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Abstract— In this paper, a region following formation control
method for multi-robot systems is proposed. In this control
method, the robots move as a group inside a desired region
while maintaining a minimum distance among themselves.
Various shapes of desired region can be formed by choosing
the appropriate objective functions. The robots do not need to
have specific identities since the proposed controller does not
need specific orders of robots within the group. Therefore, the
system is scalable since any robot can come in or go out of the
group without affecting the system. Lyapunov-like function is
presented for convergence analysis of the multi-robot systems.
Simulation results are presented to illustrate the performance
of the proposed controller.

I. INTRODUCTION

Nature provides many examples of biological systems

that work cooperatively to accomplish a common goal. For

example, a flock of birds flying together in a formation to

save energy on long migration, a herd of animals move in

a group to stay safe from predators. Multiple robots can

be used to accomplish tasks not possible with individual

robot acting alone. One important research problem is control

of multi-robot systems in maintaining a desired formation

during movements. In behavior-based formation control [1]-

[6], a desired set of behaviors is implemented onto individual

robots. By defining the relative importance of all the behav-

iors, the overall behavior of the robot is formed. In leader-

following control strategy [7]-[11], the leaders are identified

and the follower are defined to follow their respective leaders.

In virtual structure method [12]-[15], the entire formation is

considered as a single entity and desired motion is assigned

to the structure.

In general, both leader-following and virtual structure

methods belong to centralized control strategy whereas

behavior-based control is decentralized. As such, behavior-

based can be implemented with significantly less commu-

nication as compare to the other two methods. However,

it is difficult to analyze the overall system mathematically

to gain insights into the formation control problems. It is

also not possible to show that the system converges to the

desired formation. The leader-following approach is easier

to analyze and implement. However, an obvious problem is

that the failure of one robot (i.e leader) leads to the failures

of the entire system. The formation of the group in virtual

structure approach is very rigid as the geometric relationship

among the robots in the system must be rigidly maintain

during the movement. Therefore, it is generally not possible

for the formation to change with time and obstacle avoidance

could also be a problem. The leader-following and virtual

structure approaches are not suitable for controlling a large

group of robots because the constraint relationships among

robots become more complicated as the number of robots

in the group increases. To alleviate the problem, Belta and

Kumar [16] proposed a control method for a large group

of robots to move along a specified path. However, this

proposed control strategy has no control over the desired

formation since the shape of the whole group is dependent

on the number of the robots in the group. For large number of

robots, the formation is fixed as an elliptical shape whereas

for a small number of robots the formation is fixed as a

rectangular shape. Moreover, this method does not consider

the effects of dynamics on formation control.

In this paper, we propose a region following formation

control for a large group of robots. In our proposed formation

control method, each robot in the group stays within a

moving region as a group (global objective) and at the same

time maintains a minimum distance from each other (local

objective). The desired region can be specified as various

shapes, hence different formations can be formed. The robots

in the group only need to communicate with their neighbors

and not the entire community. The robots do not have specific

identities or roles within the group. Therefore, the proposed

method does not require specific orders or positions of

the robots inside the region and hence different formations

can be formed even for a swarm of robots. The dynamics

of the robots are also considered in the stability analysis

of the formation control system. The system is scalable

in the sense that any robot can move into the formation

or leave the formation without affecting the other robots.

Lyapunov theory is used to show the stability of the multi-

robot systems. Simulation results are presented to illustrate

the performance of the proposed formation controller.

II. ROBOT DYNAMICS

We consider a group of N fully actuated mobile robots

whose dynamics of the ith robot with n degrees of freedom

can be described as [17], [18]:

Mi(xi)ẍi + Ci(xi, ẋi)ẋi + Di(xi, ẋi)ẋi + gi(xi) = ui (1)
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where xi ∈ Rn is a generalized coordinate, Mi(xi) ∈ Rn×n

is an inertia matrix, Ci(xi, ẋi) ∈ Rn×n is a matrix of

Coriolis and centripetal terms, Di(xi, ẋi) ∈ Rn×n represents

the damping force, gi(xi) ∈ Rn denotes a gravitational force

vector, and ui ∈ Rn denotes the control inputs.

Several important properties of the dynamic equation de-

scribed by equation (1) are given as follows [17], [18]:

Property 1: The inertia matrix Mi(xi) is symmetric and

positive definite for all xi ∈ Rn.

Property 2: The Coriolis and centripetal matrix C(x, ẋ)
is characterized by the following property sT [Ṁi(xi) −
2Ci(xi, ẋi)]s = 0 for all s ∈ Rn, xi ∈ Rn.

Property 3: The damping matrix Di(xi, ẋi) is positive

definite for all xi ∈ Rn.

Property 4: The dynamic model described by equation (1)

is linear in a set of unknown parameters θi ∈ Rp as

Mi(xi)ẍi + Ci(xi, ẋi))ẋi + Di(xi, ẋi)ẋi + gi(xi)

= Yi(xi, ẋi, ẋi, ẍi)θi (2)

where Yi(xi, ẋi, ẋi, ẍi) ∈ Rn×p is a known regressor matrix.

III. FORMATION CONTROL OF MULTI-ROBOT SYSTEM

In this section, we present the region following formation

controller for the group of mobile robots. First, a region of

specific shape is defined for all the robots to stay inside. This

can be viewed as a global objective of all robots. Second,

a minimum distance is specified between each robot and its

neighboring robots. This can be viewed as a local objective

of each robot. Thus, the group of robots will be able to move

in a desired formation while maintaining a minimum distance

among each other.

Let us define a global objective function by the following

inequality:

fG(xi) = [fG1(∆xio1), fG2(∆xio2), ..., fGM (∆xioM )]T ≤ 0
(3)

where ∆xiol = xi − xol, xol(t) is a reference point within

the lth desired region, l = 1, 2, ...,M , M is the total number

of objective functions, fGl(∆xiol) are continuous scalar

functions with continuous partial derivatives that satisfy

fGl(∆xiol) → ∞ as ||∆xiol|| → ∞. fGl(∆xiol) is chosen

in such a way that the boundedness of fGl(∆xiol) ensures

the boundedness of
∂fGl(∆xiol)

∂∆xiol
,

∂2fGl(∆xiol)
∂∆x2

iol

. Each reference

point of the individual region is chosen to be a constant offset

of one another so that ẋol = ẋo, where ẋo is the speed

of the desired region. Various formations such as circle,

ellipse, crescent, ring, triangle, square etc. can be formed

by choosing the appropriate functions. For example, a ring

formation can be formed by choosing the objective functions

as follows:

f1(∆xio1) = r2
1 − (xi1 − xo11)

2 − (xi2 − xo12)
2 ≤ 0

f2(∆xio2) = (xi1 − xo11)
2 + (xi2 − xo12)

2 − r2
2 ≤ 0

(4)

where r1 and r2 are the constant radii of the two circles

such that r1 < r2, (xo11(t), xo12(t)) represents the common

center of the two circles. Some examples of the desired

regions are shown in figure 1.

Fig. 1. Examples of Desired Regions

The potential energy function of the global objective

functions is defined as follows:

PGi(∆xiol) =

M
∑

l=1

PGl(∆xiol), (5)

where

PGl(∆xiol) =

{

0, fGl(∆xiol) ≤ 0
kl

2 f2
Gl(∆xiol), fGl(∆xiol) > 0

(6)

and kl are positive constants. Note that PGi(∆xiol) = 0 only

if all the objective functions in (3) are satisfied.

Partial differentiating the potential energy function described

by equation (5) and equation (6) with respect to ∆xiol, we

have:

∂PGi(∆xiol)

∂∆xiol

=
M
∑

l=1

∂PGl(∆xiol)

∂∆xiol

(7)

where

∂PGl(∆xiol)

∂∆xiol

=

{

0, fGl(∆xiol)≤0

klfGl(∆xiol)(
∂fGl(∆xiol)

∂∆xiol
)T , fGl(∆xiol)>0

The above equations can be written as:

∂PGi(∆xiol)

∂∆xiol

=

M
∑

l=1

klmax(0, fGl(∆xiol))(
∂fGl(∆xiol)

∂∆xiol

)T

△
= ∆ξi (8)

Note that when the robot i is outside the desired region, the

control force ∆ξi described by equation (8) is activated to

attract the robot toward the desired region. When the robot

is inside the desired region, then ∆ξi = 0.

Next, we define a minimum distance between robots by the

following inequality:

gLij(∆xij) = r2 − ||∆xij ||
2 ≤ 0 (9)

where ∆xij = xi − xj is the distance between robot i

and robot j and r is a minimum distance between the two

robots as illustrated in figure 2. For simplicity, the minimum

distance between robots is chosen to be the same for all

the robots. Note from the above inequality that the function

gLij(∆xij) is twice partially differentiable. From equation

(9), it is clear that

gLij(∆xij) = gLji(∆xji) (10)
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and
∂gLij(∆xij)

∂∆xij

= −
∂gLji(∆xji)

∂∆xji

(11)

Fig. 2. Minimum Distance between Robots

A potential energy for the local objective function (9) is

defined as:

QLij(∆xij) =
∑

j∈Ni

kij

2
[max(0, gLij(∆xij))]

2 (12)

where kij are positive constants and Ni is a set of neighbors

around robots i. Any robot that is at a distance smaller than

rN from robot i is called neighbor of robot i. rN is a positive

number satisfy the condition rN > r.

Partial differentiating equation (12) with respect to ∆xij , we

get

∂QLij(∆xij)

∂∆xij

=
∑

j∈Ni

kijmax(0, gLij(∆xij))(
∂gLij(∆xij)

∂∆xij

)T

△
= ∆ρij (13)

Note that ∆ρij is a resultant control force acting on robot

i by its neighboring robots. Similarly, when robot i main-

tains minimum distance r from its neighboring robots, then

∆ρij = 0. The control force ∆ρij is activated only when the

distance between robot i and any of its neighboring robots

is smaller than the minimum distance r. We consider a bidi-

rectional interactive force between each pair of neighbors.

That is, if robot i keeps a distance from robot j then robot j

also keeps a distance from robot i. Next, we define a vector

ẋri as

ẋri = ẋo − αi∆ξi − γ∆ρij (14)

where ∆ξi is defined in equation (8), ∆ρij is defined in (13),

αi and γ are positive constants. Differentiating equation (14)

with respect to time we get

ẍri = ẍo − αi∆ξ̇i − γ∆ρ̇ij (15)

A sliding vector for robot i is then defined as:

si = ẋi − ẋri = ∆ẋi + αi∆ξi + γ∆ρij (16)

where ∆ẋi = ẋi − ẋo. Differentiating equation (16) with

respect to time yields

ṡi = ẍi − ẍri = ∆ẍi + αi∆ξ̇i + γ∆ρ̇ij (17)

where ∆ẍi = ẍi − ẍo. Substituting equations (16) and (17)

into equation (1), and using property 4 we have

Mi(xi)ṡi + Ci(xi, ẋi)si + Di(xi, ẋi)si

+Yi(xi, ẋi, ẋri, ẍri)θi = ui (18)

where Yi(xi, ẋi, ẋri, ẍri)θi = Mi(xi)ẍri + Ci(xi, ẋi)ẋri +
Di(xi, ẋi)ẋri + gi(xi). The region following controller for

multi-robot systems is proposed as

ui = −Ksisi − Kp(αi∆ξi + γ∆ρij) + Yi(xi, ẋi, ẋri, ẍri)θ̂i

(19)

where Ksi are positive definite matrices, Kp = kpI , kp is a

positive constant and I is an identity matrix. The estimated

parameters θ̂i are updated by

˙̂
θi = −LiY

T
i (xi, ẋi, ẋri, ẍri)si (20)

where Li are positive definite matrices.

The closed-loop dynamic equation is obtained by substituting

equation (19) into equation (18):

Mi(xi)ṡi + Ci(xi, ẋi)si + Di(xi, ẋi)si + Ksisi

+Yi(x, ẋ, ẋri, ẍri)∆θi + Kp(αi∆ξi + γ∆ρij) = 0 (21)

where ∆θi = θi− θ̂i. Let us define a Lyapunov-like function

for multi-robot systems as

V =
N

∑

i=1

1

2
sT

i Mi(xi)si +
N

∑

i=1

1

2
∆θT

i L−1
i ∆θi

+

N
∑

i=1

1

2
αikp

M
∑

l=1

kl[max(0, fGl(∆xiol)]
2

+
1

2

N
∑

i=1

1

2
γkp

∑

j∈Ni

kij [max(0, gLij(∆xij))]
2 (22)

Differentiating equation (22) with respect to time, we get

V̇=

N
∑

i=1

sT
i Mi(xi)ṡi +

N
∑

i=1

1

2
sT

i Ṁi(xi)si −

N
∑

i=1

˙̂
θ

T

i L−1
i ∆θi

+

N
∑

i=1

αikp

M
∑

l=1

kl∆ẋT
iolmax(0, fGl(∆xiol))(

∂fGl(∆xiol)

∂∆xiol

)T

+
1

2

N
∑

i=1

γkp

∑

j∈Ni

kij∆ẋT
ijmax(0, gLij(∆xij))(

∂gLij(∆xij)

∂∆xij

)T

(23)

Substituting
˙̂
θi from equation (20) and Mi(xi)ṡi from equa-

tion (21) into equation (23) and using property 2 we get

V̇ =−
N

∑

i=1

sT
i Ksisi −

N
∑

i=1

sT
i Di(xi, ẋi)si

−

N
∑

i=1

sT
i kp(αi∆ξi + γ∆ρij)

+

N
∑

i=1

αikp

M
∑

l=1

kl∆ẋT
iolmax(0, fGl(∆xiol))(

∂fGl(∆xiol)

∂∆xiol

)T
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+
1

2

N
∑

i=1

γkp

∑

j∈Ni

kij∆ẋT
ijmax(0, gLij(∆xij))(

∂gLij(∆xij)

∂∆xij

)T

(24)

Using equation (8), equation (24) can be written as

V̇ =−

N
∑

i=1

sT
i Ksisi −

N
∑

i=1

sT
i Di(xi, ẋi)si

−
N

∑

i=1

sT
i kp(αi∆ξi + γ∆ρi) +

N
∑

i=1

αikp∆ẋT
i ∆ξi

+
1

2

N
∑

i=1

γkp

∑

j∈Ni

kij∆ẋT
ijmax(0, gLij(∆xij))(

∂gLij(∆xij)

∂∆xij

)T

(25)

where ∆ẋiol = ẋi − ẋol = ∆ẋi since ẋo = ẋol.

Next, since ∆ẋij = ẋi − ẋj = (ẋi − ẋo) − (ẋj − ẋo) =
∆ẋi − ∆ẋj , using equation (13), the last term of equation

(25) can be written as

N
∑

i=1

γkp

∑

j∈Ni

kij∆ẋT
ijmax(0, gLij(∆xij))(

∂gLij(∆xij)

∂∆xij

)T

=

N
∑

i=1

γkp∆ẋT
i ∆ρij

−

N
∑

i=1

γkp

∑

j∈Ni

kij∆ẋT
j max(0, gLij(∆xij))(

∂gLij(∆xij)

∂∆xij

)T

(26)

Using equation (10) and (11), equation (26) can be written

as

N
∑

i=1

γkp

∑

j∈Ni

kij∆ẋT
ijmax(0, gLij(∆xij))(

∂gLij(∆xij)

∂∆xij

)T

=

N
∑

i=1

∆ẋT
i γkp∆ρij

+

N
∑

i=1

γkp

∑

j∈Ni

kij∆ẋT
j max(0, gLji(∆xji))(

∂gLji(∆xji)

∂∆xji

)T

(27)

Let kij = kji then

N
∑

i=1

γkp

∑

j∈Ni

kij∆ẋT
j max(0, gLji(∆xji))(

∂gLji(∆xji)

∂∆xji

)T

=

N
∑

j=1

γkp

∑

i∈Nj

kji∆ẋT
j max(0, gLji(∆xji))(

∂gLji(∆xji)

∂∆xji

)T

=

N
∑

j=1

γkp∆ẋT
j ∆ρji

=

N
∑

i=1

γkp∆ẋT
i ∆ρij (28)

where Nj is the set of neighbors around robot j. Therefore,

V̇ = −

N
∑

i=1

sT
i Ksisi −

N
∑

i=1

sT
i Di(xi, ẋi)si

−
N

∑

i=1

sT
i kp(αi∆ξi + γ∆ρij)

+

N
∑

i=1

∆ẋT
i αikp∆ξi +

N
∑

i=1

∆ẋT
i γkp∆ρij (29)

Substituting si from equation (16) into equation (29) we get

V̇ = −

N
∑

i=1

sT
i Ksisi −

N
∑

i=1

sT
i Di(xi, ẋi)si

−

N
∑

i=1

kp(αi∆ξi + γ∆ρij)
T (αi∆ξi + γ∆ρij) (30)

We are ready to state the following theorem:

Theorem: Consider a group of N robots with dynamic

described by equation (1), the adaptive control law (19) and

the parameter update laws (20) give rise to the convergence

of ∆ξi → 0 and ∆ρij → 0 for all i = 1, 2, ..., N , as

t → ∞.

Proof: Since Mi(xi) are uniformly positive

definite, V in equation (22) is positive definite

in si, ∆θi,
∑N

i=1[max(0, fGl(∆xiol))]
2 and

∑N
i=1

∑

j∈Ni
[max(0, gLij(∆xij))]

2. Hence, si, ∆θi,

fGl(∆xiol) and gLij(∆xij) are bounded. The boundedness

of fGl(∆xiol) ensures the boundedness of
∂fGl(∆xiol)

∂∆xiol
,

∂2fGl(∆xiol)
∂∆x2

iol

. Therefore, ∆ξi is bounded. From equation

(9), max(0, gLij(∆xij))(
∂gLij(∆xij)

∂∆xij
)T is always bounded.

Hence, ∆ρij is bounded. Next, ẋri is bounded if ẋo is

bounded as can be seen from equation (14). From equation

(16) ∆ẋi is bounded since si, ∆ξi and ∆ρij are bounded.

Hence ∆ẋiol is bounded. The boundedness of ∆ẋi implies

the boundedness of ẋi for all i = 1, 2, ..., N if ẋo is

bounded. Differentiating equation (8) with respect to time

yields

∆ξ̇i=

M
∑

l=1

klḟGl(∆xiol)(
∂fGl(∆xiol)

∂∆xiol

)T

+

M
∑

l=1

klmax(0, fGl(∆xiol))
∂2fGl(∆xiol)

∂∆x2
iol

∆ẋiol(31)

where

ḟGl(∆xiol) =

{

0, fGl(∆xiol) ≤ 0

(∂fGl(∆xiol)
∂∆xiol

)∆ẋiol, fGl(∆xiol) > 0
(32)

Since
∂fGl(∆xiol)

∂∆xiol
, ∆ẋiol and

∂2fGl(∆xiol)
∂∆x2

iol

are bounded, ∆ξ̇i

is therefore bounded. Similarly, differentiating equation (13)
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with respect to time yields

∆ρ̇ij=
∑

j∈Ni

kij ġLij(∆xij)(
∂gLij(∆xij)

∂∆xij

)T

+
∑

j∈Ni

kijmax(0, gLij(∆xij))
∂2gLij(∆xij)

∂∆x2
ij

∆ẋij

(33)

where

ġLij(∆xij) =

{

0, gLij(∆xij) ≤ 0

(
∂gLij(∆xij)

∂∆xij
)∆ẋij , gLij(∆xij) > 0

(34)

From equation (9), ∆xij is bounded if gLij(∆xij) > 0.

∆ẋij is bounded since ẋi is bounded for all i. Hence,

ġLij(∆xij)(
∂gLij(∆xij)

∂∆xij
)T is always bounded. Therefore,

∆ρ̇ij is bounded since
∂2gLij(∆xij)

∂∆x2

ij

is bounded (from equa-

tion (9)). From equation (15), ẍri is bounded if ẍo is

bounded. From the closed-loop equation (21), we can con-

clude that ṡi is bounded. Differentiating equation (30) with

respect to time we get

V̈ = − 2

N
∑

i=1

ṡT
i Ksisi

− 2

N
∑

i=1

kp(αi∆ξ̇i + γ∆ρ̇ij)
T (αi∆ξi + γ∆ρij)]

− 2
N

∑

i=1

ṡT
i Di(xi, ẋi)si −

N
∑

i=1

sT
i Ḋi(xi, ẋi)si (35)

Hence, V̈ is bounded since ∆ξi, ∆ξ̇i, ∆ρij , ∆ρ̇ij , si and ṡi

are bounded. Therefore, V̇ is uniformly continuos. Applying

Barbalat’s lemma [18], we have αi∆ξi +γ∆ρij → 0 as t →
∞. Next, we proceed to show that ∆ξi → 0 and ∆ρij → 0
seperately as t → ∞. Since

αi∆ξi + γ∆ρij = 0 (36)

as t → ∞. Therefore,

N
∑

i=1

αi∆ξi +

N
∑

i=1

γ∆ρij = 0 (37)

Note that the interactive forces between robots are bi-

directional. These forces cancel out each other and the

summation of all the interactive forces in the multi-robot

systems is zero. That is
∑N

i=1 ∆ρij = 0. From equation

(37), we have
N

∑

i=1

αi∆ξi = 0 (38)

A trivial solution of equation (38) is ∆ξi = 0 for all i =
1, 2, 3...N . Now we proceed to prove by contradiction that

∆ξi = 0 is the only solution of the above equation. Assume

to the contrary that ∆ξi 6= 0 is another solution of equation

(37). If ∆ξi 6= 0, then the summation of all the forces are

zero if and only if all the forces cancel out each other. This

means that some robots must be at the opposite sides of

the desired region as illustrated in figure 3. However, when

robots are at the opposite sides of the region, the interactive

forces ∆ρij between robots are not activated because the

desired region must be large as compare to the minimum

distance between the robots in order for all robots to stay

inside. It means that ∆ρij = 0 and from equation (36), we

get ∆ξi = 0. This contradicts the assumption that ∆ξi 6= 0.

Therefore, ∆ξi = 0 and hence ∆ρij = 0.

Fig. 3. Illustration of the case when
∑

N

i=1
αi∆ξi = 0 and ∆ξi 6= 0

IV. SIMULATION

This section presents some simulation results to illustrate

the performance of the proposed formation controller. In the

simulation, 100 robots are used to form different formations

while moving along a specified path. The mass of each robot

is set as 1 kg. The desired region is moving along a path

specified by xo11 = t
2 and xo12 = 2sin( t

2 ).

A. Desired Region as a Ring

The desired region is set as a ring with r1 = 0.8 m and

r2 = 1.7 m given by the following inequalities:

f1(∆xio1) = r2
1 − (xi1 − xo11)

2 − (xi2 − xo12)
2 ≤ 0

f2(∆xio2) = (xi1 − xo11)
2 + (xi2 − xo12)

2 − r2
2 ≤ 0

The minimum distance between robots is chosen to be 0.3
m and rN = 0.5m. The proposed controller is used with

Ksi = diag{10, 10}, kp = 10, kij = 25, k1 = k2 = 1,

γ = 1 and αi = 1. The system converges after 7 seconds.

B. Desired Region as a Crescent

The desired region in this section is set as a crescent

characterized by the following inequalities:

f1(∆xio1) = (xi1 − xo11)
2 + (xi2 − xo12)

2 − r2
1 ≤ 0

f2(∆xio2) = r2
2 − (xi1 − xo21)

2 − (xi2 − xo22)
2 ≤ 0

where r1 = 1.8 m, r2 = 1.1 m, xo21 = xo11 − 0.8 and

xo22 = xo12−0.8. The minimum distance between robots is

chosen to be 0.3 m and rN = 0.5m. The proposed controller

is used with Ksi = diag{5, 5}, kp = 5, kij = 50, k1 = k2 =
1, γ = 1 and αi = 1. The system converges after 10 seconds.
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Fig. 4. A group of 100 robots moving together in a ring formation
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Fig. 5. A group of 100 robots moving together in a crescent formation

V. CONCLUSION

In this paper, we have proposed a region following for-

mation control method for multi-robot systems. It has been

shown that all the robots are able to move as a group inside

the desired region while maintaining minimum distance from

each other. Lyapunov-like function has been proposed for

the stability analysis of the multi-robot systems. Simulation

results have been presented to illustrate the performance of

the proposed formation controller.
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