
Nonlinear modeling of low cost force sensors
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Abstract— In this paper, nonlinear modeling of low cost force
sensors is considered for force control applications in robotic or
biomechanical applications. Commercial force sensors are often
expensive, with a limited use in severe conditions such as the
presence of a strong magnetic field. On the contrary, thin film
piezoresistive sensors such as the Tekscan Flexiforce and the
Interlink FSR sensors are of low cost and can be considered
in such an environment. Only a few information is however
available on their dynamic properties. We therefore provide
an experimental study of their dynamic behavior, showing
nonlinear properties. Identification is then achieved, and a
compensation model is proposed. A force control experiment
is finally presented to evaluate the compensation scheme.

I. INTRODUCTION

In many robotic and biomechanical applications, force
measurement is needed to ensure safety and comfort in
human/robot interaction, for instance in medical robotics [1]
[2], and to analyse force distribution in common human
movements as grasping [3] or walking [4].

Different types of force sensors have been used up to now
in such contexts, differing by their technology:
• strain gauge sensors consist of a pattern of strain gauges

mounted on a deformable structure. The force applied
on the sensor induces strains in the structure which are
evaluated by strain gauges. Foil or silicon strain gauges
can be used, like in the ATI sensors, used in several
medical robotic applications [5] [2].

• piezoelectric force sensors, such as the LIVM force
sensor (Dytran Instruments Inc. CA, US), contain thin
piezoelectric crystals generating analog voltage signals
in response to applied dynamic forces.

• optical force sensors are based on the evaluation of the
deformation of a structure either with light intensity
measurement over optical fibers [6] [7] or Fiber Bragg
Grating [8]. Such sensors present the advantage of being
insensitive to the presence of a magnetic field.

• thin film piezoresistive force sensors such as the FSR
(Interlink Electronics, Camarillo, CA, US) and the Flexi-
force (Tekscan Inc., Boston, MA, US) sensors have their
resistance varying with the applied force. They exhibit a
lower accuracy than the other types, but their very small
thickness allows a placement directly in contact with a
human, for example for tactile sensing [3] [9].

Thin film piezoresistive sensors have interesting properties,
and their low cost enables to consider the integration of a

large number of sensors for instance in a collision detection
task. Furthermore, the Flexiforce sensors have been demon-
strated to be insensitive to magnetic fields [10]. For a growing
number of medical applications involving the placement of
the patient inside an MRI system [11] [12] or under pulsed
magnetic fields [1], these sensors may therefore be of great
interest in the case of force control tasks which do not require
a strong accuracy.

For a control task, the dynamic behavior of the used sensor
has to be evaluated. To our knowledge, only a few work
has been performed for these sensors. Vecchi et al. [13]
achieved a comparison of the respective performances of both
commercial piezoresistive force sensors FSR and Flexiforce,
but only in static conditions.

In this paper, we present an experimental analysis of
the dynamic behavior of such sensors. The presence of
nonlinearities is outlined, and a model is then identified to
allow a compensation. This study aims therefore at enhancing
the application field of these sensors to force control tasks.

The paper is organized as follows. In section II, the
experimental set-up and protocol are first presented. The
sensor calibration as well as the analysis of their static
response are then carried out in section III. In section IV, the
nonlinearities of the dynamic behavior are outlined before a
complete characterization and identification. In section V, a
force control experimentation is performed, in order to prove
that it is possible to use the proposed model to compensate for
the nonlinearities. Conclusion and perspective on this work
are then finally given.

II. EXPERIMENTAL SET-UP

In the following, both Interlink FSR and Tekscan Flexi-
force sensors are evaluated.

The FSR is a thin-film device consisting of two conducting
interdigitated patterns deposited on a thermoplastic sheet,
facing another sheet which contains a conductive polyether-
imide film. A spacer placed between the plastic sheets permits
the two sheets to make electrical contact when the force is
applied. Otherwise, in the unloaded state, it causes the sensor
to have infinite impedance. As the applied force increases, the
two layers compress each other, thus, increasing the contact
area and decreasing the electrical resistance.

The Flexiforce sensor is made of two layers of substrate,
such as a polyester film. On each layer, a conductive material
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is applied, followed by a layer of pressure-sensitive ink. The
active sensing area is defined by a silver circle on the top of
the pressure-sensitive ink. When the sensor is unloaded, its
electrical resistance is very high. When a force is applied to
the sensor, this resistance decreases.

As mentioned in the introduction, control of the contact
force between a human and a robot is among the potential
applications of the integration of such sensors. We consider
the case of a robotic system designed to position on the head
of a patient a stimulation coil emitting a strong magnetic
field [1]. In that case, for comfort reasons, force has to be
controlled to remain below 5N. To be compatible with the
application, two sensors were selected: an A-201 Flexiforce
sensor, with an optimal force range of 4.5N, and a FSR
sensor, with a unique range of 100N. The geometry of
their sensing areas is compatible with the application. The
Flexiforce has a 10mm diameter circular active area and
the FSR has a 38mm square active area (Fig. 1). Since

Fig. 1. On the left the Flexiforce A-201 sensor, on the right the FSR sensor

force evaluation is obtained for both sensors by a resistance
variation, the sensitivity can be adjusted by modifying the
electric circuit connected to the sensors. This circuit is based
on an inverting operational amplifier arrangement, to produce
an analog output based on the sensor resistance and a fixed
resistance. This latter one is chosen for each sensor to obtain
a voltage between 0 and 10 V for a force range around 7N.
An ATI Industrial Automation Nano17 force sensor (Model
SI12/0.12) is used as a reference during the calibration and
the dynamic measurements. The sensing range of this sensor
is 17N with a resolution of 0.025N.

The dynamic testing of the sensors includes a force exci-
tation with a sine shape in order to evaluate bandwidth. To
do so, a custom bench test has been manufactured (Fig. 2).
It is composed of a Maxon DC motor on which an eccentric
wheel is mounted, which induces the movement of a trolley
on a linear guide (cam and follower system). This movement
is converted into a force applied on both sensors by means
of a spring. The material of the elements close to the sensor
is chosen to be insensitive to magnetic fields. It could then
be verified that both sensors are non-sensitive to a magnetic
field, using the magnetic coil described in [1].

III. CALIBRATION AND STATIC RESPONSE

In this section, the calibration phase and the evaluation
of the static properties, i.e. hysteresis, repeatability and time
drift are presented.

Fig. 2. The dedicated test bench

A. Calibration

Each force sensor has been calibrated individually on a
rigid plane using the Nano17 force sensor. An increasing then
decreasing force was manually and continuously applied two
times over the 7N force range. The sensors and the Nano17
outputs were sampled at a frequency of 50Hz for a period of
120s.

Fig. 3, left, shows a calibration curve obtained with the
Flexiforce sensor. One can notice that the response does

Fig. 3. Calibration of the Flexiforce (left) and the FSR (right) sensors.

not decline over 4.5N, the sensor given range. The sensor
response exhibits a hysteresis below 10% with regards to the
full scale of 7N. The mean calibration error is about 5%, with
a standard deviation of 2.8%. A linear model is identified
from the calibration curve:

F = GU + F0 (1)

with F the applied force, U the measured output voltage.
The gain G=0.65N/V and the offset F0=-0.19N.

Fig. 3 right shows a calibration curve obtained with the
FSR sensor. One can notice that the linearity of the response
is not as good as the one obtained with the Flexiforce. The
sensor response exhibits a hysteresis below 8% with regards
to the full scale of 7N. The mean calibration error is about
7%, with a standard deviation of 3%. The linear model of
equation (1) is identified with G=0.48N/V and F0=0.24N.

B. Repeatability

The repeatability of the two sensors has also been eval-
uated. Ten different loads were applied ten times on each
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sensor. The results are presented in Fig. 4. The mean error is
3.6% for the Flexiforce sensor and 2.1% for the FSR sensor.

Fig. 4. Repeatability of the Flexiforce (left) and FSR (right) sensors.

C. Time drift

The performance of the two sensors in terms of time drift
of the their outputs has also been evaluated. A constant load
of 3N was applied on the sensors for 20 minutes. The results
are presented in Fig. 5. The time drift is inferior to 6% for
the Flexiforce sensor and inferior to 4% for the FSR sensor.

Fig. 5. Time drift for the two sensors. A constant load of 3N is applied
for 20 minutes.

D. Static properties

The results of this static evaluation show that for this force
range both sensors responses are quite equivalent. However,
the Flexiforce sensor response presents a better linearity,
while the performance of the FSR in terms of repeatability
and time drift seems slightly better for the evaluated force
range. These results are slightly different from those obtained
by Vecchi et al. in [13]. In that paper, the Flexiforce sensor
demonstrated a better overall performance. This could be due
to the force range considered here which is only 7N compared
to the 30N evaluated through their analysis.

IV. NONLINEARITIES CHARACTERIZATION AND
IDENTIFICATION

A. Dynamic response

Considering their step response, both sensors could be
identified as first-order systems, with a time constant of
30ms for the Flexiforce sensor and 35ms for the FSR, which
corresponds to a cut-off frequency around 30Hz. However,

the examination of the response to a sinusoidal excitation,
with a frequency far below the estimated cut-off frequency,
gives rise to the presence of a significant nonlinearity. Indeed,
a decline with time of the sensor response immediately
appears whatever the sinusoı̈dal excitation is. Fig. 6 shows a
typical response of the two sensors. The signal decrease with
time only affects the maxima of the sensor response, whereas
the minima remain at the same level. For the Flexiforce
sensor, the decrease is rather exponential with a loss that
can reach 80% of the sensor initial response after 20 min,
depending on the force range and the frequency. For the FSR
sensor, the decrease is rather linear with a loss that can reach
30%. This phenomenon appears even with low frequencies
and force ranges: with the Flexiforce for instance, a loss of
79% can be observed with an excitation of 1.5N in amplitude
and 0.05Hz in frequency. Likewise, a loss of 68% is obtained
with a frequency of 0.5Hz and an amplitude of 0.44N.

Fig. 6. Sensor response for a sinusoı̈dal excitation applied during 20 minutes
at a frequency of 0.25Hz with a force range between 1.3 and 4.4N.

In order to be able to use these sensors in force control
applications, it is required to compensate for these nonlin-
earities. An experimental characterization has therefore been
achieved to identify a model of these nonlinearities.

B. Nonlinearities identification

In a first step, it is needed to evaluate the sensor signal
decrease as a function of the sinusoidal excitation. This
excitation F (t) can be defined by its frequency f , its mean
value m and its amplitude A:

F (t) = Asin(2πft) + m,with m ≥ A (2)

For each sensor, three series of measurements have been
performed, each one corresponding to the variation of one of
the three parameters (f,m, A). The range for the mean value
and the amplitude of the applied force has been selected in
order to be able to handle any excitation between 0 and 4.5N,
i.e. the Flexiforce force range. A range between 0 and 4Hz
has been chosen for the frequency, considering the fact that
the signal loss is already very important for such frequencies
and thus it is not relevant to go beyond this range.

For each sensor response, the value of the minima Umin

of U , which remains constant is removed from the output
response. The maxima of the response are then extracted and
used as raw data for a curve fitting.
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1) Flexiforce model identification: An exponential de-
crease is chosen to describe the signal maxima loss, leading
to the following expression for the maxima of the output
voltage response:

Umax(t) = Umin + ae−bt + c (3)

The expression of Umin can easily be inferred from the force
sensor characterization and the input features:

Umin =
m−A− F0

G
(4)

The Tables I, II and III present the variations of the parame-
ters a, b, and c with f , A, and m, as well as the root mean
square error RMSE for each fit. From the analysis of these

f (Hz) 0.05 0.15 0.25 0.5 1
a 3.244 3.368 3.479 3.596 2.869
b(.103) 7.460 5.575 7.013 7.072 8.099
c 0.676 0.693 0.889 0.825 0.633
RMSE 0.072 0.102 0.056 0.064 0.083
f (Hz) 1.5 2 2.5 3 4
a 1.999 3.128 4.064 2.377 2.16
b(.103) 5.57 1.22 1.89 8.57 4.32
c 0.825 0.532 0.447 0.591 0.832
RMSE 0.061 0.079 0.039 0.091 0.062

TABLE I
VARIATIONS OF a, b AND c WITH f FOR THE FLEXIFORCE SENSOR

A (N) 0.441 0.784 0.981 1.226 1.471 1.766
a 0.4421 1.090 1.979 2.188 3.390 4.189
b(.103) 9.039 3.974 8.473 7.564 5.128 4.855
c 0.297 0.904 0.672 0.735 0.485 0.466
RMSE 0.006 0.113 0.043 0.053 0.076 0.053

TABLE II
VARIATIONS OF a, b AND c WITH A FOR THE FLEXIFORCE SENSOR.

m (N) 1.766 1.962 2.452 2.943 3.433
a 1.857 1.726 1.287 1.068 1.136
b(.103) 6.759 6.178 6.795 8.352 7.275
c 0.563 0.533 0.566 0.385 0.518
RMSE 0.0486 0.0375 0.0390 0.0256 0.0332

TABLE III
VARIATIONS OF a, b AND c WITH m FOR THE FLEXIFORCE SENSOR.

variations,three models are inferred: b is considered only
dependent of the frequency f , a is considered as a function of
the amplitude A and the ratio c

a , which reflects the signal loss
intensity, mainly depends on A. After identification, three
equations are obtained:

a = 0.8839A2 + 0.8655A (5)
b = 0.0019f + 0.0056 (6)
c

a
=

1
1 + 1.377A2

(7)

These equations allow us to get the best results in terms of
identification, while satisfying the physical meaning of the
parameters: a ≥ 0, b ≥ 0, c

a ≥ 0 and a = 0 when A = 0,
i.e. when no force variation is applied. The proposed model
enables us to estimate the overall sensor output observed
during the experiments with a mean error of 13%. The three
parameters a, b and c estimated with the experiments can be
computed with respectively 17%, 30% and 14%.

The model of the Flexiforce sensor output voltage is finally
given by the following expression:

Umodel(t) =
1
2
(ae−bt + c)(sin(2πft) + 1) + Umin (8)

2) FSR model identification: For each experimentation,
the linear model was the only one to provide a fit for the
maxima decrease, even for a one hour experimentation, which
is the upper limit for our application. It is therefore used for
the description of the maxima of the output voltage response:

Umax(t) = at + b + Umin (9)

The Tables IV, V and VI present the variations of the
parameters a and b with the frequency f , the amplitude A,
and the mean value m, as well as the root mean square error
RMSE for each fit. From the analysis of these variations,

f (Hz) 0.05 0.15 0.25 0.5 1
a(.104) -4.0 -6.5 -10.6 1.07 -4.1
b 5.298 7.130 5.0 6.351 4.8130
RMSE 0.033 0.061 0.448 0.087 0.035
f (Hz) 1.5 2 2.5 3 4
a(.104) -10.5 -4.21 -7.29 -11.5 -3.8
b 5.890 5.167 5.345 3.967 6.0440
RMSE 0.130 0.045 0.025 0.171 0.139

TABLE IV
VARIATIONS OF a AND b WITH f FOR THE FSR SENSOR.

A (N) 0.441 0.784 0.981 1.226 1.471 1.766
a(.104) -1.66 -0.721 -1.72 -3.72 -1.68 -5.85
b 1.989 3.786 3.980 5.450 5.50 6.386
RMSE 0.0765 0.0396 0.0263 0.0691 0.0381 0.0852

TABLE V
VARIATIONS OF a AND b WITH A FOR THE FSR SENSOR.

m (N) 1.766 1.962 2.452 2.943 3.433
a(.104) -1.66 2.57 -6.66 -1.98 -0.739
b 5.589 3.617 3.555 1.728 1.747
RMSE 0.0766 0.0341 0.0627 0.0511 0.0361

TABLE VI
VARIATIONS OF a AND b WITH m FOR THE FSR SENSOR.

two models are inferred: a is considered as a function of
the amplitude A and b is considered as a function of the
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amplitude A and mean value m, after identification. Two
equations are obtained:

a = −1.187e−4A2 +−7.074e−5A (10)
b = 3.221A− 2.110m + 6.05 (11)

These equations allow us to get the best results in terms of
identification while satisfying the physical meaning of the
parameters: a ≥ 0, b ≥ 0 and a = 0 when A = 0, i.e. when
no force variation is applied. The proposed model enables
us to estimate the overall sensor output observed during the
experiments with a mean error of 14%. The parameter b
estimated with the experiments can be computed with an
average error in the order of 12%, while the parameter a can
be computed with an average error of 48%. This result means
that the linear decline may slightly depend on other physical
phenomena responsible for the observed nonlinearities.

The model of the FSR sensor output voltage is finally given
by the following expression:

Umodel(t) =
a + b

2
(sin(2πft) + 1) + Umin (12)

The compensation model of each sensor enables to con-
struct an estimation Fest(t) of the real force applied from
the altered force measured Fmeas(t), for any sinusoidal
excitation. For instance, when using the Flexiforce sensor,
the estimated force is given by the following expression:

Fest(t) =
2A

G(ae−bt + c)
(Fmeas(t)−m+A)+m−A (13)

It must be noticed that the three parameters (f, m,A) of the
excitation, which are required to compute Fest(t), could be
estimated in-line by analyzing the beginning of Fmeas(t).

V. FORCE CONTROL WITH SENSOR NONLINEARITIES
COMPENSATION

In order to show that it is possible to use the proposed
models to compensate for the nonlinearities of such sensors,
a force control experimentation is presented. We focus on the
Flexiforce sensor, which nonlinearities are the strongest. The
test bench introduced in section II has been used with the
force control scheme of [14] showed in Fig. 7, where F ∗(t)
is the desired force, F the measured force, KI the gain of
the force controller, x is the position, q the angular value
and IKM the inverse kinematic model of the system. The
compensation block use the identified model to construct an
estimation of the real force applied.

The eccentric wheel was set to get a possible force range
between 0.8N and 4.1N with half a rotation. A sinusoı̈dal
desired force with a frequency of 0.5Hz and a force range
between 1.1N et 3.2N was chosen in order to get the nonlin-
earities of the Flexiforce sensor previously characterized. The
force regulation is characterized by a bounded force tracking
error which can be made small by adjusting KI . This means
that the desired force is the force applied on the sensor when

Fig. 7. Force control scheme.

the sensor response exhibits no non-linearity. It is the case
when the Nano17 sensor is used for the force control, for
example, as it has a much higher bandwidth. The Nano17 is
used here as a reference to see the force really applied on
both sensors.

Fig. 8 shows the responses of both Nano17 and Flexiforce
sensors during the force control experimentation. The re-
sponse of the Nano17 sensor is characterized by a rise of both
maxima and minima until they reach a value corresponding
to the maximum force that can be applied by the system,
when the eccentric wheel has performed half a rotation.
The Flexiforce response shows an exponential decline of the
maxima, but smaller than the one observed previously, and
a symmetric rise of the minima. These responses are due to
sensor defaults and to the compensation of the nonlinearities
that the force controller tries to perform. Indeed, when the
maxima of the Flexiforce response decrease, the controller
induces a greater rotation of the wheel in order to apply
a stronger force, leading to the rise of the maxima in the
Nano17 response. However, the controller is not able to
compensate for all the decline and thus a positive error is
cumulated, leading to a rise of the minima as well. Finally,
both rises reach a saturation when the extreme position of
the wheel is attained which leads to a constant signal when
the wheel remains in the same position, in less than 150s.

Fig. 9 shows the responses obtained when the proposed
model is used to compensate for the nonlinearities. Thanks to
the compensation the Nano17 response almost corresponds to
the desired force after a certain settling time for the maxima
while the minima remain always constant. The mean error
on maxima and minima is presented in Table VII. Moreover,
the performance of the compensation is maintained during
the 300s of the experiments, whereas a constant signal was
obtained in less than 150s without.

Without compensation With compensation
Min Max Min Max

Mean Error 134.1% 26.9% 4.5% 7.5%
Std Deviation 96.1% 6.3% 0.5% 5.5%

TABLE VII
CONTROL ERROR ON MAXIMA AND MINIMA OF THE RESPONSE

This experimentation shows that the proposed model en-

3441



ables to compensate most of the sensors nonlinearities, mak-
ing it possible to use them in force control applications.

Fig. 8. Force measured with Nano17 and Flexiforce sensors during a force
control experimentation without any compensation.

VI. CONCLUSION

In this paper, the nonlinear modeling of two commercial
force sensors is considered for force control applications.
Theses sensors are of low cost and can be used in the
presence of a strong magnetic field, which is of great interest
for medical applications. An experimental study of their
static and dynamic behavior is provided. In particular, strong
nonlinearities in their dynamic behavior are shown. These
nonlinearities are identified and a compensation model is pro-
posed. A force control experiment finally gives a first proof
of the compensation scheme efficiency. Further investigations
will now be achieved to evaluate the sensor behavior for
dynamic excitations with a broader frequency spectrum, that
can occur in force regulation tasks.
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