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Abstract— This paper proposes a new way to achieve robotic
tasks by visual servoing. Instead of using geometric features
(points, straight lines, pose, homography, etc.) as it is usually
done, we use directly the luminance of all pixels in the image.
Since most of the classical control laws fail in this case, we
turn the visual servoing problem into an optimization problem
leading to a new control law. Experimental results validate
the proposed approach and show its robustness regarding
to approximated depths, non Lambertian objects and partial
occlusions.

I. INTRODUCTION

Visual servoing consists in using the information provided
by a vision sensor to control the movements of a dynamic
system [1]. Robust extraction and real-time spatio-temporal
tracking of visual cues is usually one of the keys to success
of a visual servoing task. This tracking process has been, to
date, considered as a necessary step and is also one of the
bottlenecks of the expansion of visual servoing. In this paper
we show that such a tracking process can be totally removed
and that no other information than the image intensity (the
pure image signal) can be considered to control the robot
motion.

Classically, to achieve a visual servoing task, a set of visual
features has to be selected from the image allowing to control
the desired degrees of freedom. A control law has also to be
designed so that these visual features s reach a desired value
s∗, leading to a correct realization of the task. The control
principle is thus to regulate to zero the error vector s−s∗. To
build this control law, the knowledge of the interaction matrix
Ls is usually required. For eye-in-hand systems, it links the
time variation of s to the camera instantaneous velocity v

ṡ = Ls v (1)

with v = (v,ω) where v is the linear velocity and ω is the
angular velocity. This interaction matrix plays an essential
role. Indeed, if we consider the camera velocity as input of
the robot controller, the control law is designed to try to
obtain an exponential decoupled decrease of the error s− s∗

v = −λL̂+
s (s− s∗) (2)

where λ is a proportional gain that has to be tuned to
minimize the time-to-convergence, and L̂+

s is the pseudo-
inverse of a model or an approximation of Ls [1].

Visual servoing explicitly relies on the choice of the visual
features s (and then on the related interaction matrix); that is
the key point of the approach. With a vision sensor providing
2D measurements x(rk) (where rk is the camera pose at time
k), potential visual features s are numerous, since 2D data
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(coordinates of feature points in the image, moments, ...)
as well as 3D data provided by a localization algorithm
exploiting the extracted 2D features can be considered. If
the choice of s is important, it is always designed from
visual measurements x(rk). A robust extraction, matching
(between x(rk) and x∗ = x(r∗)) and real-time spatio-
temporal tracking (between x(rk−1) and x(rk)) have proved
to be difficult, as testified by the abundant literature on the
subject.

In this paper we propose to radically modify the procedure
by removing the extraction of geometric measurements and
consequently the matching and tracking process. To achieve
this goal we use as visual features the simplest feature that
can be considered: the image intensity. The visual feature
vector s is nothing but the image while s∗ is the desired
image. The error s− s∗ is then only the difference between
the current and desired image (that is I − I∗ where I is
a vector that contains image intensity of all pixels). If we
assume that the observed scene is Lambertian, we can exhibit
the analytical form of the interaction matrix related to the
luminance. This interaction matrix can be derived from the
optical flow constraint equation (OFCE) [2] as has been
done in [3]. Using the image intensity as visual features, the
classical control law, given by equation (2), at best converges
with a slow and inappropriate camera motion or simply
diverges, we thus turn the visual servoing problem into a
minimization one as in [4] or [5]. We show that using this
approach it is then possible to handle positioning tasks.

Considering the whole image as a feature has previously
been considered in [6], [7]. As in our case, the methods
presented in [6], [7] did not require a matching process.
Nevertheless they differ from our approach in two important
points. First, they do not use directly the image intensity
but an eigenspace decomposition is performed to reduce
the dimensionality of image data. The control is then per-
formed directly in the eigenspace and not directly with the
image intensity. This requires the off-line computation of
this eigenspace (using a principal component analysis) and
then, for each new frame, the projection of the image on
this subspace. Second, the interaction matrix related to the
eigenspace is not computed analytically but is learned during
an off-line step. This learning process has two drawbacks:
it has to be done for each new object and requires the
acquisition of many images of the scene at various camera
positions. Considering an analytical interaction matrix avoids
these issues.

An interesting approach, which also consider the pixels
intensity, has been recently proposed in [8]. This approach
is based on the use of kernel methods that lead to a high
decoupled control law. However, only the translations and
the rotation around the optical axis are considered whereas,
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in our work, the 6 degrees of freedom are controlled. Finally,
in [9], the authors present an homography-based approach
to visual servoing. In this method the image intensity of
a planar patch is first used to estimate the homography
(using the ESM algorithm described in [9] for example)
between current and desired image which is then used to
build the control law. Despite the fact that, as in our case,
image intensity is used as the basis of the approach, an
important image processing step is necessary to estimate
the homography. Furthermore, the visual features used in
the control law rely on the homography matrix. Finally, a
matching process between the current and desired image
patches is required.

In the remainder of this paper we first reformulate the
visual servoing problem as an optimization problem in
Section II. The interaction matrix related to the luminance
is then recalled in Section III. We then study in Section
IV the chosen cost function and propose an optimization
method suitable to our problem in Section V. Section VI
shows experimental results for several positioning tasks.

II. VISUAL SERVOING AS AN OPTIMIZATION PROBLEM

Different control laws can be derived regarding the mini-
mization technique one uses. Their goal is to minimize the
following cost function

C(r) = (s(r)− s(r∗))> (s(r)− s(r∗)) (3)

where r describes the current pose of the camera with respect
to the object (it is an element of R3×SO(3)) and where r∗

is the desired pose. Several methods are detailed in [4], we
only give here the most interesting results while focusing
on the differential approaches. In that case, a step of the
minimization scheme can be written as follows

rk+1 = rk ⊕ tkd (rk) (4)

where “⊕” denotes the operator that combines two consec-
utive frame transformations, rk is the current pose, tk is a
positive scalar (the descent step) and d (rk) a direction of
descent ensuring that (3) decreases if

d (rk)
>∇C (rk) < 0. (5)

In that case, the following velocity control law can be derived
considering that tk is small enough

v = λkd (rk) (6)

where λk is a scalar that depends on tk and on the sampling
rate. It is often chosen as a constant value. In the remainder
of the paper we will omit the subscript k for the sake of
clarity.

A. Steepest descent (gradient method)
The direction of descent (used for example in [10]) is

simply
d (r) = −∇C (r) (7)

where

∇C (r) =

(
∂s

∂r

)>
(s(r)− s(r∗)) . (8)

Since we have ṡ =
∂s

∂r
ṙ = Lsv, we obtain the following

control law
v = −λL>s (s(r)− s(r∗)) . (9)

B. Gauss-Newton

When rk lies in a neighborhood of r∗, s(r) can be
linearized around s(rk) and plugged into (3). Then, after
having zeroed its gradient, we obtain

d (r) = −
((

∂s

∂r

)>(
∂s

∂r

))−1

∇C (r) (10)

that becomes using (8)

v = −λL+
s (s(r)− s(r∗)) (11)

which is nothing but (2). It is the control law usually used.

C. Newton

If we locally approximate C(r) by its second order Taylor
series expansion in rk and cancel its gradient, we have

d (r) = −
(
∇2C(r)

)−1∇C(r) (12)

with

∇2C(r) =

(
∂s

∂r

)>(
∂s

∂r

)
+
i=dim s∑

i=1

∇2si (si(r)− si(r∗)) .

(13)
This approach has shown its efficiency in [11] for example.
Note that the vector d(r) is really a direction of descent if
∇2C(r) > 0 holds (see (5)). Note also that the Newton’s and
Gauss-Newton’s approaches are equivalent in r∗.

D. Levenberg-Marquardt

This method considers the following direction

d(r) = − (G + µ diag(G))
−1∇C(r) (14)

where G is usually chosen as ∇2C(r) or more simply as(
∂s

∂r

)>(
∂s

∂r

)
leading in that last case to

v = −λ (H + µ diag(H))
−1

L>s (s(r)− s(r∗)) (15)

with H = Ls
>Ls. The parameter µ makes possible to switch

from a steepest descent like approach to a Gauss-Newton
one thanks to the observation of (3) during the minimization
process. Indeed, when µ is very high (15) behaves like (9) 1.
In contrast, when µ is very low (15) behaves like (11).

1More precisely, each component of the gradient is scaled according to
the diagonal of the Hessian, which leads to larger displacements along the
direction where the gradient is low.

82



III. LUMINANCE AS A VISUAL FEATURE

The visual features considered in this paper are the lumi-
nance I of each point of the image. In fact we have

s(r) = I(r) = (I1•, I2•, · · · , IN•) (16)

where Ik• is nothing but the k-th line of the image. I(r) is
then a vector of size N ×M where N ×M is the size of
the image. As it has been shown in Section II, all the control
laws require an estimation of the interaction matrix. In our
case, as already stated, we are looking for the interaction
matrix related to the luminance of a pixel in the image. Its
computation is recalled now.

The basic hypothesis assumes the temporal constancy of
the brightness for a physical point between two successive
images. This hypothesis leads to the so-called optical flow
constraint equation (OFCE) that links the temporal variation
of the luminance I to the image motion at point x [2].

More precisely, assuming that the point has a displacement
dx in the time interval dt, the previous hypothesis leads to

I(x + dx, t+ dt) = I(x, t). (17)

Written with a differential form, a first order Taylor series
expansion of this equation around x gives

∇I>ẋ + İ = 0. (18)

with İ = ∂I/∂t. It becomes then straightforward to compute
the interaction matrix LI related to I by plugging the
interaction matrix Lx related to x into (18). We obtain

İ = −∇I>Lxv. (19)

Finally, if we introduce the interaction matrices Lx and Ly
related to the coordinates x and y of x, we obtain

LI = − (∇Ix Lx + ∇IyLy) (20)

where ∇Ix and ∇Iy are the components along x and y of
∇I . Note that it is actually the only image processing step
necessary to implement the presented method.

Of course, because of the hypothesis required to derive
(17), (20) is only valid for Lambertian scenes, that is for
surfaces reflecting the light with the same intensity in each
direction. Besides, (20) is also only valid for a motionless
lighting source with respect to the scene. These hypotheses
can be seen as restrictive, however we will see in Section VI
that (20) can be efficiently used even when Lambertian
constraints are not always valid.

IV. ANALYSIS OF THE COST FUNCTION

Since the convergence of the control laws described in
Section II highly depends on the cost function (3), we focus
here on its shape.

To do that, we consider the vector I(r) given by (16).
We write r = (t,θ) where t = (tx, ty, tz) describes the
translation part of the homogeneous matrix related to the
transformation from the current to the desired frame, and
where θ = (θx, θy, θz) describes its rotation part.

As an example, Fig. 1b and Fig. 1c describe the shape of
the cost function (3) in the subspace (tx, θy) when the scene
being observed is planar (see Fig. 1a) and when the desired

pose is such that the image plane and the object plane are
parallel at the depth Z∗ = 80 cm. Let us point out that this is
the most complex case (with its dual case (ty, θx)). Indeed,
it is well known that it is very difficult to distinguish in an
image an x axis translational motion (respectively y) from
a y axis rotational motion (respectively x). It explains why
the cost function is low in a preferential direction, as clearly
shown on Fig. 1b and Fig. 1c.

Simulations on various images have shown that the shape
of the cost function (3) does not depend too much on the
scene as soon as the image does not contain periodic patterns
or strong changes of the spatial gradient. For the motions
considered here, it always shows a narrow valley at the
middle of a gentle slope plateau with non constant slope.
Note that the direction of that valley depends on Z∗. It is in
the direction of the θy axis when Z∗ ≈ 0, the direction of
tx when Z∗ → +∞. Note also in Fig. 1b that (3) is only
quasi convex, moreover on a very small domain.

Let us study more precisely (3) in a neighborhood of r∗.
To do that, we perform a first order Taylor series expansion
of the visual features I(r) around r∗

I(r) = I(r∗) + LI∗∆r (21)

where ∆r denotes the relative pose between r and r∗.
Therefore, by plugging (21) and (16) into (3), the cost
function can be approximated in a neighborhood of r∗

Ĉ(r) = ∆r>H∗∆r (22)

with H∗ = L>I∗LI∗ . In practice, because of the special form
of the interaction matrix given in (20) (its translation part
contains terms related to the depths), the eigenvalues of the
matrix H∗ are very different 2. Consequently, in the subspace
(tx, θy) (respectively (ty, θx)), the cost function is an elliptic
paraboloid with a very high major axis with respect to its
minor axis leading consequently to near parallel isocontours
as shown on Fig. 1c. Moreover, the eigenvectors of H∗

point out some directions where the cost function decreases
slowly when its associated eigenvalue is low or decreases
quickly when its associated eigenvalue is high. In the case of
Fig. 1c, the eigenvector associated to the smaller eigenvalue
corresponds to the valley where the cost varies slowly. In
contrast, it varies strongly along an orthogonal direction, that
is in a direction near ∇C (r). We will use this knowledge
about the cost function in the next section.

V. POSITIONING TASKS

As shown in Section II, several control laws can be used to
minimize (3). We first used the classical control laws based
on the Gauss-Newton approach and the ESM approach [4].
Unfortunately, they all failed, either because they diverged
or because they led to unsuitable 3D motion. Therefore, a
new control law has been derived.

Indeed, since the general form of the cost function is
known (see Fig. 1b), we propose the following algorithm to
converge towards the global minimum. The camera is first

2This result also holds for most of the geometrical visual features where
a term related to the depth occurs in the translational part of the interaction
matrix.
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Fig. 1. Cost function: (a) Object being observed, (b) Shape of the cost function in the subspace (tx, θy), (c) Isocontours in the subspace (tx, θy).

moved to reach the valleys and next along the axes of the
valleys towards the desired pose. The first step can be easily
done by using a gradient approach. However, as seen on
Fig. 1c, the direction of ∇C (r) is constant but its amplitude
on the plateau is not constant (see Fig. 1b) since the slope
varies. We have thus to tune the parameter λ involved in
(9) to ensure smooth 3D velocities. A simpler approach to
achieve this goal consists in using the following control law

v = −vc
∇C(rinit)

‖ ∇C(rinit) ‖
. (23)

That is, a constant velocity with norm vc is applied in
the steepest descent computed at the initial camera pose.
Consequently, this first step behaves as an open-loop system.
To turn into a closed-loop system, we first detect roughly the
bottom of the valley from a 3rd order polynomial filtering of
C(r) and then apply the control law (15). Rather to control
the parameter µ as in the Levenberg-Marquardt algorithm,
we use a constant value as detailed below. We denote MLM
this method in the remainder of the paper. Moreover, instead
of using for the matrix H the Hessian of the cost function,
we use its approximation LI

>LI. The resulting control law
is then given by

v = −λ (H + µdiag(H))
−1

LI
> (I(r)− I(r∗)) (24)

with H = LI
>LI.

We now detail how µ is tuned. Fig. 2a shows the
paths obtained with the MLM algorithm in the case where
rinit = (8 cm, 4 cm, -10 cm, 3◦, -3◦, -5◦) for various choices
of µ. If a high value is used, after the open-loop motion,
the bottom of the valley is easily reached (see Fig. 2a when
µ = 1) since (24) behaves in this case like a steepest descent
approach. But in this case, since the valley is narrow, the
convergence rate towards the global minimum (following the
direction of the axis of the valley) is low (see Fig. 2b). In
contrast, if µ is low, (24) behaves like a Gauss-Newton (GN)
approach and the convergence is no more ensured (see the
large motion on Fig. 2a when µ = 10−3). As can be seen, an
intermediate value (µ = 10−2) has to be chosen to ensure an
optimal path (Fig. 2a) and a high convergence rate (Fig. 2b).
Therefore, this value has been chosen in the experiments
described in the next section.

VI. EXPERIMENTAL RESULTS

For the first experiment a pure Lambertian and planar
object has been used (a tablecloth) to be sure that the
interaction matrix given in (20) is valid. The initial pose
was rinit = (20 cm, 0 cm, 0 cm, 0◦, 11◦, 0◦). In that case,

-4

-3

-2

-1

 0

 1

 2

-2 -1  0  1  2  3  4  5  6  7  8

θ y
 (d

eg
.)

tx (cm)

Initial position

End of the open-loop

Desired position

Valley axis

µ = 1e-3
µ = 1e-2

µ = 1

(a)
 13

 14

 15

 16

 17

 18

 19

 0  2  4  6  8  10

µ = 1e-2
µ = 1

(b)

Fig. 2. Influence of µ. (a) Path in the subspace (tx, θy) for r = (8 cm,
4 cm, -10 cm, 3◦, -3◦, -5◦), (b) Logarithm of the cost function versus time
in second.

we are not very far from the valley. The desired pose was so
that the object and CCD planes are parallel. The interaction
matrix has been computed at each iteration but assuming that
all the depths are constant and equal to Z∗ = 80 cm, which
is a coarse approximation. Fig. 3a depicts the behavior of the
cost function using the GN method while Fig. 3b depicts the
behavior of the cost function using the MLM method. The
initial and final images are reported respectively on Fig. 3c
and Fig. 3d; Fig. 3e and Fig. 3f depict respectively the error
cue I− I∗ at the initial and final positions. First, as can
be seen on Fig. 3a and b, both the control laws converge
since the cost functions vanish. As can be seen, the time-to-
convergence with the GN method is very high wrt the one
of the MLM method. Note that it was also very difficult to
tune the gain λ for the GN method, a compromise between
oscillations at the end of the motion and relative high
velocities at the beginning had to be managed. Therefore,
it has been set to 5 at the beginning of the motion and to 1
near the convergence. For the MLM method a constant gain
λ = 4 has been used. On the other hand, we can clearly see
the first step of the MLM algorithm (until t ≈ 2.5 s) where
an open-loop is used, the cost decreases and increases before
the bottom of the valley can be detected by the filter (Fig. 3b).

The second experiment is much more complex than the
previous one. First, the desired pose has been changed. The
image plane and the object plane are no more parallel: a 5◦x
axis rotation has been performed. Thus the desired depths all
have different values. Nevertheless, we keep Z = 80 cm for
all points in the interaction matrix to show the robustness wrt
the scene structure variation. Moreover, a non Lambertian
object has been used, it is a photograph covered by glass
and, as shown in Fig. 4, specularities can clearly be seen.
The initial pose is also more complicated since it involves
larger motion to reach the desired position. Indeed, we have
rinit = (20 cm, 10 cm, 5 cm, 10◦, 11◦, 15◦). The behavior
of the MLM control law is depicted in Fig. 5. More precisely,
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Fig. 3. First experiment. Lambertian object (x axis in second). (a) Cost
function using the GN method, (b) Cost function using the MLM method,
(c) Initial image, (d) Final image, (e) I− I∗ at the initial position, (f) I− I∗
at the final position.

Fig. 4. The non Lambertian object.

Fig. 5a depicts the camera velocity; Fig. 5b the behavior of
the cost function; Fig. 5c the translational part of the pose
∆r between r and r∗ and Fig. 5d its rotational part (the
rotations are represented by a unit rotation axis vector and
a rotation angle around this axis). As can be seen, despite
the non Lambertian object and all the approximations we
used, the control law converges without any problem. The
camera velocities are however noisy. That is because the cost
function is not smooth. Nevertheless, they have a small effect
on the camera trajectory as seen in Fig. 5c and 5d. Finally,
the final positioning error is very low since we have ∆r =
(-0.1 mm, -0.1 mm, -0.1 mm, -0.01◦, -0.01◦, -0.01◦). It is
because I− I∗ is very sensitive to the pose r.

The next experiment deals with partial occlusions. The
desired object pose is unchanged but the initial pose is
rinit = (20 cm, 10 cm, 5 cm, 10◦, 11◦, 5◦). After having
moved the camera to its initial position, an object has been
added to the scene, so that the initial image is now the one
shown in Fig. 6a and the desired image is still the one shown
in Fig. 5f. Moreover, the object introduced in the scene is also
moved by hand, as seen in Fig. 6b and Fig. 6c, which highly
increases the occluded surface. Despite that, the control law
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Fig. 5. Second experiment. MLM method (x axis in second for (a) and
(b), frame number for (c) and (d)). (a) Camera velocities (m/s or rad/s),
(b) Cost function, (c) Translational part of ∆r (m), (d) Rotational part of
∆r (rad.), (e) Initial image, (f) Final (and desired) image, (g) I− I∗ at the
initial position, (h) I− I∗ at the end of the motion.

still converges (see Fig. 6f). Of course, since the desired
image is not the true one, the cost function does not vanish at
the end of the motion (see Fig. 6f and Fig. 6h). Nevertheless,
the positioning error is not affected by the occlusions since
the final positioning error is ∆r = (-0.1 mm, -0.21 mm,
-0.1 mm, -0.02◦, 0.02◦, -0.01◦) and it is very similar with
the previous experiment. This very nice behavior is due to
the high redundancy of the visual features we use.

The goal of the last experiment is to show the robustness
of the control law wrt the depths. For this purpose, a non
planar scene has been used as shown on Fig. 8. It shows that
large errors in the depth are introduced (the height of the
castle tower is around 30 cm). The initial and desired poses
are unchanged. Fig. 7 depicts this experiment. Here again,
the control law still converges and the positioning error is
still low since we have ∆r = (0.2 mm, -0.2 mm, 0.1 mm,
-0.01◦, -0.02◦, 0.01◦).

VII. CONCLUSION AND FUTURE WORKS

We have shown in this paper that it is possible to use the
luminance of all the pixels in an image as visual features in
visual servoing. To the best of our knowledge this is the first
time that visual servoing has been handled without any image
processing (except the image spatial gradient required for the
computation of the interaction matrix) nor learning step. To
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Fig. 6. Third experiment. Occlusions. MLM method (x axis in second). (a) Initial image, (b) Image at t ≈ 11 s, (c) Image at t ≈ 13 s (d) Final image,
(e) Camera velocities (m/s or rad/s), (f) Cost function, (g) I− I∗ at the initial position, (h) I− I∗ at the end of the motion.
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Fig. 7. Fourth experiment. Robustness wrt depths. MLM method (x axis in second for (a) and (b), frame number for (c) and (d)). (a) Camera velocities
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Fig. 8. The non planar scene.
do that, we proposed a new control law since the classical
ones used with geometrical features fail when using the lumi-
nance. Our approach has been validated on positioning tasks.
The positioning error is very low. Supplementary advantages
are that our approach is not sensitive to partial occlusions and
to coarse approximations of the depths required to compute
the interaction matrix. Finally, even if it has been computed
in the Lambertian case, experiments on a non Lambertian
object has shown that very low positioning errors can be
reached. Future work will concern target tracking. To do that,
since the relative pose between the target and the lighting
will be no more constant, an important issue will be in the
determination of the interaction matrix.
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