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Abstract—This paper presents a novel adaptive controller 
for image-based visual servoing using generalized image 
features. The key idea lies in the development of the 
depth-independent interaction matrix and the proposal of an 
adaptive algorithm for estimating the unknown geometric 
parameters of the features in the 3-D space. Furthermore, we 
derive the conditions for the asymptotic stability of the 
proposed controller and demonstrate that the conditions are 
satisfied for six types of common image features: points, 
lines, distances, angles, areas, and centroids. Experiments 
have been conducted to validate the proposed controller. 

I. INTRODUCTION 
Visual servoing has been one of the hottest topics in robotics 
for years [1][2][5] because the control philosophy is similar 
to what used in motion control of humans using their eyes. 
Various methods have been proposed, which can be grouped 
into kinematics-based methods [3][7] and dynamic methods 
[4][6][10][12]. Kinematics-based methods work with the 
assumption that the manipulator can control its velocity 
precisely, while dynamic visual seroving directly designs 
joint inputs based on visual feedback and the nonlinear robot 
dynamics. Compared to kinematics-based methods, dynamic 
ones can rigorously guarantee the stability. Hashimoto [4] is 
one of the earliest researchers who studied dynamic visual 
servoing. He applied the nonlinear control method to visual 
servoving provided that the 3-D geometry of the features is 
known. However, it is not possible to know such 3-D 
geometric information in many applications.  
The authors [8][9][12] also conducted dynamic visual 
seroving extensively, in particular when camera parameters 
are not calibrated. We proposed to use the depth-independent 
interaction matrix to map the image errors onto the joint 
inputs so as to avoid the estimation of the depths of the 
features which appear in the denominator of the projection 
equation. This makes it possible to linearly parameterize the 
closed-loop dynamics using the unknown camera and 
geometric parameters. However, our early work is limited to 
control of point features.   
This paper proposes a general adaptive approach for visual 
servoing using generalized features when their 3-D geometry 
is unknown. The new adaptive controller is designed based 
on two new ideas. First, we generalize the concept of 
depth-independent interaction matrix for point features to 
generalized features. Second, we develop an adaptive 

algorithm for on-line estimation of the unknown geometric 
parameters. We derive the conditions for linear 
parameterization of the depth-independent interaction matrix 
using the unknown geometric parameters. The adaptive 
algorithm developed here combines the Slotine-Li algorithm 
[11] with an on-line process minimizing an error function. 
Our controller yields asymptotic convergence of the image 
errors even with the nonlinear robot dynamics. Furthermore, 
we demonstrate that the common image features including 
points, lines, distances, angles, areas and centroids all satisfy 
the linear parameterization conditions. We have implemented 
the controller in a 3 DOF manipulator and demonstrated its 
superior performance by experiments.  

 
Fig. 1 An eye-in-hand camera for visual servoing. 

II. IMAGE FEATURES 
This section reviews the geometry of the perspective 
projection and introduces generalized image coordinates and 
generalized depth. We use a bold capital letter to represent a 
matrix and a bold lower case letter to express a vector. An 
italic letter represents a scalar quantity.   
Consider an eye-in-hand setup (Fig. 1). Assume that the 
camera is a pin-hole camera and its parameters are calibrated. 
Three coordinate frames, namely the robot base frame, the 
end-effector frame and the camera frame, are set up. Denote 
the joint angles of the manipulator by a 1×n vector q(t), 
where n is the number of joints. Denote the homogeneous 
transformation matrix of the end-effector frame w.r.t. the 
robot base frame by ))(( tqT . Denote the homogeneous 
transformation matrix of the camera frame w.r.t the 
end-effector frame by 1T . 
Given a number of image features on the image plane, we 
select a set of parameters called generalized image 
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coordinates, denoted by )(ty , to characterize them. 
)(ty could be image coordinates of points, direction vector of 

a line, distances, angles, areas, centriods, or their 
combinations. The perspective projection of the features can 
be represented as follows: 

)),(()( λqfy tt =                                      (1) 
where vector λ represents the geometric parameters 
associated with the 3-D features in the space. For a point 
feature, λ   represents the 3-D coordinates; for a line feature, 
it consists of the directional vector of the line and the 3-D 
coordinates of a point. Assuming the 3-D features do not 
move, the geometric parameters are constants. We can write 
the equation (1) for each component of the generalized image 
coordinates as follows: 
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where )),(( λq tpi  and )),(( λq tzi  are scalar and m is the 
number of features. We make the following two assumptions: 
Assumption 1: The time-derivatives of functions )),(( λq tpi  
and )),(( λq tzi can be represented as the following linear 
forms: 

))(),(),(())(),(),(()),(( ttytbttytatp iiiii qqθqqλq +=   (3) 

    ))(),(),(())(),(),(()),(( ttythttytctz iiiii qqθqqλq +=  (4) 
where θ  is a parameter vector determined by the geometric 
parameters only; ))(),(),(( ttyta ii qq , ))(),(),(( ttytb ii qq , 

))(),(),(( ttytc ii qq and ))(),(),(( ttyth ii qq do not depend on 
the geometric parameters. 

Assumption 2:  Function )),(( λq tzi is always positive when 
the features are in the field of view of the camera.  

As to be discussed, Assumption 1 is crucial for defining a 
depth-independent interaction matrix that can be linearly 
parameterized by the unknown parameters, and Assumption 2 
is important for stability analysis of the controller. 

Remark 1: We will not lose any generality by adopting the 
Assumption 2. If )),(( λq tzi is negative, we revise (2) as,   
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For simplicity, we re-denote the denominator in (2) as )(tzi  
and call it the generalized depth. Eq. (2) can be rewritten as  

                        )),(()()( 1 θqpZy ttt −=                               (6) 
where  
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Here )(tZ is called the generalized depth matrix of the 
features.  

III. DEPTH-INDEPENDENT INTERACTION MATRIX 
This section extends the concept of the depth-independent 
interaction matrix in [8] to general cases. By differentiating 
eq. (6), we obtain: 
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By multiplying )(tZ  to eq. (6) from the left side and then 
differentiating it, we obtain 
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The matrix ))(),(( tt yqA is called the depth-independent 
interaction matrix. The generalized depth does not appear in 
the denominator. The dimension of the matrix is nm× , 
where m represent the numbers of the generalized image 
coordinates, respectively.  The derivative of the generalized 
depth is 
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Property 1: Assume that the generalized image coordinates 
satisfy Assumption 1. For any n-dimensional 
vectorρ independent of the geometric parameters, its product 
with ))(),(( tt yqA  can be written in the following linear 
form: 

    ))(),(()),(),(())(),(( tttttt yqsθρyqQρyqA +=       (12) 
 where )),(),(( ρyqQ tt is a regressor matrix and 

))(),(( tt yqs is zero or a vector. They are independent of the 
parameters θ  .   

IV. ADAPTIVE VISUAL SERVOING 

A. Robot Dynamics 
 It is well-known that the dynamic equation of a robot 
manipulator has the form: 

τqgqqqCqHqqH =+++ ))(()))(),(())((
2
1()())(( tttttt   (13) 

where ))(( tqH is the positive-definite and symmetric inertia 
matrix. The term ))(( tqg represents the gravitational force, 
and τ  is the 1×n joint input of the manipulator. The control 
problem addressed here is defined as follows: 

Problem 1: Given a set of 3-D features whose geometric 
parameters are unknown and a constant desired values dy of 
their generalized image coordinates, design a proper joint 
input τ such that the generalized image coordinates )(ty are 
convergent to the desired values. 

B. Controller Design 
The controller is designed based on three ideas. First, to avoid 
the use of the unknown depths of the features, we use the 
depth-independent interaction matrix to map the image error 
to the joint space. Second, to cope with the unknown 
geometric parameters, we propose an adaptive algorithm to 
estimate their values on-line. Finally, we develop a depth 
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compensator to compensate for the effect caused by 
elimination of the depths in mapping the image errors.  In 
detail, the joint input is given by  
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where the first term is to cancel the gravitational force. The 
second term represents a velocity feedback. The third term is 
the image error feedback through the estimated 
depth-independent interaction matrix ))(),((ˆ tt yqA . The last 
term is the depth compensator in the quadratic form of the 
image error )(ty∆ . )(ˆ tZ is calculated using the estimated 
parameters. It should be noted that the controller uses the 
estimated partial derivative of the depths, instead of the 
depths. 1K  and B are positive-definite gain matrices. By 
substituting the control law (14) into the robot dynamics (13), 
we obtain the following closed loop dynamics: 
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(15) 
From the Property 1 and Assumption 1, the last two terms in 
eq. (15) can be represented as the following linear form:                  
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where θθθ −=∆ )(ˆ)( tt representing the estimation error and 
))(),(( tt yqY is a regressor matrix without depending on the 

unknown parameters. 

C.  Parameters Estimation 
The key idea in estimating the unknown parameters is to use 
multiple images captured during motion of the manipulator. 
For the image captured at time jt , we define a proper 

estimation error function ))(ˆ,( tt j θe . To guarantee the 

stability and convergence of the estimated parameters, the 
estimation error function should satisfy the following 
conditions: 

i) The error function can be represented as a linear 
function of the estimated parameters: 

)()(ˆ)())(ˆ,( jjj ttttt ζθWθe += , where matrix )( jtW  

and vector )( jtζ  do not depend on the parameters. 
ii) The error function is equal to zero for true 

parameters, i.e., 0θe =))(,( tt j . 

iii)  If 0θe =))(ˆ,( tt j  holds for a sufficient number l 
of images, the estimated parameters are equal to or 
differ from the true values up to a scale. 

When the first two conditions are satisfied, the error function 
can be always represented as follows:  

      )(ˆ)())(ˆ,( tttt jj θWθe ∆=                           (17) 

It should be noted that the calculation of ))(ˆ,( tt j θe does not 
use the true values of the parameters. The condition iii) is to 
guarantee the convergence of the estimated parameters. We 
call the conditions i)-iii) error function conditions. 

Proposition 1:   If )),(( λq tpi  and )),(( λq tzi in eq. (2) can 
be represented as linear forms of the parameter vector θ , i.e. 

))(())(()),(( tttp iii qθqθq ςξ +=                        (18)             

))(())(()),(( tttz iii qθqθq γη += ,                       (19) 
the following error function satisfies the conditions i) and ii):  

))(ˆ),(())(ˆ),(()())(ˆ,( ttpttzttt jijijji θqθqyθe −=    (20) 

Proof: Since the conditions in eqs. (18) and (19) are satisfied, 
))(ˆ,( tt j θe  defined in eq. (20) can be certainly represented as 

a linear function of the estimated parameters )(ˆ tθ . 
Furthermore, if we replace the estimated parameters in eq. 
(20) by the true ones, ))(ˆ,( tt j θe is equal to zero. Therefore,  
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We use the following algorithm to estimate the parameters: 
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where l is the number of images randomly selected from the 
images  captured during motion of the manipulator.   

D. Stability Analysis 

Theorem 1: Assume that Assumptions 1 and 2 holds, and an 
error function ))(ˆ,( tt j θe  satisfying the conditions i)-iii) is 
found. If the dimension of the generalized image coordinates 
is not more than the DOF of the manipulator, the proposed 
controller (14) and the adaptive algorithm (22) gives rise to 
the asymptotic convergence of the image  error  to zero, i.e. 

                        0y =∆∞→ )(lim tt                             (23) 

Proof:  Introduce the following non-negative function:  

)}()()()()()())(()({
2
1)( tttttttttv TTT θΓθyBZyqqHq ∆∆+∆∆+=

(24) 
Multiplying the )(tTq from the left to equation (15) results in  
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From equation (10) , we have 
 )()())(),(()( ttttt TTT yZyqAq ∆=                    (26) 

By multiplying )(tTθ∆ from the left to the adaptive rule (22), 
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Differentiating the function v(t) in (25) results in 
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By combining the equations (25)-(28), we have           
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(29) 
From eq. (29), v(t)  never increases its value so that it is upper 
bounded. From eq. (24), bounded v(t) directly implies that the 
joint velocity, the image errors, and the estimation errors are 
all bounded. Then, )(tq  is bounded from eq. (15) and so is  

)(ˆ tθ  from eq. (22). Therefore, )(tq and )(ˆ tθ are uniformly 
continuous. From the Barbalat Lemma, we have  
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When 0θW =∆ )()( tt j  and the number l in (22) is larger than 
a certain number, the parameters will be convergent to the 
true values exactly or up to a scale. To prove the convergence 
of the image error, we further consider the equilibrium points 
of the system. From eq. (15), at the equilibrium point we 
have: 
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Similar steps to those in [8] can prove, from eq. (31), 
asymptotic convergence of the image errors if the dimension 
of generalized image coordinates is not more than the degrees 
of freedom of the manipulator and when the estimated 
parameters are convergent to the true values exactly or up to a 
scale.  

V. CASE STUDIES   
This section demonstrates that the underlying assumptions 
for the adaptive controller (14) and (22) hold for the common 

image features including point, line, distance, angle, area, and 
centriod. Point features have been addressed in [8]. 
Discussion on line feature is referred to [12]. This section 
copes with the other common features. 

 
Fig. 2 A distance and its corresponding endpoints. 

A. Distances 
Consider the distance between the projections of two feature 
points or the length of a segment (Fig. 2). The geometric 
parameters are selected as the 3-D coordinates of the end 
points w.r.t. the robot base. Let ix represent the homogenous 
coordinates of the point i. Denote their projections on the 
image plane by )(1 tw and )(2 tw , respectively. 
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where M is the constant perspective projection matrix and 
)(tzi

c  is the depth of the point w.r.t. the camera frame. The 
generalized image coordinate y(t),  i.e., the distance, is given 
by 
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where • denotes the norm of a vector. The generalized 
depth is the product of the depths of the two points, i.e.,  

)()()( 21 tztztz cc=                                    (34) 
Obviously, the generalized depth is positive when the feature 
points are visible from the camera and hence Assumption 2 
holds. By differentiating the numerator in eq. (33), we have 
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If we select the parameter vector dθ as the products of the 
components of the vectors 1x  and 2x , we have 

{ }
))(),(())(),((

)()())((( 2112
1

tttt

tztzt
dt
d

ddd

cc

qqbθqqB

xxqMT

+=

−−

     (36) 

where ))(),(( ttd qqb  does not depend on dθ .  Therefore 
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Obviously,  
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where ))(),(( ttd qqD does not depend on the parameters. The 
error function is defined as follows: 
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where ),(ˆ ttz ji
c is the estimated generalized depth. Note 

that dθ represents the products of the 3-D coordinates of the 
two points and its dimension is 15. Obviously, the error 
function defined in (39) can be represented as a linear form of 
the estimated parameters and it equals zero for the true 
parameters. Therefore, the conditions i) and ii) for the error 
function are satisfied. To satisfy condition iii), we need to 
select more than 15 images for the parameter adaptation. 
Therefore, the generalized image coordinates (33) and the 
error function (39) can guarantee that Assumptions 1 and 2 
and the conditions i)-iii) hold, and hence the proposed 
controller yields asymptotic convergence of the image errors. 

 
Fig. 3 The angle between two lines. 

B. Angles 
Consider the angle between two lines (Fig. 3), denoted by 
unit vectors )(1 tv and )(2 tv , respectively, on the image 
plane. The directional vectors, denoted by 14 × vector iu (the 
fourth component is zero),  of the two corresponding lines in 
the 3-D space with respect to the robot base frame are 
selected as the geometric parameters. Taking the cosine of the 
angle as the generalized image coordinate, we have 
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The parameters αθ are defined as the products of the 
components of vectors 1u and 2u , and then,   

{ } αα θqqBuqΩTuqΩT ))()),(())(()))((( 21 tttt
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d T =         (41) 

The generalized depth is as follows: 
21 ))(())(()( uqΩTuqΩT tttz =                      (42) 

z(t) is obviously positive and its derivative has the form: 
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Certainly, the right had side of eq. (43) can be represented as 
a linear form of the parameters and hence: 
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From (41) and (44), the selection of the cosine of the angle as 
generalized image coordinate guarantees that Assumption 1 
and Assumption 2 holds.  We define the error function as:  
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Since αθ represents the products of the components of 

1u and 2u , the error function in (45) is a linear form of the 
estimated parameters. From the definition (40), the error 
function is zero for the true parameters. Furthermore, since 
αθ has nine components, nine independent equations 

enforcing 0))(ˆ,( =tte j θα  will guarantee the convergence of 
the estimated parameters to the true values.  

C. Centroid of Area 
Consider the case when the centroid of a polygon area on the 
image plane is used as the generalized image feature (Fig. 4). 
Denote the homogenous coordinates of the vertices in the 3-D 
space and their projections onto the image planes by 

)(tix and )(tiw , respectively. The centroid is given by   
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where N is the number of the vertices of the polygon and 
)(tz is the generalized depth in the following form: 
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The generalized depth is positive if the all the vertices are in 
the field of the camera, and hence Assumption 2 holds. If 
parameters cθ are selected as the products of the components 
of the 3-D coordinates of the vertices, the denominator and 
numerator on the right-hand side of eq. (46) are obviously 
linear to the parameters, and hence Assumption 1 holds.  
Furthermore, Proposition 1 states that the following error 
function satisfies the three conditions i)-iii): 
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Fig. 4 Projection of a triangle. 

D. Area 
Since a polygon area can be divided into a number of 
triangles, we consider areas of triangles as the generalized 
image coordinates (Fig. 4). Denote the projections of three 
vertices of a triangle onto the image plane by )(tiw  
(i=1,2,3). The homogenous coordinates of the vertices in the 
3-D space are represented by )3,2,1( =iix .The area of the 
triangle is given by 
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where )(, tw ji denotes the j-th component of vector )(tiw . 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
=

1

2

m
m

Λ                                            (50) 

where im denotes the i-th row vector of the matrix M . The 
generalized depth is as follows: 

)()()(2)( 32
2
1 tztztztz ccc=                         (51) 

The generalized depth is positive when the three vertices are 
in the field of the camera.  If parameters aθ are selected as the 
products of the components of ix , the generalized depth can 
be obviously represented as a linear form of the parameters. 
The dimension of aθ  is 60. The numerator on the right-hand 
side of eq. (49) can also be represented as a linear form of the 
parameters, and hence Assumptions 1 holds. According to 
Proposition 1, the following error function guarantees that the 
three conditions for parameter adaptation are satisfied:  
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Since the vector aθ is of 60 components, it is necessary to 
select 30 images for parameter adaptation to guarantee the 
convergence of the estimated parameters to the true values. 

VI. EXPERIMENTS 
We have implemented the proposed controller in a 3 DOF 
robot manipulator (Fig. 5) at CUHK. The physical parameters 
of the robot can be referred to [8]. A Prosilica camera is used 
to capture images at the rate of 100 fps.  The experiment used 
the cosine of the angle as the generalized image coordinates. 
The control gains used are 1 20=K , 0.000015=B , 

001.0=3K , 82 10= ×Γ . The initial estimation of the unit 
directional vectors w.r.t. robot base frame are 

1ˆ (0.6 0.6 0.6)T T=u  and  1ˆ (0.8 0.6 0.1)T T=u  . Hough 
transform technique was used to identify the image lines. The 
sampling time of the controller is 27ms. The errors of the 
cosine of angle between the image lines are shown in Fig. 6.  
The results confirmed performance of the proposed 
controller. Experiments on points and lines can be referred to 
[8][12]. 

VII. CONCLUSIONS 
In this paper, we generalized the concept of 
depth-independent interaction matrix for point features to 
common image features and developed an adaptive controller 
for image-based visual servoing using common features with 

unknown geometry. The conditions for convergence of the 
image error under the control of the proposed method are 
derived. Experiments have been conducted to verify the 
performance of the controller. 
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Fig. 5  The experiment set-up. 

 
Fig. 6  The image error. 
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