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Abstract— A new visual servoing method based on B-mode
ultrasound images is proposed to automatically control the
motion of a 2D ultrasound probe held by a medical robot
in order to reach a desired B-scan image of an object of
interest. In this approach, combinations of image moments
extracted from the current observed object cross-section are
used as feedback visual features. The analytical form of the
interaction matrix, relating the time variation of these visual
features to the probe velocity, is derived and used in the control
law. Simulations performed with a static ultrasound volume
containing an egg-shaped object, and in-vitro experiments using
a robotized ultrasound probe that interacts with a rabbit heart
immersed in water, show the validity of this new approach
and its robustness with respect to modeling and measurements
errors.

Index Terms— Visual servoing, ultrasound, image moments,
medical robotics.

I. INTRODUCTION

In order to assist radiologist diagnostics or ultrasound

guided interventions, we propose to automatically position

an ultrasound (US) probe held by a medical robot in such a

way to reach and track an appropriate US image cross-section

of a given observed object. This will allow different kinds

of application. For example for pathology analysis, it can

be helpful to automatically and accurately position the US

probe in order to obtain a 2D image cross-section of a tumor

having a maximum similarity with one derived from a pre-

operative 3D imaging that was performed with the same (US)

or other imaging modality (MRI, CT-SCAN). Autonomously

reaching and maintaining an appropriate tumor cross-section

would also help the surgeon to perform needle insertion

during a biopsy or a radio-frequency ablation procedure.

Towards that goal, we propose a new visual servoing method

based on ultrasound images and specially on the use of image

moments to control a medical robot holding an US probe.

Up until now, only few research works have focused on

visual servoing based on ultrasound images. In [1], a robot-

assisted system designed for 3D ultrasound imaging [2] is

controlled by ultrasound visual servoing in order to center the

section of an artery within the 2D US image. However, only

the in-plane motions (3 DOF) of the probe corresponding to

the two translations and the rotation in the US image plane

are controlled directly from the image, while the other 3 DOF

are teleoperated by the user. In [3], the development of a real-

time ultrasound-guided needle insertion medical robot for

per-cutaneous cholecystostomy has been presented. However,

only two of the 5 DOF of the robot, which was specifically
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designed for per-cutaneous ultrasound-guided therapy, are

controlled to position the needle which is mechanically

constrained to lie in the motionless probe observation plane.

In these two prior works, visual servoing was performed

thanks to a simple model of the probe interaction that

does not require any 3D information for in-plane motions.

However, if the visual task consists also in controlling the

out-of-plane motions these previous methods can not be used

and it is necessary to model the complete interaction between

the probe and the object. In fact an ultrasonic probe provides

full information only in its observation plane whereas a

camera provides a projection of the 3D world to a 2D image.

Another alternative is the use of a 3D US probe as in [4]

where a surgical instrument is controlled using position-

based servoing. However, for the moment 3D US probes are

expensive and provide only small volume with low voxel

resolution. Therefore, in what follows we will only consider

the use of standard 2D probes, which are more widespread

in medical centers.

Some recent studies eliminate the requirement of con-

trolling by visual servoing only the DOF contained in the

ultrasound plane by modeling the interaction between the

ultrasound probe and a given observed object. In [6] and

[7] two image points corresponding to the intersections of

a laparoscopic instrument forceps with the ultrasound plane

are used to servo the 4 DOF of the instrument.

In [8] visual features corresponding to the intersection

points of a cross-wire object with the US plane allow to

automatically perform the calibration of a robotized 3D

ultrasound imaging system. In [9], a first ultrasound image-

based visual servoing that allows to control the motion of an

US robotized probe in order to reach a desired image section

of an egg-shaped object has been presented. In this previous

work, the image edge was modelled by a third degree

polynomial whose coefficients were selected as feedback

features in the control law. However polynomial coefficients

have no physical significations, they are very sensitive to

image noise and limit the use of the method to specific object

shapes.

In this paper, we develop a new visual servoing method

based on image moments. These features are generic with

intuitive and geometric meaning and are robust with respect

to measurement perturbations, allowing, thus, a robust con-

trol system. Indeed, they have been widely used in computer

vision for a very long time, especially for pattern recognition

applications [10] and have been recently introduced in visual

servoing using the perspective projection [11]. It seems thus

interesting to use them as feedback information in US visual

servoing where very noisy images are considered. However
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for ultrasound imaging, the modeling part differs from the

case of camera perception and has to be reformulated.

The paper is organized as follows: In the next section, the

analytical form of the interaction matrix, relating the time

variation of the US image moments to the velocity, is derived.

Then, in section III, a set of combinations of moments

is selected as feedback information and the control law is

derived. Simulations and experimental results are presented

and discussed in Section IV. They demonstrate the validity of

the proposed method. Finally, concluding remarks are given

in Section V.

II. MODELING

The robotic task consists in automatically positioning an

US probe held by a medical robot arm in such a way to

view a desired cross-section of a given object as depicted

in Fig. 1. To design the visual servoing control scheme it is

essential to choose appropriate visual features and determine

the interaction matrix that relates their variation to the probe

velocity. This modeling aspect is the aim of this section.

A. Image Moments Interaction Matrix Modeling

Let O be the object referring to the organ with which the

US probe is interacting. The moments mij of order i+ j are

defined by:

mij =

∫ ∫

S

f(x, y) dx dy (1)

where f(x, y) = xi yj and (x, y) represent US image point

coordinates. S is the US image cross-section resulting from

the intersection of the object O with the US probe plane

(see Fig. 1). It would be also possible to generalize f to

f(x, y) = xi yj g(x, y) where g(x, y) is associated to the

gray level of each image pixel. However that would perturb

considerably the control system since the US images are very

noisy and present artifacts. The objective is to determine the

analytical form of the time variation ṁij of moments mij

in function of the probe velocity v = (v ω) such as:

ṁij = Lmij
v (2)

where (vx, vy, vz) and ω = (ωx, ωy, ωz) represent

respectively the translational and the rotational velocity com-

ponents and Lmij
is the interaction matrix related to mij

denoted by:

Lmij
=

[

mvx mvy mvz mwx mwy mwz

]

(3)

The time variation of moments is given by [11]:

ṁij =

∫ ∫

S

[

∂f

∂x
ẋ +

∂f

∂y
ẏ + f(x, y)

(

∂ẋ

∂x
+

∂ẏ

∂y

)]

dx dy

(4)

where (ẋ, ẏ) is the velocity of an image point (x, y) belong-

ing to the section S. So, in order to determine the relation

giving ṁij in function of v, the image point velocity (ẋ, ẏ)
has to be expressed in function of v. To determine the

components of Lmij
, the two kinds of probe motion which

are the in-plane and out-of-plane motions are considered

below.

1) In-plane motions: The probe, in this case, remains in

its initial plane. For in-plane motions, the velocity sṖ of any

point P of O in S with respect to the probe Cartesian frame

{Rs} can be expressed using the fundamental kinematic

relationship:

sṖ =
[

−I3 [sP]×
]

[

v

ω

]

(5)

where sP = (x, y, 0) is the position of the point P expressed

in the US probe frame {Rs}. Since the probe remains in the

same plane, only the three in-plane components vx, vy and

ωz of v are considered. Therefore sṖ which is nothing but

equal to (ẋ, ẏ, 0) is given by:

[

ẋ
ẏ

]

=

[

−1 0 y
0 −1 −x

]





vx

vy

wz



 (6)

from which we deduce: ∂ẋ
∂x

= 0, ∂ẏ
∂y

= 0. Substituting (6)

into (4) and remembering that f(x, y) = xi yj , ∂f/∂x =
i xi−1 yj and ∂f/∂y = j xi yj−1, the three coefficients mvx,

mvy and mwz of the interaction matrix (3) relating to in-

plane probe velocity components are derived as follows:






mvx = −i mi−1,j

mvy = −j mi,j−1

mwz = i mi−1,j+1 − j mi+1,j−1

(7)

The time variation of moment of order i + j, when the US

probe lies in its initial plane, can thus be easily computed

from moments of order i + j − 1 and i + j.
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Fig. 1. Interaction between the ultrasound probe and the object

Now, we consider several classical features: the section

area a, the center of mass coordinates of the image section

xg , yg and its main orientation α. These are defined in terms

of the image moments as follows:


















a = m00

xg = m10/a
yg = m01/a

α = 1

2
arctan

(

2 µ11

µ20+µ02

)

(8)

where µ11 = m11 − a xgyg, µ20 = m20 − a x2
g and µ02 =

m02 − a y2
g are the centered moments of order 2. Using (7),
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we can easily relate their time variation to the in-plane probe

velocity and obtain:








ȧ
ẋg

ẏg

α̇









=









0 0 0
−1 0 yg

0 −1 −xg

0 0 −1













vx

vy

wz



 (9)

We can notice that the section area a is invariant to in-

plane motions of the probe and therefore seems to be a

good feature for out-of-plane motion control whereas xg,

yg and α are well adapted for in-plane motion control, with

a good decoupling property that can be seen by refering to

the triangular part of the matrix in (9).

2) Out-of-plane motions: When the US probe gets out

of its initial plane, the image variation of the edge C of S
depends strongly on the 3D shape of the object. The reason

is that image points do not correspond to the same 3D object

points when out-of-plane motions are applied. In this case

the edge points resulting from the intersection between the

ultrasound plane and the object surface are affected in the

same manner as if they slide on the object surface (see Fig

2). Therefore we can consider that an edge point P is a

moving point P(t) that is constrained to remain in the image

plane while sliding on the object surface. That means that its

velocity with respect to the object frame {Ro} expressed in

the probe frame {Rs} depends both on the probe out-of plane

velocity and the surface shape. However, its z-axis velocity

component is related only to the probe velocity because the

point is constrained to remain in the image plane and is given

simply by:

vpz = vz + y ωx − x ωy (10)

where vz , ωx and ωy are the three out-of-plane velocity

components of the probe. The objective consists then in

determining the x and y axis velocity components that rep-

resent directly the image variation of the point. To determine

them, we consider that the object surface can be locally

approximated by a tangent plane π as shown in Fig. 1,

and project on it the velocity component vpz as depicted in

2D in Fig. 2. This projection is performed by the following

Object

US probe plane

Tangent plane

P(t + dt){Rs}

vpz
P(t)

~n

z

y

vpr

time t

time t + dt

vpxy

π

O

Fig. 2. Tangent plane used to determine the image point velocity

approximation:

vpr ≈ n × (vp × n) (11)

with vp =
[

0 0 vpz

]⊤
and where n =

[

nx ny nz

]⊤

is the unitary normal vector to π expressed in {Rs}. Devel-

oping (11) gives:

vpr = vpz





−nx nz

−ny nz

n2
x + n2

y



 (12)

Substituting vpz from (10) in (12) and projecting vpr on the

US plane (x,y) gives vpxy =
[

ẋ ẏ 0
]⊤

, and consequently

the image point variation in function of the out-of-plane

probe velocity components as follows:

[

ẋ
ẏ

]

=

[

−nxnz −nxnz y nxnz x
−nynz −nynz y nynz x

]





vz

wx

wy



 (13)

As we can see, knowledge of the orientation of the tangent

plane π at surface point P is crucial to relate the image point

variation to the out-of-plane probe velocity. Therefore we

will now determine the expression of the normal vector n for

a given object. If the object surface can be implicitly defined

as a set of points (ox, oy, oz) satisfying F (ox, oy, oz) = 0,

then, the normal vector to that surface at a point (ox, oy, oz)
is given directly by the gradient:

on =
∇F

‖∇F‖
(14)

with ∇F =
[

∂F/∂ ox ∂F/∂ oy ∂F/∂ oz
]⊤

and

where oP = (ox, oy, oz) is the vector coordinates of a

surface point P expressed in the object Cartesian frame

{Ro}. In the following, we consider the case where the

object has an ellipsoidal shape. The choice of this model

is motivated by the likeness of this form to usual tumors.

Nevertheless our method is generic and can be extended to

more complex shapes if the normal vector of the surface can

be analytically formulated.

The ellipsoid surface is given by the equation:

F (ox, oy, oz) =

(

ox

a1

)2

+

(

oy

a2

)2

+

(

oz

a3

)2

−1 = 0 (15)

where a1, a2, a3 are the half length values of the object main

axes. Applying (14) gives thus the following normal vector

expressed in the object frame {Ro} for a given surface point:

on =

[

ox/a2
1

oy/a2
2

oz/a2
3

]⊤

‖
[

ox/a2
1

oy/a2
2

oz/a2
3

]

‖
(16)

In what follows we approximate on to the expression:

oñ = r





ox/a2
1

oy/a2
2

oz/a2
3



 (17)

where r = (a1 + a2 + a3)/3 is a constant scalar. This

approximation does not affect the direction of the normal

vector but only its norm. It is performed in order to obtain

adequate linear relations, as it will be shown later. This

allows to rewrite oñ in the following linear form:

oñ = r





1/a2
1 0 0

0 1/a2
2 0

0 0 1/a2
3









ox
oy
oz



 = C oP (18)
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and its expression in the US probe frame {Rs} becomes:

ñ = sñ = sRo
oñ = sRo C oP (19)

where sRo is the rotation matrix defining the orientation of

the object frame {Ro} with respect to the probe frame {Rs}.

The vector ñ can then be related to the point coordinates
sP = (x, y, 0) expressed in the probe frame by the following

expression:

ñ = sRo C sR⊤
o ( sP − sto ) (20)

where sto is the translation defining the position of the object

frame origin with respect to the probe frame. Here ñ is

function of: the image coordinates (x, y) of the considered

edge C point, the pose of the object with respect to the probe

frame and the 3D parameters corresponding to the length of

the object axes. Developing (20) we obtain the components

of the vector ñ and therefore the following approximation of

the terms required in (13):














ñx ñz = −A1 x2 − A2 x y − A3 y2 − A4 x
−A5 y − A6

ñy ñz = −B1 x2 − B2 x y − B3 y2 − B4 x
−B5 y − B6

(21)

where Ai|i=1..6
= Ai(

sMo, ak|k=1..3
), Bi|i=1..6

=
Bi(

sMo, ak|k=1..3
) are terms depending on the size of the

ellipsoid and the relative pose between frames {Rs} and

{Ro}. This relative position which is described by the

homogeneous matrix sMo will be estimated in Section III-

B. Detailed expressions are not given for a lack of place1.

Note that in the simple case of a spherical object, the relation

(20) gives ñ = n = r ( sP − sto ) and therefore ñ does not

depend on the rotation matrix between the object and the US

probe frame. This is justified by the fact that a sphere does

not have any orientation in the 3D space.

By substituting ẋ and ẏ by (13) in (4) and using (21),

we obtain after some simple calculus the expression of ṁij

in function of the out-of-plane probe velocity components

vz , ωx and ωy . The remaining components of the interaction

matrix Lmij
are thus given by:







mvz = fmij

mwx = fmi,j+1

mwy = −fmi+1,j

(22)

with:

fmij
= i ( A6 mi−1,j + A5 mi−1,j+1 + A3 mi−1,j+2 )

+ j ( B6 mi,j−1 + B4 mi+1,j−1 + B1 mi+2,j−1 )
+ (B2 (j + 1) + A1 (i + 2)) mi+1,j

+(B3 (j + 2) + A2 (i + 1)) mi,j+1

+(B5 (j + 1) + A4 (i + 1))mij

(23)

The time variation of moments of order i + j produced by

out-of-plane probe motions can thus be expressed directly

from moments of order i + j − 1 up to i + j + 1 and

the 3D parameters Ak|k=1..6
and Bk|k=1..6

related to the

1They can be found on http://www.irisa.fr/lagadic/team/Rafik.Mebarki-
eng.html

object. It should be noted that fmij
is given here as a

linear combination of image moments. This would not be

the case if the approximation (17) was not performed. In

fact, replacing the constant scalar r by the exact expression

that allows to normalize ñ such that ñ = n would lead

to a more complex relation than (23) including non-linear

combinations of moments. In spite of this approximation

and the approximation in (11), simulations and experiments

presented in Section IV demonstrate the validity of the

modeling thanks to the robustness of the visual servoing.

III. VISUAL SERVOING

A. Selection of features for visual servoing

As an ellipsoidal object has been considered in the model-

ing, the image section provided by the US probe corresponds

in all situations to a 2D ellipse. Therefore only 5 visual

features are required to describe the object section. This also

means that there are an infinity of 3D poses of the probe that

give the same image section of the ellipsoidal object. It is of

course possible to overcome this limitation by considering

more complex and non symmetrical object models, as we

plan to do in future works.

For the ellipsoidal object, 5 visual features have to be

selected as feedback information in the control scheme. As

we mentioned in Section II-A.1, the center of mass coordi-

nates (xg,yg) of the image section and its main orientation

α are 3 features well adapted for in-plane motion control

due to their high dependence on this kind of motion and

the significant decoupling between them. Since the surface

area a is invariant to in-plane motions, it is consequently an

appropriate visual feature for out-of-plane motion control.

Concerning the fifth visual feature we propose to use the

length of the section’s major axis. The visual features vector

is thus given by:

s = ( xg, yg, α, l1, a ) (24)

The expression of xg , yg, α, a in function of images moments

was given in Section II-A.1 and l1 is defined by:

l1 = 2

a

(

µ02 + µ20 +
√

(µ20 − µ02)
2

+ 4µ2
11

)

(25)

where µ11, µ02 and µ20 are the centered moments of order

2 defined in Section II-A.1.

The time variation of the visual features vector in function

of the probe velocity is written as follows:

ṡ = Ls v (26)

where Ls is the interaction matrix related to s that we

easily determined from (7) and (22) respectively for the in-

plane and out-of-plane velocity components. Note that the

fifth feature l1 was chosen since, in comparison with other

possible features that we considered, as for example the ratio

on the two main axes, it provides a better conditioning of the

interaction matrix Ls.
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B. Object pose and 3D parameters estimation

The pose between the object and the US frame which

is required for on-line updating the interaction matrix is

estimated as follows:

sMo =
(

bMs

)−1 bMo (27)

where bMs = bMe
eMs is the pose of the probe frame

expressed in the robot base frame {Rb}, bMe is the robot

end-effector pose with respect to the robot base frame given

by the forward robot kinematics and eMs is a constant

homogeneous matrix defining the relative position between

the end-effector and the US probe frame. This last matrix

contains the spatial parameters of the ultrasound imaging

system that we calibrate according to the method proposed

in [8]. bMo represents the constant homogeneous matrix

between the robot base frame {Rb} and the object frame

{Ro}. It was roughly estimated by positioning the US probe

plane such it crosses the middle of the object and such that

the probe z-axis seems to be collinear with the object z-

axis one. The parameters a1, a2 and a3 were also roughly

estimated from the US image.

C. Control law

We use a very classical control law given by [12]:

vc = −λ L̂s

+
(s − s∗) (28)

where vc is the US probe instantaneous velocity sent to the

low-level robot controller, λ is a positive gain, s∗ is the

desired visual features vector, and L̂s

+
is the pseudo inverse

of the estimated interaction matrix L̂s given by:

L̂+
s

= L̂⊤
s

(L̂s L̂⊤
s

)−1 (29)

IV. RESULTS

In both simulations and experiments the image moments

were computed from the image coordinates of the points

lying in the ultrasound cross-section image edge. For the

simulations of section IV-B and in-vitro experiments, these

image points were extracted by the use of a robust active

snake algorithm. Image processing and control law computa-

tion were performed in real time at 25 frames/second thanks

to the use of a PC computer equipped with a 3 GHz Dual

core Xeon Intel processor running Linux.

A. Simulation results on a mathematical model

In a first part, we designed a simulator in the C++ lan-

guage where the interaction between the probe and a perfect

ellipsoid-shaped object is fully mathematically modelled in

order to demonstrate the validity of the theoretical develop-

ments of this paper. For this simulation, images points of the

section edge are computed directly from the mathematical

interaction model. First, we test the case when the object

parameters and its pose with respect to the US probe are

assumed to be perfectly known. The object parameters are

set to their exact values (a1, a2, a3) = (1, 2.5, 4) cm and
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Fig. 3. Simulation results obtained for exact modeling parameters: (a)
Probe 3D trajectory - (b) Initial (green) and desired-reached (red) image
sections edges - (c) Visual error response (cm, cm, rad, cm and cm2) - (d)
Velocity applied to the probe

the control gain λ is fixed to 1.5. The simulation results are

shown in Fig. 3. The reached image (red) corresponds to the

desired one (Fig. 3(b)) and the visual features errors con-

verge exponentially to zero (Fig. 3(c)), thus demonstrating

the validity of our theoretical developments. Starting from

different initial poses, the pose reached by the probe does

not always correspond to the pose where the desired features

were learned since, as we mentioned before, there are several

probe poses that give the same 2D ellipse in the image.

In a second test, we consider estimation errors on the

object modeling parameters and pose. The parameters es-

timation errors are set to 50% for a1, a2 and a3. The

orientation and position estimation errors are set to 30 deg

between {Rs} and {Ro} and 1 cm error on each of the three

axes. The simulation results are shown in Fig. 4. Despite

the large errors introduced, the visual features errors sti ll

converge to zero, thus demonstrating the robustness of the

developed control system.

B. Simulation results with realistic US images

In a second part we use the ultrasound software simulator

that was used in [13], which provides realistic US images

of an egg-shaped object. This is useful for testing also the

active snake algorithm to extract the section contour as it is

necessary on real ultrasound image. This simulator allows to

position and move a 2D virtual probe on a volume which

is composed from 100 parallel real B-scan images. These

US images have a resolution of 180×210 pixels with a pixel

size of 0.2×0.2 mm and were previously captured from an
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Fig. 4. Simulation results obtained for object parameters and pose
estimation errors: (a) Probe 3D trajectory - (b) Initial (green) and desired-
reached (red) image sections edges - (c) Visual error response (cm, cm, rad,
cm, and cm2) - (d) Velocity applied to the probe

(a) (b)

Fig. 5. The software simulator: (a) The virtual US probe interacting with
the US volume - (b) The observed B-mode US image

ultrasound medical phantom at elevation intervals of 0.25

mm. The simulator is built from the Visualization Toolkit

(VTK) software system [14] and our own ViSP library [15].

VTK is used to render the 3D view of the ultrasound volume

and to generate the current 2D ultrasound image observed

by the virtual probe by means of cubic interpolation, as

displayed in Fig. 5(a) and Fig. 5(b) respectively. ViSP is used

to compute the 2D moments from each virtual image and

the visual servoing control law that is applied to the probe

velocity. The 3D pose of the object frame with respect to

the probe frame and its parameters were roughly estimated

to bpo = (tx, ty, tz , θux, θuy, θuz ) = (1.72, 2.69, 2.4,

0, 0, 0) (cm, deg) and (a1, a2, a3) = (0.56, 0.8, 1.65) cm

respectively. Note that (tx, ty , tz) represent the translational
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Fig. 6. Results from the ultrasound simulator: (a) Initial (green) and desired
(red) image sections edges before applying visual servoing - (b) Current
(green) and desired (red) after applying visual servoing (c) Visual error
response (cm, cm, rad, cm and cm2) - (d) Velocity applied to the probe

Fig. 7. Experimental setup: (left) ultrasound probe mounted on a 6 DOF
medical robot - (right) Observed US image and the rabbit heart suspended
in a water-filled box

components and (θux, θuy, θuz) define the angles of the θu
representation. The control gain λ was set to 0.3. The results

are depicted in Fig. 6. The visual features errors converge to

zero roughly exponentially. This validates the method on an

object having a different shape than an exact ellipsoid and

therefore shows the robustness to object modeling error and

measurement perturbations due to discontinuity in the edge

detection.

C. In-vitro experimental results

Finally we test the method during in-vitro experiments

where a 6-DOF medical robot arm similar to the Hippocrate

system [16] is used to actuate a 5-10 MHz linear ultrasound

118



(a) (b)

0 20 40 60 80 100 120 140
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

time (s)

Visual features errors

 

 

x
g

y
g α

l
1 a

(c)

0 20 40 60 80 100 120 140
−0.2

−0.1

0

0.1

time (s)

Probe velocity response (cm/s and rad/s)

 

 

v
x

v
y

v
z

w
x

w
y

w
z

(d)

Fig. 8. Results from in-vitro experiment: (a) Initial (green) and desired
(red) image sections edges before applying visual servoing - (b) Current
(green) and desired (red) after applying visual servoing (c) Visual error
response (cm, cm, rad, cm and cm2) - (d) Velocity applied to the probe

probe transducer as shown in Fig. 7. The experiment2 is

performed using a rabbit heart suspended in a water-filled

box by two nylon yarns. The gain λ is set to 0.07. The 3D

pose of the object with respect to the robot base frame and

the object axis length were roughly estimated respectively

to bpo =(tx, ty , tz , θux, θuy, θuz) = (0.10, 0.11, 0.84,

83, 23, 4) (cm, deg) and (a1, a2, a3) = (1.3, 1, 1.8) cm.

The experimental results are depicted in Fig. 8. The visual

features errors converge to zero and the reached ultrasound

image corresponds to the desired one as can be seen in Fig.

8(b). During this experiment, we have noticed that the active

snake allowing to extract the image section edge was very

shaky due to the ultrasound noise. Nevertheless, in spite

of this measurement noise and the difference between the

shape of the rabbit heart and the theoretical ellipsoidal model

considered in the modeling part, the proposed visual servoing

succeeds with correct behaviour. Moreover the method has

the advantage to be very robust to large initial error in the

image as we can see in Fig. 8(b)-(a) where initial features

are very far from the desired ones.

V. CONCLUSIONS AND FUTURE WORKS

This paper has presented a new ultrasound visual servoing

based on image moments. First, the analytical form of the

interaction matrix related to the ultrasound image moments

was developed in the case of US probe interaction with an

ellipsoidal object. Then, a set of visual features based on the

combination of these moments was selected. Visual servoing

was performed in both simulations and in-vitro experiments.

2A short video of the experiment accompanies the paper.

Successful results obtained with an ellipsoid object, an egg-

shaped object and a real rabbit heart demonstrated the

validity of our approach and its robustness with respect to

modeling and measurements errors. Future work will concern

the improvements of the method for more complex-shaped

objects with no symmetry at all. We will also investigate

on the optimal combination of moments which will result in

a high interaction matrix decoupling for better performance.

The great challenge is to develop a generic interaction matrix

for any kind of object that requires the least modeling

parameters as possible.
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