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Abstract— This paper proposes a visual tracking method
which is robust to occlusion. This paper also integrates the
visual tracking method and visual servo control into a vision-
based control method with occlusion handling. The proposed
method chooses a set of correctly extracted image features, and
it then obtains an estimate of all the image features from the
correctly extracted image features. The estimation procedure
makes it possible to track image features even when occlusion
occurs. The method has low computational complexity, since
the image Jacobian is used for the image feature selection and
estimation. In addition, even when the controller fails to track
a moving image feature, it can find the failed image feature
without a global search over the entire image plane. As a result,
it can track the failed image feature again quickly.

I. INTRODUCTION

Visual servo control [1], [2] is widely used in the area of
robotics. Visual servo control uses image features in visual
feedback. A typical example of image features is a marker
position in the image plane. Each image feature is usually
extracted in a window in the image plane, which reduces the
computation time and improves accuracy. In order to make a
window for each image feature at each time step, each image
feature has to be tracked in the image plane, that is, visual
tracking is required. Integration of visual servo control and
visual tracking is one of major problems in the area of visual
servo control [3].

It is assumed in standard visual servo control that all image
features are visible and they can be tracked. The assumption
sometimes fails in practice. In particular, occlusion occurs
and the assumption does not hold in the following cases:

• A tracked target moves out of view.
• An object passes between a camera and a tracked target.
• The background color becomes similar to the color of

a tracked target.
Once visual tracking fails due to occlusion, a point which is
not a target is tracked. This may generate crucial errors in
3D reconstruction and in visual feedback control.

Recently some effort has been devoted to vision-based
control with occlusion handling. Visual servo control meth-
ods proposed in [4], [5], [6] always keep tracked targets in
the camera field of view, but they can not be allied to general
occlusion cases as mentioned above. A vision-based control
method which predicts occlusion has been presented in [7].
The method is effective only against self occlusion which
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can be predicted through the Binary Space Partitioning Tree
model [8], [9]. Weighted image feature approaches have been
presented in [10], [11]. If an image feature is far from the
median value or the reference, then the image feature is not
used in feedback control. The weighted approaches can not
determine whether visual tracking fails or not. Thus once a
point which is not a target is tracked, visual tracking may
continue to fail.

This paper proposes a visual tracking method which
includes an image feature selection algorithm and an image
feature estimation algorithm. The method chooses a set of
correctly extracted image features in the selection step. It
then estimates all the image features from the correctly
extracted image features. The estimation procedure enables
us to track image features even when non-predicted occlusion
occurs. This paper also integrates the image feature selection,
the image feature estimation and visual servo control into
a vision-based control method. Advantages of the proposed
visual servo control with occlusion handling are summarized
as follows:

• It has low computational complexity, since the image
Jacobian is used for the image feature selection and es-
timation. The image Jacobian usually appears in visual
servo control.

• The proposed method can determine whether visual
tracking fails or not. For each image feature, an error
between the measurement and an estimate is computed.
If the error is bigger than a given tolerance, it is seen
that visual tracking fails.

• The proposed method estimates all the image features
at every time step. Thus it can find a failed target again,
if the target is visible.

II. IMAGE JACOBIANS

Let m image features be given. The image features are
labeled from 1 to m. The vector of the i-th image feature
is denoted by ξi ∈ Xi ⊂ Rni , where Xi is the domain of
ξi. If ξi is the position of a marker in the image plane, then
Xi ⊂ R2. We set

ξ =
[
ξ>
1 ξ>

2 . . . ξ>
m

]>
. (1)

In addition, we define

ξI =
[
ξ>

σ1
ξ>

σ2
. . . ξ>

σ|I|

]>
(2)

where I ⊂ {1, 2 . . . ,m}, |I| is the size of the set I, σj ∈ I
(j = 1, 2, . . . , |I|) and

σ1 < σ2 < . . . < σ|I|. (3)
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As we shall see later, I implies a set of correctly extracted
image features. The vector ξI is used to generate a control
input, when ξi can be extracted correctly for i ∈ I and when
ξi can not be extracted due to occlusion for i 6∈ I. Details
will be discussed in Section IV.

Next, let q ∈ Rn denote the vector of generalized coordi-
nates of a given control object. Using a nonlinear function
αi of q, we can write

ξi = αi(q) (4)

(see for instance [12]). We define

α(q) =
[
α>

1 (q) α>
2 (q) . . . α>

m(q)
]>

(5)

and we have

ξ = α(q). (6)

Differentiating the above equation yields

ξ̇ = J(q)q̇ (7)

where

J(q) =
∂α(q)

∂q
. (8)

The matrix function J defined by (8) is called the image
Jacobian for ξ. Similarly, we define the image Jacobian for
ξI by

JI(q) =
∂αI(q)

∂q
(9)

where

αI(q) =
[
α>

σ1
(q) α>

σ2
(q) . . . α>

σ|I|
(q)

]>
. (10)

III. IMAGE FEATURE ESTIMATION AND SELECTION

This section discusses image feature estimation and selec-
tion. Section III-A proposes a method to obtain an estimate
of ξ from ξI. Section III-B presents a selection method to
have a set of correctly extracted image features.

A. Image feature estimation

We first describe a reconstruction algorithm of generalized
coordinates q by using the image Jacobians. Let two vectors
ξo and qo which satisfy

ξo = α(qo) (11)

be given. A linear approximation of (6) near qo is given by

J(qo)(q̃ − qo) = ξ − ξo (12)

or

q̃ = J+(qo)(ξ − ξo) + qo (13)

where q̃ is an approximate value of q, and J+(qo) the
Moore-Penrose inverse of J at qo. An approximate value
of q is also obtained by

JI(qo)(q̃ − qo) = ξI − ξo
I (14)

or

q̃ = J+
I (qo)(ξI − ξo

I ) + qo (15)

where ξo
I is defined by replacing ξ with ξo in (2). To simplify

notation, we write J , J+, JI and J+
I instead of J(qo),

J+(qo), JI(qo) and J+
I (qo), respectively, in this section.

We next obtain an estimate of ξ from ξI. Substituting (15)
into (12), we have

ξ̂ = JJ+
I (ξI − ξo

I ) + ξo. (16)

The vector ξ̂ implies an estimate of all of the image features
from correctly extracted image features, if I is a set of
correctly extracted image features.

We here define[
ξ̂>
1 ξ̃>

2 . . . ξ̃>
m

]>
= ξ̂, (17)

ξ̂i ∈ Rni , i ∈ {1, 2, . . . ,m}. (18)

B. Image feature selection

Similar to (16), we can estimate ξI from itself by

ξ̃I = JIJ
+
I (ξI − ξo

I ) + ξo
I . (19)

We here set[
ξ̃>

σ1
ξ̃>

σ2
. . . ξ̃>

σ|I|

]>
= ξ̃I, (20)

ξ̃σj ∈ Rnσj , σj ∈ I, j ∈ {1, 2, . . . , |I|} (21)

The vector ξ̃σj implies an estimate of ξσj from ξI. If ξ̃σj

is far from ξσj , then we may determine that the σj-th
image feature is not extracted correctly due to occlusion.
We therefore obtain a better candidate for a set of correctly
extracted image features by the following procedure:

` = arg max
σj∈I

‖ξσj − ξ̃σj‖, (22)

I ← I − `. (23)

If ‖ξσj − ξ̃σj‖ is within a given tolerance for all σj ∈ I, then
I implies a set of correctly extracted image features

IV. VISUAL SERVO CONTROL WITH OCCLUSION
HANDLING

This section integrates image feature estimation, image
feature selection and visual servo control into vision-based
control with occlusion handling.

A. Preliminaries

The vector of the generalized coordinates at time k is
denoted by q(k), and the vector of all the image features
at time k is written by ξ(k). We use q(k − 1) as qo at time
k. We thus use α(q(k − 1)) as ξo at time k, which satisfies
(11). The arguments of image Jacobians and Moore-Penrose
inverse of them are q(k − 1), but the arguments are omitted
to simplify notations.
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B. Control algorithm
It is assumed here that all the image features are the posi-

tions of given markers in the image plane. This assumption is
standard in visual servo control. We will discuss other types
of image features in Section IV-C.

Our proposed visual servo control algorithm consists of
image feature extraction, image feature selection, update
of the state, control input calculation and image feature
estimation as illustrated in Fig. 1, where the initial state q(0)
is given or set to 0.

Let us explain details of the proposed algorithm.
a) Image feature extraction: Image features at time k

are extracted by using an estimate of image features at time
k − 1. For example, ξ̂i(k − 1) is used as the center of a
window to extract ξi(k). The extraction algorithm can be
chosen by the user.

b) Image feature selection: Let the minimum size of
I, say ms, and a tolerance ε (> 0) be given. The following
algorithm determines the set I:
I = {1, 2, . . . ,m}
until |I| ≥ ms

ξ̃I(k) = JIJ
+
I {ξI(k) − αI(q(k − 1))}+ αI(q(k − 1))

if maxi∈I ‖ξi(k) − ξ̃i(k)‖ > ε
` = arg maxi∈I ‖ξi(k) − ξ̃i(k)‖
I ← I − {`}

else if
break

end if
end until

c) Update of the state: The state q(k) is given by

q(k) = J+
I {ξI(k) − αI(q(k − 1))} + q(k − 1). (24)

d) Control input calculation: A control input signal
u(k) is derived by using q(k). The concrete algorithm can
be chosen by the user. In particular, if

u = q̇, (25)

then one of standard methods is

u(k) = −λ {q(k) − q(k − 1)} (26)

Image Feature Extraction

Image Feature Selection

Update of the State

Control Input Calculation

Image Feature Estimation

(1)

(2)

(3)

(4)

(5)

Fig. 1. A flow diagram outlining the proposed visual servo control system.

where λ is a gain. In the next section, a PID controller is
implemented.

e) Image feature estimation: Using (16), image features
are estimated by

ξ̂(k) = JJ+
I {ξI(k) − α(q(k − 1))} + α(q(k − 1)). (27)

C. discussion

We first discuss the image feature selection.
The selection step eliminates the index i such that the error

between the measurement ξi and the estimate ξ̃i is biggest
until the biggest error is within the given tolerance. The set
I obtained in the method satisfies

‖ξi − ξ̃‖ ≤ ε, ∀i ∈ I (28)

or

‖ξi − ξ̃‖ ≤ ‖ξi − ξ̃‖, ∀i ∈ I, j 6∈ I. (29)

We can make additional pre-selections before the image
feature selection in order to improve the accuracy of the set
I. Three typical examples are shown below: (a) If ξ̃i(k−1) 6∈
Xi, then

I ← I − {i}. (30)

(b) If windows for extracting the i-th and the j-th image
features overlap with each other in the image plane, then

I ← I − {i, j}. (31)

(c) If an image moment such as the area of an image feature
is without a tolerance, then

I ← I − {i}. (32)

Using many selections increases computational complexity.
This leads to large time delay, which have a considerable
influence in real-time control systems. We have to imple-
ment appropriate selections taking into account the tradeoff
between accuracy and time delay.

We then discuss the type of image features.
In the previous section, it is assumed that all the image

features are the positions of given markers. In this case, the
estimated image features are used as the centers of windows
for extracting image features. Thus, the proposed method can
find a failed marker again, after the marker is visible.

Let us consider the case where an image feature is not the
position of a marker. In this case, we require two types of
image features for the marker. One of the image features is
the original image feature, and the other is the position of
the marker in the image plane. Using the position for visual
tracking, we obtain the set I at each time k. We can update
the state q(k) by using the obtained I and the original image
features.

V. EXPERIMENTAL RESULT

This section demonstrates the proposed visual servo con-
trol with occlusion handling.
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A. Experimental setup

The system considered in this section consists of a small
helicopter, four stationary cameras, three computers, a DA
converter and a transmitter as illustrated in Fig. 2 (see [13]
for a single-camera and wired version of this system). The
helicopter does not have any sensors which measure the
position or posture. It has four small black balls, and they are
attached to rods connected to the bottom of the helicopter.
The black balls are labeled from 1 to 4. Their positions in the
image planes are image features. The four cameras are placed
on the ground and they look upward. The cameras are labeled
from 1 to 4. Each two of four cameras are connected to a
computer. The two computers linked to cameras are called
client computers. The computer linked to the DA converter
is called server computer.

Client computers execute image feature extraction in
Fig. 1. Each camera captures a gray-scale image, and each
client computer binarizes two of the images at each time.
The image features are extracted in windows whose centers
are set to the estimate derived from (27). The estimate is
calculated in server computer, and it is transfered to client
computers. Client computes take 8.5 milli-seconds to extract
image features. This follows from the use of fast IEEE
1394 cameras, Dragonfly Express, developed by Point Grey
Research Inc. The values of the extracted image features are
transfered to server computer.

Server computer executes image feature selection, update
of the state, control input calculation and image feature

Server Computer

Client

Computer 2 

DA Converter

Transmitter
Client

Computer 1 

Helicopter

Experimental Field

Ground Station

Camera 1

Camera 4
Camera 2

Camera 3

Fig. 2. System configuration.

estimation. Details of control input calculation are described
in Section V-C. The obtained control signals are supplied
from server computer to the helicopter through the DA
converter and the transmitter. It takes 8.5 milli-seconds to
update the control signals.

The small helicopter used here is X. R. B SR SKY ROBO
Shuttle developed by HIROBO (see Fig. 3). It has a coaxial
rotor configuration. The two rotors share the same axis, and
they rotate in opposite directions. The tail is a dummy. A
stabilizer is installed on the upper rotor head. It mechanically
keeps the posture horizontal.

Table I summarizes specifications of the system.

B. Coordinate frames

Let Σw be the world reference frame. The zw axis is
directed vertically downward. A coordinate frame Σb be
attached to the helicopter body as illustrated in Fig. 4. The
(xb, yb, zb) positions of the four black balls in the frame Σb

are given by 0.1
0.1
0.04

 ,

−0.1
0.1
0.04

 ,

 0.1
−0.1
0.04

 ,

−0.1
−0.1
0.04

 (33)

Let ξ4(i−1)+j denote the j-th ball position in the image plane
of the i-th camera.

The helicopter position relative to the world reference
frame Σw is denoted by (x, y, z). The roll, pitch and yaw
angles are denoted by ψ, θ, φ, respectively. Recall that
the helicopter has the horizontal-keeping stabilizer. Both the
angles θ and ψ converge to zero fast enough even when the
body is inclined. Thus we may suppose that

θ(k) = 0, ψ(k) = 0, ∀ k ≥ 0, (34)

Fig. 3. X.R.B. with four black balls.

TABLE I
SPECIFICATIONS OF THE SYSTEM.

Length of the helicopter, 0.40 [m].
Height of the helicopter, 0.21 [m].
Rotor length of the helicopter, 0.34 [m].
Weight of the helicopter, 0.21 [kg].
Focal length of the lens, 4 [mm].
Camera resolution, 640 × 480 [pixels].
Pixel size, 7.4 [µm] × 7.4 [µm].
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Side view Front view

Fig. 4. Coordinate frames.

in practice. The vector of generalized coordinates of the
helicopter is given by

q =
[
x y z φ

]>
. (35)

The following four variables are individually controlled by
control signals (see Fig. 4):

B : Elevator. Pitch angle of the lower rotor.
A : Aileron. Roll angle of the lower rotor.
T : Throttle. Resultant force of the two rotor thrusts.
Q : Rudder. Difference of the two torques generated

by the two rotors.

The corresponding control signals are denoted by u1, u2, u3

and u4. Note that x, y, z and φ are controlled by applying
u1, u2, u3 and u4, respectively.

C. Controller design

The aim here is that q(k) → 0 as k → ∞. We define[
q̄1(k) q̄2(k) q̄3(k) q̄4(k)

]
= R(φ(k))q(k) (36)

where

R(φ) =


cos φ sinφ 0 0
− sin φ cos φ 0 0

0 0 1 0
0 0 0 1

 . (37)

The control signals are given by a set of PID controllers of
the form

ui(k) = bi + Piq̄i(k) + Ii

k∑
0

q̄i(k)

+ Di(q̄i(k) − q̄i(k − 1)), (38)

where bi, Pi, Ii and Di are constants for i = 1, . . . , 4. They
are heuristically tuned to the values in Table II. The signs of
the gains depend on the property of the transmitter.

D. Result

The altitude of the origin of the world reference frame Σw

is 1.0 [m] above the ground. The xwyw plane is horizontal.
The cameras are located as shown in Table III (We first set
camera i at the origin of Σw temporarily. The optical axis
lies along xw axis. We then move camera i in accordance
with Table III.) We set ms = 4 and ε = 15 [pixels].

1.56 [m]1.43 [m]

1
.4

3
 [

m
]

1
.5

6
 [

m
]

Walking
path

Fig. 5. Camera locations and a walking path. The symbol i© stands for
the position of camera i.

After hovering, the proposed visual servo control was
implemented. A person walked in the experimental field as
illustrated in Fig. 5. Occlusion in the experiment can not be
predicted.

The top figure in Fig. 6 shows time profiles of elements
of I. It is seen that ξi 6∈ I for i = 1, . . . , 4 at around 1
[sec.]. Fig. 6 also illustrates that occlusion was detected in
camera 2, 3 and 4 at around 4, 7 and 10 [sec.], respectively.
It is seem from Figs. 5 and 6 that occlusion was detected
in camera i when the person walked between the camera
and the helicopter. In addition, image features were tracked
again, when he left from the front of the camera.

The bottom two figures in Fig. 6 are closeups of the
top figure. The figures show that occlusion was detected in
camera 2 unrelated to the motion of the walking person.
This follows from the background color in the image. The
image features ξ6 and ξ8 were over a room light in the image
captured by camera 2. Thus client computer sometimes fails
to extract the image features correctly. Our proposed visual
servo control is robust to such image outliers.

Fig. 7 shows time profiles of the generalized coordinates
q. The helicopter hovered in a neighborhood of 0 even when
occlusion occurred. In particular, the z position was within
2 [cm] for all time. The helicopter was controlled well.

TABLE II
PID GAINS.

bi Pi Ii Di

u1 2.02 2.00 0.10 1.5
u2 2.76 −2.00 −0.10 −1.5
u3 1.85 −2.40 −1.50 −1.8
u4 2.53 −1.50 −0.80 −0.1

TABLE III
CAMERA CONFIGURATION.

x y z φ θ
camera 1 0.00 1.00 1.13 π/2 5π/18
camera 2 0.80 −1.20 1.21 4π/3 π/6
camera 3 −1.20 −0.70 1.12 11π/6 π/9
camera 4 −1.20 0.00 1.13 0 2π/9
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Fig. 6. Experimental result: The label of the selected image features. Lines
are drawn for i when i ∈ I at each time. The bottom two are closeups of
the top figure.

VI. CONCLUSION

This paper has proposed a visual tracking method with
occlusion handling for visual servo control. In particular,
image feature selection, image feature estimation and visual
servo control have been integrated into a vision-based control
algorithm. The proposed control algorithm chooses a set of
correctly extracted image features, and it then estimates all
image features from the correctly extracted image features.
The algorithm has low computational complexity, since the
image Jacobian is used for image feature extraction and
estimation. In addition, even when the algorithm fails to track
a moving image feature, it does not need a global search over
the entire image plane to find the failed image feature. As a
result, it can track the failed image feature again quickly. The
validation of the proposed algorithm has been demonstrated
in an experiment. Occlusion in the experiment can not be
predicted. Several movies can be seen at [14].
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