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Abstract—The potential of six-axis acceleration sensors in
the field of robotic manipulation applications is quite high
and most of it has not been used yet – neither in theoretic
literature nor in research experiments. When considering six-
joint industrial manipulators with six-axis force/torque and six-
axis acceleration sensing, many new possibilities arise: all ten
inertial parameters of any object can be identified and objects
can be recognized based on these parameters, position control
behavior can be improved; non-contact forces can be extracted
and force control performance can be improved; visual-servoing
methods can use acceleration signals to become more robust. The
authors made numerous experiments in the mentioned fields and
recognized major weaknesses during the realization of prototypic
research setups with six-axis acceleration sensors. These problems
regard sensor drift, undesired sensor-internal dependencies as
the influence of any distal sensor part, noise, and undesired
crosstalk behavior. In order to benefit from acceleration signals, it
is important to clearly overcome these problems. This paper an-
alyzes typical systematic errors, characterizes them, and suggests
important solution methods for a successful usage of acceleration
information.

I. INTRODUCTION

Multi-sensor integration in industrial manipulation control

systems provides a huge potential, of which only a very small

part has been investigated yet. Industrial manipulators are still

mainly used for point-to-point operations, i.e. purely position

controlled. Commercial control units are not open for sensor

integration, and research institutions often replace the existing

control units by their own ones to perform experiments in

control engineering and sensor integration.

This paper focuses on a very particular and important part

of multi-sensor integration and multi-sensor fusion in order

to improve the control of six-joint robotic manipulation arms:

six-degree-of-freedom (DOF) force/torque sensing in combi-

nation with six-DOF acceleration sensing. Although six-axis

accelerometers are commercially available since more than a

decade, almost no results using this promising technology can

be found in the open literature. Parts of the question ”Why?”

may also be answered by this paper.

The possibilities and advantages of this technique are wide

spread; only some of the major operational areas and chances

of it are supposed to be named in the following in order

to emphasize its importance and potential. Identification of

all ten inertial parameters (mass, center of mass coordinates,

and the six elements of the inertia matrix) of a load at-

tached to a manipulator by using the twelve sensor signals

becomes possible and can be beneficially employed in various

robotics applications. These parameters can be used to tune

position controllers on-line. Especially when eying on parallel

kinematic machines and their typical dynamic characteristics,

the control behavior can be improved when not only the

mass of the end-effector load is known but also its mass

distribution given by the identified inertia tensor. The ten

inertial parameters together with the six measured acceleration

signals would also enable force controllers to extract the forces

and torques caused by environmental contact(s) [1]. A new

idea would be to use the ten parameters to identify objects

[2]; this way even objects, which can not be distinguished by

vision systems, can now be recognized, e.g. when handling

castings with blowholes or crates of water: a vision system is

not capable of detecting the trapped air, but by the knowledge

of the inertial parameters this would become possible, too. The

last application field to be mentioned here yields to a benefit in

visual servoing. The approach presented in [3] applies position

vision fusion for object tracking by using a Kalman filter. This

approach might be extended by integrating the acceleration

signals.

The authors made various experiments in the above men-

tioned fields and recognized that especially the characteristics

of (six-DOF) accelerometer signals (still) do not satisfy the

demands for a reasonable sensor fusion with force/torque

signals. The reasons and proves for this statement together

with suggestions to bypass this problem are given in this paper.

A major aim is to prevent other researchers from making the

same shortcoming experiences.

After related work and a brief introduction to six-DOF

accelerometers are presented in Section II, Section III explains

several reasons for the shortcoming of six-axis acceleration

sensing, which is followed by a Section that describes how

a six-tuple of acceleration values can alternatively be derived

from position signals (Section IV). Experimental results are

also presented in this Section, which is then followed by

conclusions and references.

II. RELATED WORK AND FUNCTIONAL PRINCIPLES OF

SIX-AXIS ACCELEROMETERS

Research on acceleration sensing has gained in popularity

during the last years, but even up to now, literature on
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acceleration sensing for robot control applications is rare. The

moste relevant works in this field as well as corresponding

(basic) functional principles are given in this Section.

Johansson et al. published works on the estimation of

contact forces [4], [5]. There an observer, which is fed with

position, force, and acceleration signals, is used to estimate the

contact force. The respective theory includes Kalman filtering

and leads to benefits in force/pose control, which was demon-

strated with convincing experimental results. The authors of

this work have worked on the calculation of contact forces and

torques [1], [6]. Calculation means here, that the complete set

of inertial parameters is known, and the acceleration signals

are used to calculate (not to estimate) non-contact forces

and torques in order subtract these values from the measured

forces and torques, i.e.the measured force/torque six-tuple is

divided into two parts: forces/torques caused by environmental

contacts and forces/torques caused by inertia. Current activities

include the on-line identification of all ten inertial parameters.

The works of Meng et al. constitute research on six-axis

accelerometers, which base on strain gages [7], [8], where

special attention has been payed on robotic manipulation

applications.

Several functional principles of six-axis accelerometers are

known and supposed to be shortly introduced here. Accel-

eration sensing technologies base on capacitive (e.g. [9]),

piezoresistive (e.g. [10]), piezoelectric (e.g. [11]), and other

principles as the usage of strain gages with seismic masses by

Meng et al. [7], [8] or the usage of optical distance sensors to

measure to motion of a single proof mass [12].

Although some of these sensor technologies are already

commercially available, their further enhancements are matter

of research and development [10]. Due to recent advances in

micromachining technology the fabrication and the design of

MEMS-based (micro-electromechanical-systems) accelerome-

ters has become more affordable and their characteristics as

bandwidth, drift, temperature dependency, and sensitivity have

been improved, too. A state-of-the-art report on MEMS, which

are also used in [10] and [12], is given in [13].

One possibility to establish a minimal custom setup for
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Fig. 1. Accelerometer for six DOFs based on three pairs of MEMS.

twelve-DOF sensing is using any six-DOF force sensor in

combination with a set of MEMS as shown in Fig. 1. Here

three pairs of MEMS are arranged in angles of 120◦ on a

cylindrical adapter part, which is supposed to be mounted

between the manipulator’s hand and the end-effector tool.

Each pair measures in two orthogonal directions, such that

acceleration values for all six DOFs can be extracted. As also

shown in [14], special attention has to be payed to dynamic

coupling effects between all sensors.

Considering the measured accelerations from MEMS1 to

MEMS6 in Fig. 1 as a1, . . . , a6, where a1, a3, and a5 lay

collinear to the sensor frame’s z-axis and a2, a4, and a6 are

orientated tangentially with respect to the cylindrical adapter

part at a radius of r, we can obtain the acceleration values in

Euclidian space, ax, ay , az , αx, αy , and αz , by:

ax =
a6 − a4√

3
(1)

ay =
a2 − 2a4 − 2a6

3
(2)

az =
a1 + a3 + a5

3
(3)

αx =
a5 − a3√

3 r
(4)

αy =
2a3 + 2a5 − a1

3r
(5)

αz =
a2 + a4 + a6

3r
(6)

This geometric arrangement of acceleration sensors was also

chosen for the JR3 twelve-DOF combined force/torque and

acceleration sensor [15], which provides six-DOF force/torque

data and six-DOF acceleration data at a maximum sampling

rate of 8 kSamples/s. This is a very convenient way to

achieve all twelve desired signals, and as it is used by many

research institutions, the focus will be put on this kind of

sensor type in the following parts. But even if all concrete

results described here are surely limited to this sensor type,

the effects that have to be considered for twelve-DOF sensing

are the same for any sensor. The authors achieved the

here-presented results with a set of 85M35A-40 200N12 JR3

sensors1, which are typical for robotic applications.

The analog outputs of the individual force, torque, and

acceleration sensing elements are A/D converted within the

sensor and transmitted to a receiver board. The receiver card

performs processing tasks, e.g. decoupling of the sensor axes,

optional low-pass filtering, and user-parameterizable functions.

Forces and torques are sensed using foil strain gages, which

show substantial drift due to temperature effects. Linear and

angular acceleration values originate from a set of monolithic

micro-machined accelerometers. This technique suggests that

the noise affecting the linear and the angular accelerations may

be correlated.

III. SYSTEMATIC ERRORS

Various influences lead to errors in the measurement of

forces, torques, and accelerations. This Section discusses sys-

tematic errors in the measurements and their causes, namely:

sensor drift, the dependency on mounting torque, the influence

of the distal sensor part, and issues concerning the impulse

1The maximum scale values of the sensor model 85M35A-40 200N12 are:
Fx = Fy = 200 N , Fz = 400 N , τx = τy = τz = 12 Nm, ax = ay =

az = 49.03 m/s2, αx = αy = αz = 5729.58◦/s2.
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Fig. 2. Temperature evolution of the sensor surface during normal operation.
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Fig. 3. Exemplary drift behavior of the three force offsets Fx, Fy , and Fz .

response. Finally some remarks on the noise characteristics

are given.

A. Drift

The measured signals of the sample sensors exhibit no-

ticeable offset drift, which abates after an operating time of

approx. two hours, and which is not compensable. In order to

quantify this observation and to evaluate the relation of the

drift to the sensor temperature (self heating-up), the sensor

surface temperature was monitored, and the evolution of all

measured signals was observed simultaneously. As Fig. 2

shows, the temperature characteristics are of classical first-

order time-delay behavior. Fig. 3 presents exemplarily the

evolution of the force offsets over time. As can be observed

in the figure, the changes of the offsets are not limited to

t < tsta regarding all measured signals. The fz signal shows

the highest drift of more than 5N . In contrast to the drift

behavior of fx and fy , the drift of fz does not considerably

reduce after tsta. In fact fz is the only measured signal that

shows considerable drift (≈ 2N/h) after the stabilization

of the sensor surface temperature (cf. Fig. 2). Moreover the

remaining force offsets were observed to show a noticeable

drift (< 0.3N/h) even after twelve hours of operation at

a constant sensor surface temperature. Similarly, the drift

of the torque signals did not abate entirely. Regarding the

remaining measured signals – i.e. the linear accelerations and

the angular accelerations – a stabilization of the offsets is

observed by tsta. Apart from the heating-up of the sensor

during operation, other temperature influences may result in

offset drift. Noticeable fluctuations are caused by test-loads
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Fig. 4. Strongly simplified scheme of the sensor setup: the mass of the distal

sensor part also influences sensor signals.

whose temperature differs from the sensor surface temperature.

Therefore it is recommended to mount the test-load before

the heating-up phase of the sensor, if stable sensor offsets are

desired.

Summarizing this Subsection, users can only neglect this

drift after a heating-up phase. The drift of the sensor in z-

direction does not stop, might remain at 2N/h, and cannot be

neglected.

B. Mounting Torque Dependency

Mounting a load onto the sensor causes measured forces and

torques that substantially differ from the expected gravitational

forces and torques. This difference obviously depends on

the torquing of the load. If the load is removed again, the

force/torque readings approximately reduce to zero again. This

observation indicates that the distal sensor part, i.e. the part

of the sensor which is located between the sensing elements

and the attached load, is elastically deformed by mounting

(torquing) the load, which induces forces and torques into

the strain gages. In order to quantify this observation, the

forces/torques were measured before and after mounting an

end-effector tool. The mounting bolts were torqued according

to the scheme proposed in [15] with torques of 0.5Nm, 1Nm,

and 1.5Nm in three experiments. Permanent forces of up to

22% of the full scale and torques of up to 25% were observed

if the highest torque was applied. After removing the bolts the

residual forces and torques reduce to values below or slightly

above the noise level, i.e. ~fbefore − ~fafter < 0.04N . These

offset shifts occur regardless of whether the bolts are tightened

with torques of 0.5Nm, 1Nm or 1.5Nm. Nevertheless

the magnitude of these force and torque offsets rises with

increasing mounting torque. As the force and torque offset

shifts of these magnitudes can definitely not be neglected,

zeroing becomes necessary after every change of mounting

torques.

C. Influence of the Distal Sensor Part

Fig. 4 shows a very simplified scheme of the respective sen-

sor device. The distal sensor part influences the force/torque

readings depending on the orientation of the sensor. Despite

the elastic properties and limited stiffness, the distal sensor

part is assumed to be a rigid body here. If properly attached

to the load, the distal part of the sensor and the load form

one rigid body, that exerts forces and torques onto the sensor.

The inertial parameters of the load are adulterated by the

forces and torques caused by the distal sensor part. In order

to compensate these forces and torques, the law of linear

superposition of forces and torques should be applied. If the
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ten inertial parameters of the distal sensor part are known,

identification methods can be used to calculate the resulting

forces and torques caused by the distal part. Subtracting these

forces and torques from the measured forces and torques

compensates the influence of the distal sensor part.

To identify the inertial parameters of the distal sensor part

static identification was performed to estimate its mass m and

center of mass coordinates ~c = (cx, cy, cz)
T

with respect to

the sensor frame. Therefore the sensor was posed in different

orientations. Before starting the identification procedure

the sensor had been operating for three hours to achieve

thermal stability and thus reducing drift. 100 orientations

randomly drawn from an uniform, trivariate distribution of

roll-pitch-yaw-angles parameterize the rotations of the sensor

frame. In each sensor orientation, 1000 measurements were

sampled and the sample mean was calculated in order to

mitigate noise effects. Sensor drift effects were minimized

by periodically resetting the sensor offsets in an initial pose

after ten orientations had been approached. The batch least

squares (LS) method [16] and the batch total least squares

(TLS) method [17] were applied for identification. For this

static method the gravity vector was determined through

~ginit = (0, 0,−g0)
T with g0 = 9.80665m

s
2 in an initial pose.

The respective gravity vector for each orientation, ~g, was then

calculated in order to identify m and ~c. The corresponding

simple equations are given by:

~fij = −m · ~g with i = 1 . . . 1000 and

~τij = −m · ~c × ~g j = 1 . . . 100,

where ~fij and ~τij represent the measured forces and torques.

Using the setup described above, the parameter identification

yielded the following mass properties of the distal sensor part

of the JR3 sensor:

m = 56.4 g cy = 0.35mm
cx = −1.65mm cz = 10.3mm

The results were obtained from experiments on two sensors

by using the identification methods LS and TLS (note: cx 6≈
cy). The low mass of the distal sensor part and the compact

geometric shape of the sensor suggest that the elements of the

inertia matrix are negligible. Therefore dynamic identification

was not performed and the elements of the inertia matrix are

assumed to be zero. The essence here is that the mass of the

distal part cannot be neglected when having light load masses

mounted to the sensor. Independent from the manufacturer,

this phenomenon is observed with any force/torque sensor.

D. Impulse Response and Crosstalk

For the purpose of inertial parameter estimation the impulse

response of the sensor could influence the identification per-

formance depending on its shape. In order to determine the

approximate shape and duration of the fz impulse response,

the unloaded sensor was subjected to force impulses in z-

direction. The impulses were generated by hitting the sensor

with a plastic sphere of 0.12 g mass that impacts on the sensor
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Fig. 5. Two Impulse responses of the force fz after the impact of a plastic
sphere.

at the geometric center of its distal surface. After the impact

it just bounces away again. The sensor was rigidly attached to

a massive table with its proximal mounting surface, and the

measured signals were sampled at the highest sampling rate of

8 kSamples/s. The duration, shape, and particularly the peak

value of the impulse are unknown and thus merely admitting

qualitative statements on the sensor impulse response.

The obtained impulse response of the force fz shown in

Fig. 5 is very short (≈ 9ms) and does only contain marginal

oscillations after a short (≈ 1ms) initial negative peak. If the

other force signals and torque signals show similar impulse

responses, compensating the impulse response will probably

not improve the performance. When a force impulse is applied

in z-direction exactly in the geometric center of the sensor,

ideally all measured signals except fz are not influenced by the

impulse. However, all force signals and all torque signals were

influenced by the impulse. Since it could neither be guaranteed

that the plastic sphere hits the sensor exactly in z-direction nor

that it impinged exactly in its geometric center, disturbance

forces and torques in other directions are probable. However,

a force impulse in an arbitrary direction must not affect the

linear acceleration and angular acceleration readings if the

sensor does not move due to the impulse. In fact, both linear

and angular acceleration signals show substantial disturbances

caused by the applied force impulse although the sensor was

immobilized by attaching it to a massive table. Additionally,

the acceleration measurements during a trajectory execution

suggest non-negligible sensitivity to vibrations perpendicular

to the sensing axis of the accelerometers. These disturbances

do not occur if the spectrum of the applied force concentrates

at low frequencies, e.g. when a force of similar magnitude is

applied manually. This observation suggests that the sensing

elements indeed experience accelerations due to the impact.

Fig. 6 shows three linear acceleration measurements in z-

direction showing the effects of the impacts. All three time-

evolutions of the linear acceleration az show similar shapes.

Note that the linear accelerations peak at ≈ 26m/s2 (> 50%
of the full scale) and the influence of the impact lasts for

approx. 20ms and thus leads to considerable adulteration of

the measurements during this time. Fig. 7 depicts the angular
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on the angular acceleration αz .

acceleration signals αz of three trials in z-direction. Again, the

signal shapes of the individual trials show considerable resem-

blance. The maximum angular acceleration of ≈ 5730◦/s2 is

clearly exceeded by the measured angular acceleration in z-

direction caused by the impact this maximum rating (Fig. 7).

Summarizing this Subsection leads to the awareness of

substantial crosstalk between the different sensing elements

for force/torque and acceleration. It is one of the major

weaknesses as will be also pointed out in Section IV.

E. Noise

This part shortly summarizes experiments on noise analysis.

In order to evaluate the noise characteristics, measurements

of forces, torques and, accelerations were performed at three

sampling rates using the unloaded sensor. Prior to data acqui-

sition, the sensor had been operating for three hours in order to

stabilize the sensor temperature and hence reduce temperature

drift during the experiment.

Regarding the statistical characteristics experiments showed

that the relative frequency distributions of the force and the

torque noise amplitudes sampled at full sensor bandwidth,

considerably differ from a Gaussian distribution whereas those

of the linear and the angular acceleration noise amplitudes

resemble Gaussian distributions.

The force signal of fz shows an approx. three times higher

noise variance than the fx or the fy signal. Note that the sensor

maximum force ratings are twice as high in z-direction as in

x-direction or y-direction. Thus this observation may be due

to design differences in the foil strain gages for sensing fz .

The acceleration signals show considerable noise cross-

correlation, as already expected because of the employed

acceleration sensing approach (cf. eqn. (1)–(6)). Knowledge

of the cross-correlation may be beneficially employed in the

design of Kalman filters for any preprocessing of ~a and ~α
by considering the cross-covariances of the measured signals

in the measurement noise covariance matrix [18]. Regarding

any preprocessing stage noise models of the linear and the

angular acceleration noise may be incorporated into the

Kalman filters, which may improve the performance in the

presence of correlated noise.

Finally we can clearly state that systematic errors affecting

all twelve signals contribute more to the total signal error

than the noise. Therefore the implementation of noise models

was not pursued; only the achievement of noise variances was

employed to tune Kalman filters.

IV. ACCELERATION SIGNALS DERIVED FROM POSITION

SIGNALS

Fig. 8a and Fig. 9a show linear and angular accelerations

signals of the sensor frame’s x-axis. The bold graph indicates

the ideal/expected signal; it was theoretically calculated by

considering all inertial parameters of a known test mass and

all 18 position, velocity, and acceleration signals of a precal-

culated trajectory. The real acceleration signals are unknown,

of course, and would be adulterated by unmodeled effects

as material vibrations of the manipulator arm for instance.

But another phenomenon shows that these unmodeled effects

only cause small and negligible additional magnitudes. Force

and torque signals, which are only excited by the inertia of a

sample mass during a test trajectory, match exactly with the

theoretically calculated ones. This fact lets us assume that the

bold line is very close the real acceleration signal.

The second signal in Figs. 8a and 9a was recorded during

the execution of a jerk-limited, sinusoidal shaped trajectory

on a Stäubli RX60 industrial manipulator. As one can see in

Fig. 9a the αx signal exhibits strong disturbances and already

exceeds the maximum values of the sensor even though a very

soft and not too dynamic trajectory was chosen.

Due to the bad characteristics of all three angular accel-

eration signals, actually these signals did not lead to any

successful experiments, the idea of deriving the angular ac-

celeration vector ~α from position measurements was born and

is supposed to be commented in this Section.

Joint angle measurements ~q(t) are used to derive the angular

velocity vector ~ω(t) as well as an alternative representation of

the angular acceleration vector ~α(t) with respect to the sensor

frame. Hence the differentiation or double differentiation,

respectively, of the joint angle measurements is necessary.

Unfortunately differentiation using forward, backward, or cen-

tral difference operators, increases the noise contained in

the signal. The most promising results were achieved with
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Fig. 8. Linear acceleration of the manipulator sensor frame’s x-axis ax: a)
directly measured sensor values, b) based on differentiation (eqn. 7), and c)
based on Kalman filtering The bold line indicates the evolution of the ideal
signal.

the central difference operator. Although the joint angle

signals ~q(t) are not remarkably affected by noise, the angular

velocity signals ~̇q(t) obtained by differentiating the joint angle

signals show considerable noise. Disturbances contained in

the individual joint angle measurements and the derived joint

angular velocities and joint angular accelerations ~̈q(t) are

also propagated through the kinematic chain. Thus parameters

expressed with respect to the sensor frame are influenced

by disturbances originating from all six joints. This error

propagation problem is even intensified by the high non-

linearity of the transformation matrices with respect to the

joint angles. If the joint variables, obtained by differentiation,

are used to derive the acceleration vectors ~a and ~α with respect

to the sensor frame, these elements of the vector are clearly

dominated by noise as Figs. 8b and 9b depict exemplarily.

These signals were obtained after a double differentiation by

q̈k(t) =
qk(t + ∆t) − 2qk(t) + qk(t − ∆t)

(∆t)2
(7)
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Fig. 9. Analogon to Fig. 8 for angular accelerations: a) directly measured
values of αx, b) based on differentiation of position signals, and c) based on
Kalman filtering. The bold line indicates the ideal signal again.

in joint space followed by a transformation into the sensor

frame (please note the different scalings in Figs. 8 and 9).

Simple FIR/IIR post-filtering indeed results in a lower noise

level but the group delay of the filter delays the filtered signal.

This, in turn, may not be acceptable when heading for instance

for identification algorithms based on these signals. Moreover

the filter characteristics, particularly the cut-off frequency,

have to be adapted to the bandwidth of the input signal

in order to minimize the noise level. Ovaska [19] surveyed

several approaches to angular acceleration measurement in the

presence of noise. Regarding indirect acceleration measure-

ments two major approaches can be distinguished. The first

approach uses a differentiator followed by a low-pass filter. In

order to eliminate the group delay of standard FIR/IIR filters,

predictive filters may be employed. One weak point of this

approach is the necessity to optimize the cut-off frequency

of the filter depending on the maximum signal frequency in

order to guarantee best-possible noise suppression regardless

of the executed trajectory. Furthermore, the applicability of
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this approach is constrained since velocity or acceleration

signals that cannot be accurately approximated by low-order

polynomials deteriorate its performance [19].

The second approach is based on linear state observation

using Kalman-filtering techniques. In contrast to the first

approach, it is not limited to a certain class of signals. As

a linear Kalman filter is additionally inexpensive concerning

its computational complexity and easy to implement, the

latter approach is favored. The derivation of the joint angular

velocity and the joint angular acceleration is described by a

linear state space model, affected by additive Gaussian noise,

whose characteristics influence the filter behavior.

A variant of the Kalman filter, used to derive both joint

angular velocity ~̇q(t) and joint angular acceleration ~̈q(t) from

joint angle measurements ~q(t), uses the linear continuous

state-space model and was proposed by Bélanger [20]. This

state-space model estimates a state, which incorporates the

joint angular velocity q̇k(t), the joint angular acceleration

q̈k(t), and the joint angle qk(t) itself, for each joint k.

Based on the approaches from [19] and [20] the filtered

joint angles, angular velocities, and angular accelerations are

used to derive motion parameters with respect to the sensor

frame. The Figs. 8c and 9c exemplarily show the Kalman

filtered signals ax(t) and αx(t) based on measured joint angle

signals ~q(t). In contrast to the Kalman filter-based signal,

the measured angular acceleration signal is dominated by

disturbances.

The quintessence of this section is that especially the

angular accelerations can be obtained in sufficient quality

by using measured joint position signals and Kalman filter

techniques, while the directly measured angular accelerations

exhibit strong disturbances. The fact that a complete set of

acceleration signals measured in a typical setup with respect

to a frame fixed to the end-effector of a robotic manipulator

can be achieved without additional sensing, is supposed to be

really promising and valuable.

V. SUMMARY AND CONCLUSIONS

This paper summarizes experiences with force/torque and

acceleration measurements in six axes. The aim was to fuse

all twelve signals in order to enable the estimation of in-

ertial parameters, to improve control behavior, to recognize

objects, to gain force control performance, or to make visual-

servoing methods more robust. The geometric arrangement of

typical accelerometers as the twelve-DOF sensor of JR3 was

explained. Systematic errors, which naturally occur during the

usage of six-axis force/torque sensors together with six-axis

accelerometers, were derived and discussed.

The major contribution of this paper however is, that the

signal characteristics of typical sensor setups are analyzed and

characterized with the essential result, that strongly disturbed

measured acceleration signals, especially angular acceleration

signals, can be sufficiently replaced by Kalman filter based sig-

nals derived from joint position measurements. These signals

can sufficiently be fused with measured force/torque signals.

As second major conclusion we state that the methods

of Ovaska et al. [19] and Belanger et al. [20] to derive

acceleration information from joint position measurements

deliver excellent results – herewith we clearly confirm the

results of these techniques.

Institutions that consider buying a twelve-DOF sensor might

think about this methodology and decide to achieve accelera-

tion values from Kalman-filtered position signals. Sophistica-

tions might appear only if the manipulator acts on a mobile

platform, such that accelerations of the platform itself can not

be neglected when regarding forces and torques caused by

inertia. This is an issue that has not been addressed in this

paper, and which is part of our future work: the investigation

of force/torque and acceleration sensor data fusion on robotic

manipulation arms, whose bases are non-fixed and also influ-

enced by further accelerations, e.g. arms on mobile platforms.

Research and development institutions that are heading for

acceleration sensing integration in these kinds of systems

are always welcome to share the authors experiences on this

technology.

Institutions that already own or use a comparable setup of

six-DOF accelerometers should also profit from the reported

experiences, of course.

As stated in the introduction, only a few works have been

done on these technologies yet, but the potential is really high

for a wide bandwidth of robotic applications. The authors

would like to encourage developers and researchers to take

a closer look on methods using twelve-axis force/torque and

acceleration information and their potential – we are just

beginning to explore new applications using the potential of

this wide field.
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Sensor fusion of force and acceleration for robot force control. In Proc.

of IEEE/RSJ International Conference on Intellegent Robotic Systems,
pages 3009–3014, 2004.
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