherical effect

of the wide-angle camera also influences the result to some

extent.

Fig. 14: Optical flow and receptive field results for horizontal

translations with a pattern of vertical bars.

The right picture of Fig. 14 shows the results of the six

receptive field templates. They are normalized to the range

between -150 and 150. Ideally, when the camera moves

horizontally, only the horizontal translation template will

have an output. And the outputs of the other five templates

should always be zero. The result in this experiment is

almost coincident with the expectation. The positive/negative

value denotes that, the camera moves horizontally to the

right/left. The horizontal expansion and horizontal rotation

have very small outputs, which are probably caused by

the asymmetry between the left and right half-pictures as

well as the top and bottom half-pictures. The three vertical

templates’ outputs are almost zero. Combining the results of

these six templates, a conclusion can be drawn: the camera

is moving horizontally right or left during this experiment.

B. Expansion and Contraction

The elaborated motion detector can also be used to detect

optical flow field induced by the camera moving backwards

or forwards. A diffused or contracted optic flow field can

be observed. In this experiment, the background of some

concentric rings is applied. The circle center is set to be

aligned with the optical axis of the camera.

By moving the camera backwards away from the back-

ground, a contracted optic flow field can be observed, as

shown in the left picture of Fig. 15. In the right picture, the

outputs of both horizontal expansion and vertical expansion

templates are obvious. Moreover, the horizontal translation

and vertical translation templates have relatively small out-

puts. The main reason is that the center of the template is

not coincident with the optical axis of the camera.
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Fig. 15: Optical flow and receptive field results for expansion

using the background of concentric rings.

C. Rotation

The left picture of Fig. 16 shows the optical flow of

clockwise camera rotation with a pattern of radial lines. The

right picture is the result of the receptive field for rotation.

In the experiment, the camera rotated alternately clockwise

(positive values) and anticlockwise (negative values).

Fig. 16: Optical flow and receptive field results for rotation

with the background of radial lines.

According to the experimental results and discussions

above, the system is demonstrated to be efficient to detect

local optic flow induced by different motion manners of the

camera. The elaborated motion detector and the receptive

field templates implemented on FPGA can detect motion

direction fast and correctly. The system is successfully tested

at a frame rate of 350 fps with the resolution of 256 x 256.

The system delay caused by computations is approximately

only 0.25 µs. This system can be used for motion estimation

and obstacle avoidance for humanoids, ground and aerial

vehicles. It will also be suitable for UAV/MAV attitude

control.

VI. CONCLUSIONS

In this paper, an array of EMDs has been implemented on

an FPGA platform. The EMDs are interconnected realizing

various receptive fields for motion detection. It is success-

fully tested at a high frame rate (350 fps) with a resolution of

256x256 vectors. The time delay of the computation is only

0,25 µs. The results of the simulation and the experiments

demonstrate that this elaborated model enables local optical

flow detection and simple global motion estimation under

specific backgrounds. However, if the model is applied

in realistic engineering system, where the background is

certainly more irregular than the backgrounds used in the

experiments, data fusion must be done in the future. And in

order to find out the relationship between the output of EMD

and motion velocity clearly more parameters should be taken

into consideration, such as the luminance, contrast, etc.
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