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Abstract— This paper presents a novel method for high speed
pose and velocity computation from visual sensor. The main
problem in high speed vision is the bottleneck phenomenon
which limits the video rate transmission. The proposed ap-
proach circles the problem out by increasing the information
density instead of the data rate transmission. This strategy is
based on a rotary sequential acquisition of selected regions of
interest (ROI) which provides space-time data. This acquisition
mode induces an image projection deformation of dynamic
objects. This paper shows how to use this artifact for the
simultaneous measure of both pose and velocity, at the same
frequency as the ROI’s acquisition one.

I. INTRODUCTION

Vision is used at several levels in robotics, particularly in

localization, identification [1] and control [2], [3]. However

the slow rate of video sensors is an evident drawback

in high sampling frequency applications. Indeed, standard

high-speed cameras video rate is about 120Hz while high

speed dynamic control application runs typically at 1kHz.

Nevertheless, it has been reported that high-speed vision

could be used in dynamic control of serial robots [4], where

a General Predictive Control (GPC) scheme was associated

to a visual loop linearisation to adapt the video rate (120

Hz) to the control sampling frequency (500 Hz). However,

this solution increases control complexity. An alternative

solution is to increase the video rate to reach the system

sampling frequency. To do so, different approaches have been

presented in the literature.

Usually, camera video rate is limited by the transmission

interface bandwidth. Reducing the image resolution to de-

crease the video flow tightens a lot the field of view of the

camera for a given accuracy of the end-effector pose estima-

tion. To solve this problem, different approaches are possible

such as video rate increasing by developing a more efficient

video compression [5], creating faster transmission interfaces

(for instance, CamLink) or embedding the signal processing

close to the acquisition system [6], [7]. Nevertheless, we

believe that the optimal solution is to increase the video flow

information density. Indeed, the current approach in vision

based applications is to grab and transmit the whole image,

to extract interesting features to process and to throw away

the rest of the image. For instance, to provide vision based

pose estimation of a moving object from a single image,
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four non degenerate point projections are enough [8]. The

ratio between the amount of data needed to perform the pose

estimation and the transmitted flow of acquired image of size

S is given by 4×2×precision size
S×unsigned char size

. For a mega-pixel image

size the ratio is 6.4 10−5. The transmitted data is bigger than

1.5 104 times the needed amount.

Instead of transmitting the whole image and then selecting

a regions of interest (ROI), it is more interesting, from

the data flow and the ‘silicium cost’ points of view, to

inverse the process by first selecting the ROI position, and

then to transmit it. Note that in the two cases, the ROI

positions are predicted, so there is no difference between

the two approaches if the rest of the image is not used. This

acquisition mode was proposed in [9] where a new CMOS

camera was designed to grab a simultaneously multiple ROIs.

The same approach can be performed using an ”off-

the-shelf” CMOS fast reconfigurable camera which uses

the CamLink interface. A single rectangular area can be

selected for shuttering and transmitting. Its parameters can

be changed dynamically at each acquisition. By grabbing

only areas in the scene that contain information, such as

interest points or blobs (Figure 1), the information density

in the video flow is increased. The direct effect of this is

that the ROI acquisition frequency can be multiplied by

the ratio of the full image size on the size of the grabbed

area. For instance, transmitting ten regions of interest of

10 × 10 pixels that contain the desired information, instead

of the 1024 × 1024 pixels image size, reduces the data flow

from 1M pixels to 1K pixels, and theoretically multiplies

the acquisition frequency by 1000. In practice, transmission

control bits, parameters setting and exposure time limits the

video rate. Note that the exposure time and the acquisition

frequency can also be controlled.

Unfortunately, sequential acquisition of partial areas on the

retina introduces time delay between acquisitions and affects

image projection of moving objects. Thus, classical pose

estimation algorithm can not be used in this case. In addition,

these methods enable only to estimate successive poses. The

velocity information is generally retrieved by numerically

differentiating the pose measurements. This introduces addi-

tional noise.

To compute pose and velocity at each sample, one ap-

proach consists in using data fusion methods from a set

of partial time varying information (eg. Kalman filter [6]).

However this approach assumes a Gaussian noise which

is not guaranteed in pose measurement applications. To
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(a) (b) (c) (d)

Fig. 1. The resulting motion artifacts from ROI grabbing method. (a) The
whole image taken by a standard camera. (b) ROI grabbing in static. (c)
and (d) Two successive states of ROI grabbing when the object is moving.

overcome this constraint, an AEKF [10] could be used

but the optimality of the method is not verified either.

Another approach consists in considering the problem as an

optimization process.

The idea of this paper is therefore to use the image

artifacts for real-time high speed object pose and velocity

computation based on non-linear least squares minimization.

Previous works exploited the non-simultaneity of pixel ex-

posure in CMOS Rolling Shutter camera. In this acquisition

mode, the pixels are exposed row by row with a time

delay introducing image artifacts when capturing moving

objects [11]. The image projection depends on both pose

and velocity. A method of simultaneous pose and velocity

measurement using such artifacts from a single view was

proposed in [12]. This is particularly adequate for high speed

moving objects where high speed video rate is required.

The contribution of the paper is to generalize, to ROI

random access, the theoretical results from [12]. Indeed, the

latter were dedicated to rolling shutter cameras (i.e. assuming

sequential grabbing of time coherent image rows). Moreover,

in that work, the whole image was needed, which did not

allow for fast estimation. On the opposite, the proposed

extension is validated by an experimental 333Hz estimation

frequency.

Next section presents the projection model of a rigid set

of points acquired with a time delay. It will be shown that

the time varying projection model depends on both pose and

velocity, given a time acquisition period. In Section III, the

proposed projection model is used to develop a method for

pose and the velocity measurement for high speed moving

object, using a single set of space-time feature matches. The

optimization algorithm used in the estimation process and

its particularities will also be discussed. Section IV deals

with ROI tracking using the 3D pose and velocity prediction,

which is the necessary complement to the method. Section V

deals with implementation details, namely how to increase

the pose and velocity estimation frequency and to reduce

the latency. Finally, experimental results are presented and

analyzed in Section VI.

II. TIME VARYING CAMERA PROJECTION MODEL

A. Single point projection

First, let us consider the point projection pinhole model

for classical cameras.

Let P be a 3D point lying on a rigid object, o
P =

(x, y, z)
T

its coordinates in the object frame and m =

(u, v)T its image projection. Let m̃ =
(

m
T, 1

)T
and

P̃ =
(

P
T, 1

)T
, be their homogeneous representations. Let

c
Ro, c

to and c
To be respectively the rotation matrix, the

translation vector and the rigid transformation made between

the camera frame and the object frame. Then, the perspective

projection model is given by:

sm̃ = K
(

c
Ro

c
to

)

˜oP (1)

where s is the unknown scale factor, and K the calibration

matrix defined by the well known intrinsic camera parame-

ters u0, v0, αu and αv which are respectively the horizontal

and vertical optical center pixel coordinates and the scale

factors along u and v axis. In the sequel, the intrinsic

parameters are assumed to be known by calibration, as well

as the distorsion parameters.

B. Projection of a rigid set of points

Historically, computer vision has always considered the

use of the above point projection for CCD cameras, that

grab all the pixels simultaneously. Thus, when considering a

rigid object, viewed as a set of points, the resulting projection

model becomes:

∀i = 1..n, sm̃i = K
(

c
Ro

c
to

)

˜oPi (2)

where all 2D-3D point correspondences share the same pose

(c
Ro,

c
to).

In [12], a first attempt was proposed to release this

constraint when considering CMOS rolling shutter cameras.

However, the projection model proposed is dedicated to this

specific kind of sensor and can be generalized as:

∀i = 1..n, sm̃i(ti) = K
(

c
Ro(ti)

c
to(ti)

)

˜oPi (3)

where now, each image point mi may be grabbed at separate

time instants ti and thus, is associated to the current pose

(c
Ro(ti),

c
to(ti)) at the time where it is grabbed.

Notice that the model proposed in [12] is included in this

generic model by the definition of ti as a function of the

image line number and the image line exposure time.

With such a generic model, we can now even imagine

a random access to the image pixels. However, in order to

detect image points with sub-pixel accuracy, it is necessary

to perform a local image treatment (such as blob or Harris

point extraction). This means that to each point is associated

a region of interest (ROI) whose size S can be tailored: not

too small to get enough accuracy, not too large to keep a high

grabbing frequency. Using this strategy, only n∗S pixels need

to be grabbed instead of the whole image.

C. First order approximation of the rigid object projection

Consider now the high speed successive acquisition of

n ROIs. The ith ROI is grabbed at instant ti, ∀i = 1..n.

Assume that all the pixels in a given ROI can be grabbed

simultaneously. This assumption is not very restrictive. In-

deed, it only means that each ROI has to be grabbed as a

whole, which is what is naturally implemented on the sensor

electronics. Moreover, even if one can not ensure the exact

simultaneity of each pixel grabbing, the total delay between
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the first and last pixel of the ROI will at most be S times

the single pixel exposure and reading time. In such a short

time (around 1 µs for a 10 × 10 ROI with current devices),

the displacement of the object is small enough to generate

movement artifacts lower than the extraction noise.
Under the first order approximation of the rigid object

projection, the object velocity is assumed piecewise constant
between the first and last point acquisition. This yields the
following time-varying rigid object projection model:

∀i = 1..n,

sm̃i(ti) = K
`

c
Ro(t0)δRi

c
Ro(t0)δti + c

to(t0)
´

˜oPi (4)

where (c
Ro(t0),

c
to(t0)) is the pose at a reference time t0

and (δRi, δti) is the displacement of the object between t0
and ti. Introducing dti = ti − t0 as well as oΩ = ω o

a and
o
vo, the constant rotational and translational velocities of the

object, the following expression is obtained:

[

δRi δti

0 1

]

= e

2

4

[oΩ]
×

o
V

0 0

3

5 dti

(5)

where [·]× denotes the skew-symmetric matrix associated to

the vector cross-product.

Causality suggests to choose the reference time t0 as the

time when the first ROI is grabbed (i.e. t0 = t1). This takes

the opposite of [12] where the reference time was taken when

grabbing the first image row. However, the goal of this work

being the real-time estimation of the instantaneous pose and

velocity, this choice is troublesome. Indeed, such a choice

means that the estimated pose is the pose of the object when

grabbing the first ROI, but can not be estimated until the last

ROI is grabbed. This yields a pure time delay of n τ in the

estimation of the pose. Another consequence of this choice

is that the velocity is estimated in the object frame at t0. It is

not time-delayed (since it is assumed constant over the time

interval) but it is not expressed in the current object frame.

To remove the time delay, an intuitive approach consists

in computing the integral over the image capture time of

the velocity as obtained above and update the pose and

velocity. However, this introduces superfluous computation

and amplifies noise. A better way is to determine directly the

pose and velocity at the current time. Therefore, the reference

time t0 must thus correspond to the last point acquisition:

t0 = tn. The consequence of this choice is that the ith point

is captured at a negative time dti = (i−n)τ with respect to

t0.

III. POSE AND VELOCITY COMPUTATION

Let us assume, for the moment, that a set of 2D-3D

correspondences is available. Given the camera parameters,

the scale factor is classically removed from (4) to form the

image error:

ǫ
(u)
i (X) = αu

r
T
x,iPi + tx,i

rT
z,iPi + tz,i

+ u0 − ui (6)

ǫ
(v)
i (X) = αv

r
T
y,iPi + ty,i

rT
z,iPi + tz,i

+ v0 − vi (7)

where t
•,i are the components of c

Ro(t0)δti + c
to(t0) and

r
T
•,i are the rows of c

Ro(t0)δRi, whereas X contains the

variables that represent the unknown pose and velocity.

This set is chosen in a standard manner, except for one

numerical simplification. Indeed, the product c
Ro(t0)δti

in (4) couples several unknowns. However, noticing that this

product is simply a change of coordinates in the expression

of the translational velocity:

c
Ro(t0)δti = c

Ro(t0)
o
vodti = c

vodti (8)

this product can simply be replaced by the latter expression,

which is independent from the other unknowns. Therefore,

the set of unknown is:

X = {x, y, z, uθx, uθy, uθz, vx, vy, vz,Ωx,Ωx,Ωx} (9)

where (x, y, z)T = c
to(t0) is the current position of the

object frame, (uθx, uθy, uθz)T = c
uθ is a minimal axis-

angle representation of the current orientation of the object

frame, (vx, vy, vz)
T = c

vo is the current translational ve-

locity of the object, expressed in the camera frame, and

(Ωx,Ωx,Ωx)T = oΩ is the current rotational velocity of

the object, expressed in the current object frame. Finally, the

pose and velocity are estimated through the solution of the

following minimization problem:

min
X

1

2

n
∑

i=1

ǫ
(u)
i (X)

2
+ ǫ

(v)
i (X)

2
(10)

A necessary condition for the 12 unknown values to be

estimated is that, at least, 6 correspondences are available,

each point providing two equations. This condition is only

necessary but not sufficient because the equation system may

loose rank. For instance, for degenerate object structure or

specific pose and velocity configurations that still have to

be studied. Moreover, to handle the noise coming from the

point extraction from the ROIs, one should over-constrain

this minimization problem.

IV. ROI TRACKING

In order to solve the above problem, one needs, on the one

hand, an initial pose and velocity estimate and, on the other

hand, 2D-3D correspondences. The latter can be ensured if

a point tracking algorithm is implemented. Tracking is easy

if a given ROI contains a single point, which additionally

simplifies the point extraction. However, grabbing a ROI has

now a strict physical meaning: one has to grab it at the correct

place on the CMOS array, otherwise the expected point will

not appear in the ROI. Tracking is not anymore just a local

search in a whole image (containing all the information) but

a global search on a local subpart of the image (which might

contain no information at all). Therefore, the prediction stage

of the tracker is crucial. Nevertheless, it is here trivial since,

if a valid pose and velocity estimation is available at a given

time, then it is very easy to estimate the image projection

of the next point, simply by using the projection model (4)

where t0 is the current time and dti is the time to the next

ROI capture.
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/ / I n i t b l o b p r o j e c t i o n a r r a y

P r j B u f f = I n i t P r o j e c t i o n s ( Image ) ;
/ / P a r a m e t e r s i n i t i a l i s a t i o n

Pose = I n i t P o s e ; / / e . g D e m e n t h o n

V e l o c i t y = 0 ; / / N u l l v e c t o r

X = [ Pose ; V e l o c i t y ]
TDelay = −τ [n − 1, n − 2, ...,−1, 0];
do
{

/ / G e t new R O I s

[ ROIs , ROINbr ] = GetLastROI ( ) ;
/ / I n d i c e s o f new p o i n t s

Index = R e f r e s h I n d i c e s ( ROINbr ) ;
/ / R e f r e s h t h e a c q u i r e d b l o b c o o r d i n a t e s

P r j B u f f ( Index ) = I m g P o s i t i o n s ( ROIs ) ;
/ / New t i m e d e l a y v e c t o r

TDelay = UpdateTime ( ROINbr ) ;
/ / U p d a t e P o s e a n d V e l o c i t y

X = LSQ( Model , X, P r j B u f f , TDelay ) ;
/ / P o s e p r e d i c t i o n b y v e l o c i t y i n t e g r a t i o n

XPred = P a r a m P r e d i c t (X) ;
/ / P o i n t s p r o j e c t i o n p r e d i c t i o n

P r j P r e d = I m P r o j e c t ( Model , XPred , Index ) ;
/ / ROI T r a c k i n g

ROIPos = S e t R o i P o s i t i o n s ( P r j P r e d ) ;
}

Algorithm 1: Process algorithm

Consequently, the proposed pose and velocity estimation

scheme fuses, in a single framework, 2D image tracking,

pose (or 3D) tracking and, of course, velocity tracking.

Moreover, the proposed pose and velocity estimation

scheme only requires an adequate initialization. This is easy

in the case where a robot is observed, since one only has to

grab the whole image when the robot is at rest. Indeed, if the

observed object is still, motion artifacts vanish, δR becomes

the identity, and δti turns to a null vector. The projection

model corresponds to the classical one, and the object pose

can be computed using the existing methods [13], [8]. If the

need arises, the proposed algorithm can be initialized for a

moving pattern, provided that an a priori pose and velocity

estimate is available.

V. IMPLEMENTATION

A. The optimization Process

The minimization (10) of the image reprojection error

provides pose and velocity parameters fitted to the given

data. Different minimization methods exist. One of the main

drawback of iterative methods is the possible existence of

local minima if the initial parameters are far from the desired

solution. Yet, this problem should not appear in the proposed

algorithm, since the algorithm serves to update the solution,

the new estimation is never being far from the last one.

This particularity reduces (and hopefully eliminates) the

risk of falling into a local minimum. The damped Gauss-

Newton method [14] is thus well appropriate for this task,

thanks to the good local convergence of the algorithm. This

convergence can be controlled by a damping matrix, whose

tuning allows for noise filtering.

Fig. 2. Experimental device for the first experiment.

B. Computation cost

We know that the iterative methods are usually time

consuming. Therefore, to reduce the cycle time, a closed-

form expression of the Jacobian matrix J associated to the

projection function (3) and the parameter set was used.

In the iterative process, given the last pose and velocity

estimation, a pose prediction can easily be calculated under

constant velocity assumption. The predicted pose can then

be used to initialize the optimization process. The closeness

of the initial prediction and the solution allows to compute

the Jacobian matrix only once at the first iteration. Indeed,

the stability condition of the optimization process is

JĴ
+ > 0 (11)

where J is the actual Jacobian matrix and Ĵ is an approxi-

mation of it.

Finally, the algorithm was implemented in C++ language

using the Numerical Template Toolbox [15] based on Boost,

BLAS and LAPACK libraries, which optimize performances.

VI. EXPERIMENTAL RESULTS

For the practical validation of the proposed method, a 1024

× 1024 pixel high speed camera ”Photon focus Track Cam”

enables ROI grabbing at different frequencies and allows for

real-time (9µs) reconfiguration of the ROI position and size.

The camera and the object, composed of 16 blobs, have been

simultaneously calibrated using the method presented in [16].

The initialization of the algorithm is done from the whole

still image. The blobs on the visual pattern are detected

and the static pose is computed offline. After that, the high

frequency sequential blobs acquisition starts. The ROIs size

is selected 24 × 24 to be quite large to contain the blob

with a definite tolerance in prediction and quite small to not

increase the acquisition delay.

At each ROI acquisition, pose and velocity are updated

using the proposed algorithm 1, and the next pose is

predicted. The predicted pose projection is then used in

tracking. The detection method in the ROI is based on a

simple first moment computation of the thresholded image.

The maximum speed of the vision system (acquisition and

pose+velocity measurement) is 333 Hz. The first experiment

is qualitative and deals with a rotational trajectory. Indeed,

a visual pattern is fixed on a rotating mechanism (Figure 2)
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Fig. 3. Position and Velocity measurement of Rotating movement

Fig. 4. Experimental device for the second experiment.

wherein rotation velocity accelerates progressively, generat-

ing a circular motion of the object in space. The pose and

velocity are measured during the acceleration phase.

Figure 3 presents the reconstructed trajectory, projected

on and orthogonally to the displacement plane. On this

trajectory are superimposed the reconstructed translational

and rotational velocity vectors. One verifies easily that the

reconstructed trajectory is actually a circle in a plane. More-

over, the translational velocity stays tangent to the circle and

its norm increases as expected. As for the rotation velocity

vector, it stays orthogonal to the plane. The tracking is

lost at about 11rad/s which corresponds to 2.4m/s tangent

velocity and a normal acceleration of 22m/s2.

Consequently, the proposed method can correctly recon-

struct a complex trajectory in space of a rapidly moving

object.

The second experiment tries now to quantify the effective

accuracy of such a reconstruction. It consists in measuring

the pose and velocity of an object mounted on a fast linear

actuator (Figure 4). The position of the latter is measured

with a 1µm optical encoder at 1kHz sampling frequency.

The velocity of the actuator is numerically derived from the

position signal.

The desired trajectory is generated using a fifth order poly-

nomial time interpolation, which corresponds to a maximum

acceleration of 1G.

Figure 5 displays the joint trajectory, the estimated one and

their difference. It can be noticed that the estimated trajectory
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Fig. 5. (a) Real and estimated positions of the object translating on a linear
actuator. (b) Position errors.
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Fig. 6. (a) Real and estimated velocities of the object translating on a
linear actuator. (b) Velocity errors.

correctly fits the reference one. More precisely, the position

error has a mean value equal to 0.832 mm. This position

error grows progressively with the velocities, and reaches its

maximum values when the direction changes, corresponding

to the highest values of acceleration. This might be explained

by the fact that the projection model (4) assumes a constant

velocity during the acquisition of all the points and that high

values of acceleration do not cope with this assumption. The

maximal position error value (Emax = 7.5mm) is reached

at the last deceleration when object vibrates.

In static, the feature projection error has a mean of 0.32
pixel and a standard deviation of 0.11 pixel. In dynamic, the

tracking error is added to the static one. The error mean in

this case is 0.54 pixel and a standard deviation of 0.62 pixel.

It can be noted that the orientation estimate remained

constant during the trajectory as expected.

Figure 6 (a) represents the real and the estimated veloc-
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Fig. 7. (a) Real and estimated velocities of the object translating on a
linear actuator, with compensation of the time delay. (b) Velocity errors,
with compensation of the time delay.

ities. At first glance, one notices a time delay between the

two. This delay is equal to ∆t = 0.024s equivalent to 8

samples. It represents exactly half the number of points in the

object. The explication of that can be that under the constant

velocity assumption, the optimization process converges to

the mean of the object velocity between the 1st and the 16th

point, which, due to the regularity of the trajectory, is close to

the median velocity over the 8 samples. Consequently, the

velocity error in Figure 6 presents a rather high deviation

(about 0.1 m/s).

Nevertheless, to support the above analysis, Figure 7

shows that when shifting the estimated velocities by the time

delay, the estimated velocities fit much better the real ones.

Indeed, the variance is one order of magnitude lower than

previously (now, about 0.01 m/s).

Hence, the velocities are correctly estimated but are sub-

ject to a constant time delay, which will have to be accounted

for at control time.

VII. CONCLUSION AND PERSPECTIVES

This paper has presented a novel concept of high speed

pose and velocity measurement, based on visual ROI grab-

bing method. Indeed, the artifacts introduced by the sequen-

tial grabbing model which depends on both pose and velocity,

are exploited, thanks to an extended projection model, for the

simultaneous computation of 6 dof pose and velocity. This

extends previous results and opened the possibility to reach

very high estimation frequencies. Currently, an estimation

frequency of 333 Hz was reached with a fairly good accuracy,

which makes the method available for high-speed robot

control.

Yet, the method can be improved from a technical point

of view. Indeed, a multi-thread approach could allow for

faster ROI acquisition with the same estimation frequency.

This would hence make the constant velocity assumption

valid for motions with higher dynamics, and thus reduce the

delay in the velocity estimation. Another way to increase the

accuracy of the method is to replace the constant velocity

assumption by a constant acceleration, or even to include

additional knowledge on the object motion.

From a methodological point of view, it also opens the way

to random access retinas, where one would grab exclusively

the information needed.

ACKNOWLEDGEMENTS

The authors would like to warmly thank Joël Falcou and
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