
Non-Collision Conditions in Multi-agent Robots Formation using Local

Potential Functions

E. G. Hernández-Martı́nez and E. Aranda-Bricaire

Abstract— An analysis of the convergence and non-collision
conditions of a formation control strategy for multi-agent robots
based on local potential functions is presented. The goal is to
coordinate a group of agents, considered as points in plane,
to achieve a particular formation. The control law is designed
using local attractive forces only where every agent knows the
position of another two agents reducing the requirements of
the control law implementation. The control law guarantees
the convergence to the desired formation but does not avoid
inter-agent collisions. A set of necessary and sufficient non-
collision conditions based on the explicit solution of the closed-
loop system is derived. The conditions allow to conclude from
the initial conditions whether or not the agents will collide.
The formal proof is presented for the case of three agents. The
result is extended to the case of formations of three unicycles.

I. INTRODUCTION

During the last 20 years, Multi-agent Robots Systems

(MARS) have found a wide range of applications in ter-

restrial, spatial and oceanic explorations. MARS appear as

a new research area [1]. Some advantages can be obtained

from the collective behavior of MARS. For instance, the

kind of tasks that can be accomplished are inherently more

complex than those a single robot can accomplish. Also,

the system becomes more flexible and fault-tolerant. The

range of applications includes toxic residues cleaning, trans-

portation and manipulation of large objects, alertness and

exploration, searching and rescue tasks and simulation of

biological entities behaviors.

The field of MAS encompasses different research areas

[2]. Motion coordination is one of most important areas,

specifically formation control [3], [4]. The goal is to coor-

dinate a group of mobile agents to achieve a particular

formation avoiding inter-agent collisions. It is assumed that

every agent detects the positions of certain agents to converge

to its desired position. The main intention is to achieve

desired global behaviors through local interactions [5].

There exist different formation control strategies based

on the group architecture, environment or the origin of the

cooperation [1], [6]. Local potential functions is one of the

most important because the control laws can be designed

in decentralized manner using artificial potential functions

[7], [8]. In a formation control strategy, the convergence to

the desired formation and the avoidance of inter-agent co-

llisions are two fundamental requirements. One approach to

tackle the first requirement consists on applying the negative

E.G. Hernández-Martı́nez and E. Aranda-Bricaire are with Depart-
ment of Electrical Engineering, Mechatronics Section, CINVESTAV,
AP 14-740, 7000 Mexico DF, Mexico. eghm2@yahoo.com.mx,
earanda@cinvestav.mx

gradient of an attractive potential function (APF) as control

signal to each robot, steering every agent to the minimum

of this potential function. The APF is designed according to

the desired inter-agent distances of a particular formation.

A formation control law based in APF only, guarantees

the convergence to the desired formation, but inter-agent

collisions can occur. One approach to solve the collision

problem consists on adding repulsive potential functions

(RPF) [8], [9] designed in decentralized manner. The main

disadvantage of this strategy is that the convergence to the

desired formation is not guaranteed for all initial conditions

because the robots can be trapped at undesired equilibrium

points. Also, the analysis to calculate this equilibria and the

trajectories which do not converge to the desired formation

is very complex.

To simplify the analysis of convergence using RPF and

to ensure collision-free trajectories at same time, we use a

simple formation control strategy based on APF only, which

is common in the literature [9]. Then, our principal result is

to obtain necessary and sufficient conditions for non-collision

based on the exact solution of the closed-loop system. The

main idea is to predict, since the initial positions, whether

the agents will collide or not. Doing this, the convergence

and the non-collision requirements are satisfied in a subset

of initial conditions within the workspace. The result has

an important application in experimental work where the

analysis of initial conditions can be done off-line and the

robots can be protected of undesired shocks. In this paper,

this preliminary result and its geometric interpretation are

studied for the case of three agents. After that, the result is

extended to the case of formation control of three unicycles.

The paper is organized as follows. Section II introduces a

formal problem statement. Section III describes the forma-

tion control strategy for agents, considered as points in plane,

using APF. Convergence to the desired formation is demon-

strated. In Section IV, non-collision conditions are obtained

for the case n = 3. In Section V, this result is extended

to the case of formation control of unicycles. Section VI

presents numerical simulations. Finally, concluding remarks

are presented in Section VII.

II. PROBLEM STATEMENT

Denote by {R1, ..., Rn}, a set of n agents moving in

plane with positions zi(t) = [xi(t), yi(t)]
T , i = 1, ..., n. The

kinematic model of each agent or robot Ri is described by

żi = ui, i = 1, ..., n, (1)
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where ui = [ui1, ui2]
T ∈ ℜ2 is the velocity along the X and

Y axis of i-th robot. Let Ni ⊂ {R1, ..., Rn} denote the subset

of robots which can be detected by Ri. Every Ni is a static

set defined off-line. Let z∗i be the desired relative position

of Ri in a particular formation. Every z∗i is established

according to inter-agent distance, then z∗i = γi(Ni).
For instance, it is possible to establish the desired inter-

agent distance for every agent according to position of one

neighbor agent with z∗i = γi(zi+1). Then

z∗i = zi+1 + ci+1, i = 1, ..., (n − 1) (2)

z∗n = z1 + c1

where ci = [hi, vi]
T ∈ ℜ2 is a vector which represents the

desired distance with respect to Ri within formation. Thus,

the desired relative position of Ri is established according

to the position of Ri+1 modulo a certain displacement.

Problem Statement. The control objective is to design a

control law ui(t) = gi(Ni(t)) for every robot Ri, such that

limt→∞(zi − z∗i ) = 0, i = 1, ..., n.

Definition 1: The desired relative position of n mobile

agents given by (2) is said to be a closed-formation if

n
∑

i=1

ci = 0. (3)

This condition means that the desired formation is a closed

polygon.

Definition 2: The centroid of positions is defined by

z̄(t) =
n

∑

i=1

zi(t). (4)

For completeness, the following definition is introduced.

Definition 3: Let V : ℜn → ℜ be a smooth function, the

gradient of V is defined by

∇V (x) =

[

∂V

∂x1
, ...,

∂V

∂xn

]

(5)

III. CONTROL STRATEGY

For system (1), a global potential function is defined by

V (z1, .., zn) =
n

∑

i=1

Vi (6)

where Vi = ‖zi − z∗i ‖
2. The function V is positive definite

and reaches its global minimum (V = 0) when zi = z∗i ,

i = 1, ..., n. Using this function, we define a control law

given by

u = [u1, ..., un]
T

= −
1

2
k (∇V )

T
(7)

Theorem 1: Consider the system (1) and the control law

(7). Suppose that k > 0 and the desired formation is a closed-

formation. Then, in the the closed-loop system (1)-(7) the

agents converge exponentially to the desired formation, i.e.

limt→∞(zi − z∗i ) = 0, i = 1, ..., n. Moreover, the centroid

of positions of the n agents remains constant, i.e. z̄(t) =
z̄(0),∀t ≥ 0.

The proof of Theorem 1 requires a preliminary lemma.

Lemma 1: Let A ∈ ℜm×m and ∆r(A), r = 1, ...,m the

determinant of A with the last m − r rows and columns

removed, then A is negative definite if and only if ∆r(A) < 0
for r odd and ∆r(A) > 0 for r even.

Proof of Theorem 1. The closed-loop system (1)-(7) has

the form

ż = k((A ⊗ I2)z + c), (8)

where z = [z1, ..., zn]T , ⊗ denotes the Kronecker product,

c = [(c2 − c1), (c3 − c2), · · · , (c1 − cn)]T , I2 is the 2 × 2
identity and

A =











−2 1 0 0 · · · 0 1
1 −2 1 0 · · · 0 0
...

. . .
...

1 0 0 0 · · · 1 −2











.

A change of coordinates for the closed-system (8) is

defined by
[

e

z̄

]

= (Q ⊗ I2)z − cq, (9)

where e = [e1, ..., en−1]
T ,

Q =















1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
...

. . .
...

0 0 0 0 · · · 1 −1
1
n

1
n

1
n

1
n

· · · 1
n

1
n















, cq =















c2

c3

...

cn

0















.

We observe that ei = zi−z∗i , i = 1, ..., n−1 are the error

coordinates of the first n−1 agents whereas z̄ is the centroid

of position defined by (4). The dynamics of the coordinates

(9) is given by
[

ė
˙̄z

]

= k

{([

Ã 0
0 0

]

⊗ I2

)

e + c̃q

}

, (10)

where Ã ∈ ℜ(n−1)×(n−1) and c̃q ∈ ℜn×1 have the form

Ã =



















−3 0 −1 −1 −1 · · · −1 −1 −1
1 −2 1 0 0 · · · 0 0 0
0 1 −2 1 0 · · · 0 0 0
...

. . .
...

0 0 0 0 0 · · · 1 −2 1
−1 −1 −1 −1 −1 · · · −1 0 −3



















,

c̃q = − [(c1 + ... + cn), 0, · · · , (c1 + ... + cn), 0]
T

.

Due to condition (3), c̃q = 0. Then, the dynamics of the

new coordinates is given by

ė = k(Ã ⊗ I2)e (11)

˙̄z = 0.

We observe that ˙̄z = 0 and the dynamics of the coordinates

(10) is reduced to dimension n − 1. Therefore, the centroid

of positions is given by the initial locations of agents, i.e.

z̄(t) = z̄(0) and remains constant for all t ≥ 0.
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Fig. 1. Positions of agents at equilibrium point

The equilibrium point of the system (11) is e = 0. Using

Lemma 1, we conclude that Ã is negative definite since the

principal minors of Ã have the form ∆1(Ã) = −3, ∆i(Ã) =
(−1)i(|∆i−1(Ã)|+ i + 1), i = 2, ..., n − 2 and ∆n−1(Ã) =
(−1)n−1n2. Therefore, the trajectories of ei, i = 1, ..., n −
1 converge exponentially to zero. This means that the first

n− 1 agents converge to the desired relative position in the

formation. Now, let us analyze the distance between robots

Rn and R1. Fig. 1 shows the positions of all agents when ei,

i = 1, ..., n − 1 converge to zero. By inspection, it follows

that c2 + c3 + ... + cn + r = 0. Due to condition (3), we

deduce that r = c1. Thus, ei = 0, i = 1, ..., n − 1 implies

that zn = z∗n. Then, we conclude that all agents converge to

the desired formation.
¥

Remark 1: The closed-loop system (8) is the same that

the obtained for a kind of undirected formations graphs given

in [9]. The difference is that the design of desired formation

(definitions of z∗i ) is simpler than [9]. Also, equation (8) was

obtained from the negative gradient of a global function (6).

Also, in [9], matrix A is the Laplacian matrix of a kind of

undirected formation graph. However, we present a different

proof based on the error coordinates.

IV. NON-COLLISION CONDITIONS

The control law (7) guarantees that the agents converge

exponentially to the desired formation but the inter-agent

collisions can occur from some initial agent positions.

Collision-free trajectories are defined by

f(t) = ‖zi(t) − zj(t)‖
2

> d2,∀t > 0, i 6= j, (12)

where d is the diameter of the circle that every agent occupies

in the plane. In this section, we analyze the case n = 3.

Proposition 1: Suppose that n = 3. Then, the trajectories

of the closed-loop system (1)-(7) are given by

z(t) =
1

3
[(B ⊗ I2)z0 + s(t)c] , (13)

where s(t) = 1 − e−3kt, z0 = [z10, z20, z30]
T ,

c = [(c2 − c1), (c3 − c2), · · · , (c1 − cn)]T and

B =





3 − 2s(t) s(t) s(t)
s(t) 3 − 2s(t) s(t)
s(t) s(t) 3 − 2s(t)



 .

Proof: A change of coordinates for the closed-loop

system (8) is defined by

p = (T ⊗ I2)z − ct, (14)

where T =





1 −1 0
0 1 −1
0 0 1



 , ct =





c2

c3

0



 .

The dynamics in the new coordinates is

ṗ = k
(

(Ãt ⊗ I2)p + c̃t

)

, (15)

where Ãt =





−3 0 0
0 −3 0
1 2 0



 , c̃t =





−c2 − c3 − c1

−c2 − c3 − c1

c2 + c3 + c1



 .

Due to condition (3), c̃t = 0. Then, the dynamics of

the new coordinates is given by ṗ = k(Ãt ⊗ I2)p. We

can diagonalize the matrix Ãt ⊗ I2 through the following

similarity transformation

(D ⊗ I2) = (P−1 ⊗ I2)(Ãt ⊗ I2)(P ⊗ I2), (16)

where P =





0 0 1
− 3

2 0 − 1
2

1 1 0



 ,D = k





−3 0 0
0 0 0
0 0 −3



 .

Then, the solution of (15) is given by

p(t) = (PE(t)P−1 ⊗ I2)p0, (17)

where p0 = p(0) is the vector of initial conditions of

coordinates p and

E(t) =





e−3kt 0 0
0 1 0
0 0 e−3kt



 .

After some algebra and defining s(t) = 1 − e−3kt, the

solution in original coordinates can be written as in (13).

The desired relative positions of every agent at t = 0 are

given by z∗10 = z20 + c2, z∗20 = z30 + c3 and z∗30 = z10 + c1.

Using this notation, we establish our main result.

Theorem 2: Consider the dynamics of two agents Ri and

Rj of the closed-loop system (1)-(7) and suppose that

1) k > 0, n = 3
2) ‖cj‖

2 > d2, j = 1, 2, 3
3) ‖zi0 − zj0‖

2 > d2, i 6= j

Then, anyone of the three following conditions is sufficient

to guarantee non-collision, i.e. f(t) > d2, ∀t > 0:

i) (z∗i0 − zi0)
T

(zj0 − zi0) ≤ 0.

ii) (z∗i0 − zi0)
T

(zj0 − zi0) ≥ ‖z∗i0 − zi0‖
2
.

iii) ‖z∗i0 − zi0‖
2

> (z∗i0 − zi0)
T

(zj0 − zi0) > 0 and

‖zj0 − zi0‖
2

−

(

(z∗i0 − zi0)
T

(zj0 − zi0)
)2

‖z∗i0 − zi0‖
2 > d2 (18)

Moreover, if f(t) > d2 then necessarily one of the

conditions i)-iv) is satisfied.

Hypothesis 2) means that the desired distance between

agent Ri and Rj must be greater than d. Hypothesis 3) means

that agents do not collide at t = 0.
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Fig. 2. Agents positions in space in case
(

z
∗

i0 − zi0

)T
(zj0 − zi0) < 0

Fig. 3. Agents positions in space in case
(

z
∗

i0 − zi0

)T
(zj0 − zi0) = 0

Proof: (sufficiency) Replacing the explicit solution

of two agents zi, zj in the condition of collision-free

trajectories (12), we obtain f(t) = s2(t) ‖z∗i0 − zi0‖
2
−

2s(t) (z∗i0 − zi0)
T

(zj0 − zi0) + ‖zj0 − zi0‖
2
.

Analyzing the function s(t) = 1− e−3kt, we observe that

s(t) ∈ [0, 1). Therefore, fi = f(0) = ‖zj0 − zi0‖
2

and ff =
limt→∞ f(t) = ‖cj‖

2. By hypothesis 2) and 3) fi, ff > d2.

The derivative of f(t) is given by

d

dt
f(t) = 6ke−3ktη(t), (19)

where η(t) = ‖z∗i0 − zi0‖
2
s(t) − (z∗i0 − zi0)

T
(zj0 − zi0).

The derivative of f(t) vanishes only when η(t) = 0.

proof of i). If (z∗i0 − zi0)
T

(zj0 − zi0) ≤ 0, then η(t)
is positive and f(t) is monotonously increasing, therefore,

f(t) > d2, ∀t ≥ 0. Fig. 2 and 3 show the position of the

agents in these cases.

proof of ii). If (z∗i0 − zi0)
T

(zj0 − zi0) ≥ ‖z∗i0 − zi0‖
2
,

then η(t) never crosses by zero, and we conclude that f(t)
is monotonously decreasing. Therefore, fi > ff and ff > d2

implies that f(t) > d2, ∀t ≥ 0. Fig. 4 shows this case.

proof of iii). If ‖z∗i0 − zi0‖
2

> (z∗i0 − zi0)
T

(zj0 − zi0) >

0, then η(t) is negative, crosses by zero at time instant tα
and, after that, it is positive. Calculating tα we obtain

tα = −
1

k
ln

(

1 −
(z∗i0 − zi0)

T
(zj0 − zi0)

‖z∗i0 − zi0‖
2

)

(20)

Evaluating f(tα) = ‖zj0 − zi0‖
2
−

((z∗i0−zi0)
T (zj0−zi0))

2

‖z∗
i0
−zi0‖

2 .

Fig. 4. Agents positions in space in case
(

z
∗

i0 − zi0

)T
(zj0 − zi0) ≥

∥

∥z
∗

i0 − zi0

∥

∥

2

Fig. 5. Agents positions in space in case
∥

∥z
∗

i0 − zi0

∥

∥

2
>

(

z
∗

i0 − zi0

)T
(zj0 − zi0) > 0

By condition (18), it is satisfied that f(t) > d2 when

η(tα) = 0. The distance between agents Ri and Rj decreases

to tα. After that, the distance increases up to cj . Fig. 5 shows

this case.

Proof: (necessity). It is necessary to prove that if f(t) >

d2 then necessarily i), ii) or iii) hold. Previously, we have

shown that fi, ff > d2 and that d
dt

f(t) vanishes only when

η(t) = 0. Because s(t) is monotonously increasing, the

behavior of f(t) can be anyone of the next following cases.

1) f(t) is monotonously increasing because η(t) never

crosses by zero and remains on the positive interval.

This occurs only when condition i) is satisfied.

2) f(t) is monotonously decreasing because η(t) never

crosses by zero and remains on the negative interval.

This occurs only when condition ii) is satisfied.

3) f(t) is decreasing, crosses by zero at time instant tα
and after that, becomes increasing. This occurs only

when condition iii) is satisfied.

V. EXTENSION TO FORMATION CONTROL OF UNICYCLES

In this section, we extend the analysis of Section IV to

the case of formations of unicycles. The kinematic model of

each agent Ri, as shown in Fig. 6, is given by





ẋi

ẏi

θ̇i



 = Ri(θi)

[

vi

wi

]

, i = 1, ..., n (21)

where vi is the linear velocity of the midpoint of the wheels
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Fig. 6. Kinematic model of unicycles

axis, wi the angular velocity of the robot and

Ri(θi) =





cos θi 0
sin θi 0

0 1



 .

It is know [10] that the dynamical system (21) can not

be stabilized by continuous and time-invariant control law.

Because of this restriction, in the rest of the paper, we will

analyze the dynamics of the coordinates αi = (pi, qi) shown

in Fig. 6. The coordinates αi are given by

αi =

[

pi

qi

]

=

[

xi + l cos (θi)
yi + l sin (θi)

]

. (22)

The dynamics of (22) are given by α̇i = Ai (θi) [vi, wi]
T

where Ai (θi) =

[

cos θi −l sin θi

sin θi l cos θi

]

is the so-called de-

coupling matrix of every Ri. The decoupling matrix is non-

singular because det(A (θi)) = l 6= 0. Following the control

strategy of the Section III, the desired inter-agent distance

for the n unicycles are established by α∗

i = αi+1 + ci+1,

i = 1, ..., n − 1 and α∗

n = α1 + c1. Then, a global potential

function is defined by

Ṽ (α1, .., αn) =
n

∑

i=1

Ṽi (23)

where Ṽi = ‖αi − α∗

i ‖
2. Thus, the functions Ṽi are similar

to functions Vi but depending on coordinates αi instead of

coordinates zi. Then, the formation control law is given by

u = [v1, w1, · · · , vn, wn]T (24)

= −
1

2
k







A−1 (θ1) · · · 0
...

. . .
...

0 · · · A−1 (θn)







(

∇Ṽ
)T

Corollary 1: Consider the system (21) and the control law

(24). Suppose that k > 0. Then, in the closed-loop system

(21)-(24), the agents converge to the desired formation, i.e.

limt→∞(αi − α∗

i ) = 0.

Proof: The dynamics of the coordinates αi for the

closed-loop system (21)-(24) is given by

α̇i = −
1

2
kAi (θi)A−1 (θi)

(

∂γi

∂αi

)

= −
1

2
k

∂Ṽi

∂αi

. (25)

The closed-loop system of the coordinates αi has the form

α̇ = k((A ⊗ I2)α + c), (26)

where α = [α1, ..., αn]T and A, I2, C were previously

defined for system (8). It is clear, that the closed-loop system

(26) is the same as (8) for the case of point agents. The result

follows.

Remark 2: The idea of controlling coordinates αi instead

of the center of the wheels axis is frequently found in the

mobile robot literature in order to avoid singularities in the

control law.

Remark 3: The control law (24) steers the coordinates

αi to a desired position. However, the angles θi remain

uncontrolled. These angles do not converge to any specific

value. Thus, the control law (24) is to be considered as a

formation control without orientation.

VI. NUMERICAL SIMULATIONS

Figures 7 and 8 show a simulation for the closed-loop

system (1)-(7) for n = 3, d = 2 and k = 1. The desired

formation is a triangle with sides length equal to 5. In Fig.

8, dij is the distance between agent i and j. The initial con-

ditions are given by z10 = [2, 6]T , z20 = [2, 2]T and z30 =
[−6, 8]T . Initially, the agents satisfy (z∗10 − z10)

T
(z20 −

z10) = −1.3205 < 0, (z∗20 − z20)
T

(z30 − z20) = 140,

‖z∗20 − z20‖
2

= 205, (z∗30 − z30)
T

(z10 − z30) = 96.6603
and ‖z∗30 − z30‖

2
= 150.3205. We observe that the initial

positions of R1 and R2 satisfy case i) of the Theorem 2.

The distance d12 increases and the agents do not collide.

The conditions for agents R2 and R3 or R3 and R1 fall

in case iii). The conditions of non-collision are satisfied in

both cases because ‖z30 − z20‖
2
−

((z∗20−z20)
T (z30−z20))

2

‖z∗
20

−z20‖
2 =

4.3902 > d2 and ‖z10 − z30‖
2

−
((z∗30−z30)

T (z10−z30))
2

‖z∗
30

−z30‖
2 =

5.8448 > d2. We observe in Fig. 8 that d23 and d31 decrease

to some value greater than 2 and then they increase up to

the desired value but their values never are less than d2.

Figures 9 and 10 show another simulation for the same

triangle formation but different initial conditions which are

z10 = [6, 6]T , z20 = [0,−4]T and z30 = [−6, 0]T . Now, the

agents initially satisfy (z∗10 − z10)
T

(z20−z10) = 77.6987 <

0, ‖z∗10 − z10‖
2

= 44.3975, (z∗20 − z20)
T

(z30 − z20) = 82,

‖z∗20 − z20‖
2

= 137, (z∗30 − z30)
T

(z10 − z30) = 184.0192
and ‖z∗30 − z30‖

2
= 213.0385. We observe that the initial

positions of R1 and R2 satisfy the case ii) of the Theorem

2. Even though the distance d12 in Fig. 10 decreases, the

agents do not collide. The other conditions satisfy the case

iii) where ‖z30 − z20‖
2
−

((z∗20−z20)
T (z30−z20))

2

‖z∗
20

−z20‖
2 = 2.9197 <

d2 and ‖z10 − z30‖
2

−
((z∗30−z30)

T (z10−z30))
2

‖z∗
30

−z30‖
2 = 21.0471 >

d2. Thus, R2 and R3 collide whereas R3 and R1 do not

collide. We observe in Fig. 10 that d23 decreases reaching a

value less than d2 whereas d31 never is less than d2.
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Fig. 7. Agents trajectories in plane

Fig. 8. Inter-agent distances

VII. CONCLUSIONS

An analysis of non-collision conditions of a simple forma-

tion control strategy for multi-agent robots is presented. The

formation control is based on attractive potential functions

which ensures the convergence to the desired formation but

agents might collide. To ensure collision-free trajectories,

a set of necessary and sufficient conditions, based on the

exact solution of the closed-loop system is presented. The

main idea is to predict, from the initial conditions whether

or not the agents will be collide. The main result has an

application in experimental work where the analysis of these

conditions can be achieved off-line and the robots can be

protected of undesired shocks. The control strategy is of easy

implementation and avoids the complexity of repulsive forces

as non-collision strategy. The result is extended to the case

of three unicycles.
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Fig. 9. Agents trajectories in plane

Fig. 10. Inter-agent distances
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