
Robot formations: robots allocation and leader–follower pairs

Sérgio Monteiro Estela Bicho
Department of Industrial Electronics

University of Minho

4800–058 Azurém, Portugal

{sergio,estela}@dei.uminho.pt

Abstract— In this paper we focus on the problem of assigning
robots to places in a desired formation, considering random
initial locations of the robots. Since we use a leader–follower
strategy, we also address the task of choosing the leader to
each follower. The result is a formation matrix that describes
the relation between the robots and the desired formation shape.
Simple algorithms are defined, that are based on the minimiza-
tion of the distances of robots to places in the formation. All
these algorithms are implemented in a decentralized way. We
assume that communication is possible, but the requirements
are of very–low bandwidth.

I. INTRODUCTION

The problem of controlling a set of cooperating mobile

robots is very important because of their applications in real

scenarios. The transportation and manipulation of objects [1],

[2], coverage and exploration of specific environments [3],

[4] or localization and mapping [5], [6] are some of the tasks

where the researchers have been focusing. Another important

task is when the set of robots should navigate according to a

prescribed geometric shape, in what is known as formation

control. Several solutions have been proposed to this problem

(e.g. [7], [8], [9], [10]). Yet, usually, authors focus their

attention on path planning related issues, and neglect the

formation initiation task.

This work appears as a consequence of our previous

work [11], [12], [13], where we presented a framework

based on the attractor dynamics approach, using a leader–

follower strategy, that is able to stabilize and maintain a team

of robots navigating according to a prescribed formation

shape. Some of the key features of our work are: i) the

ability to stabilize a desired formation from any initial state;

ii) obstacle (either static or moving) avoidance; iii) implicit

formation split–and–join (that can occur in the presence

of obstacles); iv) commanded formation switches. Here we

extend that work with the capability of automatically allocate

robots to places. More specifically, considering a team of

N robots that has a pre–assigned team leader (called the

lead robot), to which is communicated a target location and

a desired formation shape, we formulate the following two

problems: a) which robot should be allocated to which place

in the formation? b) how to construct the leader–follower

hierarchy?

The considered assumptions are: all robots are able to

communicate with the lead robot (for the centralized im-

plementation) or with all other robots (in the distributed

implementation); each robot is able to measure the distance

and relative bearing to the lead robot (during the allocation

process) and to its leader (during mission execution). No

absolute reference frame is required.

The rest of the paper is structures as follows: Section II

presents some of the relevant related work; in Section III we

introduce the formation matrix, which is where we capture

the formation description; the generation of this matrix is

the subject of Section IV, while results are presented in

SectionVI; in Section V we adress the topic of formation

robustness and finalize presenting our conclusions and future

work in Section VII.

II. RELATED WORK

The first problem, i.e. given a desired formation config-

uration, which robot to allocate to which position in the

formation is of growing interest. It has been studied and

few solutions have been proposed. Michaud et al. [14], for

instance, used a cost function dependent on the distance

between the robots. All the robots run the same allocation

algorithm, as if they were team leaders. The one that reaches

the smallest cost has its allocation assigned to the formation.

Fredslund and Mataric [15] assigned robots to places, fol-

lowing an algorithm based on the robots ID. Since all robots

know the same algorithm and have different IDs then they’ll

assign themselves to different positions in the formation. The

work by Kosternik et al. [16] is, in general, similar to the

previously described, but it adds social roles to the robots

in the formation. These roles characterize the location in

the formation (either to the left or right of the leader). It

also adds a chain of communications (from followers to

leaders) that ensures the leader with the complete knowledge

of the formation, and it enables it to give orders to its

followers (to balance the formation, for instance). In Brimble

and Press [17] each robot negotiates with the others the

allocation of a specific station (place within the formation),

searching to minimize one of two costs: either total distance

or maximum distance traveled. Two types of negotiation are

also introduced: a pairwise one (only two robots negotiate

each time) and a recursive one (a robot “consults” the others

before deciding). This problem is also tackled by Gold

et al. [18]. Each robot has information about the nearest

target positions in the formation and the nearest robots. The

decision is taken using two utility functions in a cost–benefit

approach. A set of options, where the benefit is higher than

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3769

the cost, emerges from this approach (the satisficing set).

Any of these options can then be used.

When all the robots are allocated to the formation, the sec-

ond problem arises (when using a leader–follower strategy):

which robot should a follower follow? Or, should it follow

more than one robot? Fierro and Das [19] present an algo-

rithm that given an assigned leader and a desired formation

geometry, it generates the leader–follower hierarchy of the

entire formation. Their algorithm tries to minimize the path

between the leader and the follower, and takes into account

the sensor visibility of each robot. Kaminka and Glick [10]

also focus on this problem, from the sensor usage efficiency

perspective.

This paper has the following contributions: an algorithm

(with a centralized and a distributed version) that allocates

robots to places in a formation, given the desired shape and

team–leader, that exhibits as advantages, due to its simplicity,

the low requirement on exchanged messages (communica-

tion); an algorithm that enables a follower to choose its

leader, that is tailored to our formation control framework.

III. FORMATION MATRIX

Given a desired formation shape that a number of robots

should assume, it is necessary to translate it into a suitable

internal representation that captures the desired pattern. In

principle, to characterize a formation it is enough to state

the number of places in it (with each place corresponding to

one robot), how they relate to each other in terms of distance

and orientation (since we follow a leader–follower strategy,

it is necessary to state which is (are) the leader(s) to each

follower), and which is the lead robot, i.e. the robot that

“drags” the formation when it moves.

Figure 1 shows a series of possible formations, where the

darker robot was chosen as the lead robot. The doted lines

between the robots try to give an idea about the shape of

the formation. We notice in that figure that almost any given

formation shape can be outlined by a polygon. We can also

identify intuitively some sort of dependence of a given robot

to the others (at least some of the others) around it.

P1

P2
P3

P4
P5

P6

(a) Hexagon

P1P2 P3
P4 P5P6

(b) Line

P1

P2 P3

P4 P5

P6

(c) Inverted V

P1

P2 P3

P4 P5 P6

(d) Triangle

Fig. 1. Examples of possible formation shapes. The lead robot is
represented by the darker circle.

In order to represent the information above, the complete

team specification is described by means of a formation

matrix [11] as follows

F =





L1 ∆ψ1,d l1,d

L2 ∆ψ2,d l2,d

...
LN ∆ψN,d lN,d



 (1)

This matrix codes the shape of the formation in the follow-

ing way: Row i (= 1, 2, 3, ..., N) defines the pose of robot R i

in the formation. It is a vector Fi =
(

Li ∆ψi,d li,d
)

,

where Li (Li �= Ri) identifies the leader robot for robot Ri,

∆ψi,d is the desired relative angle between robot Ri and its

leader and li,d the desired distance to its leader.

When robot Ri is the lead robot the parameters for its

dynamics are Li = 0, ∆ψi,d = 0 and li,d defines the distance

at which it must stop from the target location.

For example, one formation matrix that determines the

shape of a hexagon formation is Fhex in Figure 2.

Fhex =











0 0 150

1 −π/3 150

4 0 150

1 π/3 150

1 0 300

3 −π/2 260











R1

R4 R2

R3 R6

R5

π
3

150

π
2

150

−

π
3

260

Fig. 2. Hexagon formation as determined by Fhex.

In Fhex, we assume that Robot R1 is the lead robot

(i.e. moves toward the target location), and that the desired

distance between the robots is 150 cm. Considering two

robots as an example we can see (in line 2) that robot

R2 follows R1 on the left side and maintaining an oblique

formation (L2 = 1, ∆ψ2,d = π/3, l2,d = 150) and that

(in line 5) robot R5 follows robot R4 maintaining a line

formation on the right (L5 = 4, ∆ψ2,d = −π/2, l5,d = 150).

Figure 2 shows a representation of the referred hexagon

pattern.

It is important to note that there are many formation

matrices that generate the same geometric configuration for

the formation. By proper manipulation of the F matrix, i.e.

by changing its values, one can drive formation switches and

cope with robot failure.

IV. GENERATION OF THE FORMATION MATRIX

The shape of the formation and the leader–follower hi-

erarchy for the complete team are both described by the

formation matrix. When executing a mission all the robots

in the team must have knowledge of this matrix. This is

mainly for backup reasons in case of robot failure, because

when actually running the mission, each robot just needs to

know about its leader.

The formation matrix is generated in three distinct situ-

ations: i) prior to mission start, right after deploy; ii) by

instruction of the lead robot, which as been ordered (by an

higher level entity) a formation shape switch; iii) when one

of the robots is found to be missing. In all situations, the

3770

generation of the formation matrix involves two steps: i) the

allocation of robots to places in the formation and, after, ii)

the definition of leader–follower pairs.

A. Allocation of robots to places

To solve i) in a distributed way, usually, there are two

options: either by direct robot negotiation [17], [20] or by

robot identification based assignment [15]. The advantage of

the first option is that, depending on the negotiation effort

and the allocation criteria, it can ensure optimal assignments.

It has the drawback of requiring explicit communication

and also with an increase in the number of agents the

negotiation task can become overwhelming. By allocating

robots to places based on robot ID, one overcomes the

problem of the negotiation effort, because it is a quasi

silent operation (explicit communication is only necessary to

instruct the robots of the desired formation). The drawback is

the rigidity of the assignment that does not take into account

the actual location of the robots. Given some random initial

configuration, assigning robots to places with this method

can lead to highly suboptimal trajectories.

We will employ a method of allocation by negotiation,

in an auction like process. We assume that the lead robot is

assigned a priori and is the only one aware of the destination

target. The lead robot is also the one with initial knowledge

of the desired formation, that is mapped into a shape matrix,

S. This shape matrix can be communicated by a higher

level entity, or constructed by the lead robot given some

task constraints (not discussed in this paper). It assumes the

following form:

S =





0 0

l2 ψ2

... ...
lN ψN



 (2)

where row j, with j = 2, 3, ...N , describes the place Pj in

the formation. lj and ψj are the distance and orientation of

place Pj taking the lead robot as reference. Since each row

in the matrix relates to one place in the formation, thus it

should have as many rows as there are places to fill in the

formation, i.e. N . Place P1 belongs to the lead robot and,

as such, l1 = 0 and ψ1 = 0. Another rule to build the shape

matrix is that places with lower IDs should be closer to the

leader, in terms of vertical distance, than places with higher

IDs (where vertical distance is lj cosψj). We enforce this

rule because it helps to speed up the algorithm of controller

assignment. Figure 3 shows an example of a shape matrix

together with its representation. An hexagon was chosen as

example.

The place allocation algorithm is based on the distributed

computation of a cost function and subsequent negotiation

with the team mates. Because each robot needs to know

the shape matrix, prior to executing the algorithm, the lead

robot broadcasts it to all the robots. After, each robot, R i,

computes the distance separating it from each place, Pj , in

the formation, according to the following equation:

Di,j =
√

l2j + l2i,l − 2ljdi,j cos (ψj − φl + π/2) (3)

Shex =











0 0

l2 ψ2

l3 ψ3

l4 ψ4

l5 ψ5

l6 ψ6











P1

P2 P3

P4
P5

P6

ψ2 ψ3

ψ4 ψ5

l2
l3

l4
l5

l6

Fig. 3. Example of a shape matrix for an hexagon formation. The place
of index i is described by row i. The first place always belong to the leader.

where lj and ψj are directly extracted from the row j of

the shape matrix S, li,l is the actual distance to the lead

robot, and φl is the lead robot’s heading, in the follower’s

reference frame. If the lead robot’s heading is unknown to

the follower, then it can use its own heading direction instead.

This is a reasonable assumption because, while executing a

mission, the robots move in the same direction with headings

approximately equal. The problem lies at mission start, right

after deploy, when the robots can have completely random

heading directions.

At this moment we have a distributed matrix of distances

between robots and places, D, with each row located in

different robots. Based on this matrix, our purpose is to

assign to each place the robot that is closest to it, that is not

already assigned. Here two alternatives are possible: i) either

all robots communicate their entry in matrix D to one robot

that is responsible for the assignment (the lead robot for

instance); in this case only one robot executes the allocation

algorithm for all the robots and at the end it communicates

results to the team; ii) or the whole team engages in an

auction biding for places in the formation.

Algorithm 1 shows the procedure for centralized assign-

ment. This algorithm departs from the complete D matrix

and searches for the robot closest to each place. Lines 1 and 2

of the algorithm serve to remove place P1 and robot R1

of possible assignment (we remove robots and places by

increasing the corresponding cost to infinity), as these are

already allocated (are the place leader and the lead robot).

Then, a cycle to the remaining places is initiated. At every

iterations, from the set of the not yet allocated robots and

places, we find which is the pair that is closest to one another

(line 4). That pair is the robot identified by the row index

corresponding to the minimum value in the D, while the

place correspond to the column index of the same value.

The selected robot is allocated to the selected place (line 7),

and the pair is removed from the list of unassigned robots

and places. The result is an allocation matrix, A, with as

many lines as there are robots, and with as many columns

as there are places. If the robot Ri is allocated to place Pj ,

then, Ai,j = 1, while the other elements in the same row

and column all equal 0. The allocation process is terminated

by the broadcast of A to all other robots in the team.

When, instead of a running the algorithm on a single robot,

the choice is to have an auction by all the team, each agent

follows the procedure in algorithm 2.

3771

Algorithm 1 Allocation of robots to places – centralized

1: Drow#1 ← ∞

2: Dcol#1 ← ∞

3: for k = 2 to N do

4: i, j ← index(min(D))
5: Drow#i ← ∞

6: Dcol#j ← ∞

7: Ai,j ← 1
8: end for

Algorithm 2 Allocation of robots to places – distributed

1: j ← index(min(Di))
2: SEND (i,j,Di,j)

3: while not received all messages from all robots do

4: Di,j ←RECEIVE MESSAGE

5: end while

6: if min(D)=Di,j then

7: Ai,j ← 1
8: SEND (i,j,Di,j)

9: remove itself from negotiation

10: else

11: Dk,m=RECEIVE MESSAGE

12: Ak,m ← 1
13: end if

This algorithm can be seen as a distributed implementation

of the previous one. At each iteration, each robot selects the

place to which is closest, and broadcasts that information to

the team mates. The message consist of the emitter robot ID,

place ID and distance to that place. At the same time it also

listens to the other robots communicated information. After

all robots have informed the team mates, the robot with lower

distance to place assigns itself to that place, informs the team

mates, as confirmation, and steps out of the auction process.

The remaining robots remove that place from their list (by

assigning an infinite distance to it), proceed the auction until

there are no more places to assign.

For the same distance matrix, D, and shape matrix, S, the

generated allocation is always the same, and is independent

of the used algorithm. If inter–robot communication is to

be minimized, then alg. 1 should be used. Else, if agent

autonomy is a requirement then one should go for alg. 2.

Figure 4 shows examples of the allocation results when

using the previous algorithms (both the centralized and

the distributed algorithms have exactly the same result, i.e.

generate the same allocation) in an hexagon shape. The initial

pose of each robot is set randomly. We ran the algorithm

twice: first by assuming that the leader’s heading is the same

as the one of the robot computing the cost, and secondly,

by assuming that each robot is able to determine the exact

leader’s heading direction. As expected the results when the

leader’s heading is known are much better, as the overall

number of trajectory crossings decreases, and the overall

distance to traverse also decreases, thus inducing faster

stabilization times.

R1

R2

R3

R4

R5

R6

P2 P3

P4 P5

P6

(a) Example 1: unknown leader’s
heading

R1

R2

R3

R4

R5

R6

P2
P3

P4

P5

P6

(b) Example 1: known leader’s
heading

R1

R2R3

R4

R5

R6

P2 P3

P4
P5

P6

(c) Example 2: unknown leader’s
heading

R1

R2
R3

R4

R5

R6

P2 P3

P4 P5

P6

(d) Example 2: known leader’s
heading

R1

R2

R3

R4
R5

R6

P2 P3

P4

P5

P6

(e) Example 3: unknown leader’s
heading

R1

R2

R3

R4
R5

R6

P2
P3

P4

P5

P6

(f) Example 3: known leader’s
heading

Fig. 4. Examples of robot allocations. Robots are depicted by circles with
a dash indicating the initial heading. Places are depicted by crosses. A line
connecting Ri to Pj indicates the pair assignment. The desired shape is an
hexagon. Three initial (random) situations are presented.

B. Definition of leader–follower pairs

After the process of allocating robots to places, it is now

time for each robot to select which will be its leader. At

this moment, each robot possesses information about the

formation shape and also knows which robot is in each

place. The procedure each robot follows to select its leader,

is based on choosing the leader from the set of eligible

leaders. The set of eligible leader’s is the set of robots, to

the front and sides of the follower, but distant from it no

more than daloc. This distance should be such to enable the

set to contain at least one robot, and the larger it becomes it

enables the followers to follow robots that are several levels

above them. We limited this value to enforce the followers to

choose a leader immediately at the above level. The selected

leader is the one that causes the follower to follow it in a

column formation, or closest to it. Algorithm 3 implements

the described procedure.

As example, we show in figure 5 the assignment result for

a formation with an hexagon shape. Independently of which

3772

Algorithm 3 Algorithm for robot Ri to choose its leader.

1: j ←INDEX(Arow#i = 1)
2: if Ri at top level then

3: m ← j − 1
4: k ←INDEX(Acol#m = 1)
5: dx ← (Sj,1 sin(Sj,2) − Sm,1 sin(Sm,2))
6: dy ← (Sj,1 cos(Sj,2) − Sm,1 cos(Sm,2))
7: Fi,1 ← k
8: Fi,2 ← arctan dy

dx

9: Fi,3 ←
√

dx2 + dy2

10: else

11: m ← j − 1
12: while m ≥ 1 do

13: dx ← (Sj,1 sin(Sj,2) − Sm,1 sin(Sm,2))
14: dy ← (Sj,1 cos(Sj,2) − Sm,1 cos(Sm,2))
15: l ← 1
16: if (

√

dx2 + dy2 − daloc) < 0 then

17: k ←INDEX(Acol#m = 1)
18: leader setl,1 ← k
19: leader setl,2 ← arctan dy

dx

20: leader setl,3 ←
√

dx2 + dy2

21: end if

22: end while

23: k ←INDEX(min(leader setcol#2))

24: Fi,1 ← leader setk,1

25: Fi,2 ← leader setk,2

26: Fi,3 ← leader setk,3

27: end if

robot is at each place, the assignment (of leaders), in terms

of places, will always be the same, i.e. in this example the

robot that is allocated to place P4, for instance, will always

follow the robot that is allocated to place P2, in a column

configuration.

P1

P2 P3

P4
P5

P6

Fig. 5. The result of the controller assignment, following the procedure
described in algorithm 3, for an hexagon formation.

The outcome of both these algorithms is a complete

formation matrix as described by eq. 1 (including distances

and relatives bearings).

V. FORMATION ROBUSTNESS

To guarantee robustness against robot failure, every robot

is required to emit an alive signal (it can be a visual cue

or a radio signal). Whenever a follower fails to receive its

leader signal, for a predetermined amount of time, it sends

an alarm message to the team requiring a formation update.

Since initially, the number of places in the formation equals

the number of robots in the team, the failure of one robot

causes one of the places to be unattended. Depending on

the mission instructions, the lead robot has three options:

i) either continues the present shape, but with that place

empty, ii) or commands a formation shape change, iii) or

aborts the mission.

In the first scenario (option i)), only the robots that were

following the failed robot need to modify their controller

specification, by selecting another leader, i.e. they rerun

algorithm 3 to update their entry in the formation matrix.

The remaining robots are left out of this process.

If the choice is to change the shape of the formation

(option ii)), then a complete new formation matrix has to

be generated. This choice requires that the lead robot is

able to produce a new formation shape, i.e., a new shape

matrix. To produce this new shape matrix, the lead robot

has to be supplied with sufficient knowledge at mission

start. This knowledge comes in the form of contingency

plans. These contingency plans can assume the form of

different shape matrices (the follower can be informed of,

for instance, three different shape matrices S0, the original,

S1, when one robot is missing, and S2 when two robots

are missing), or the form of directives on how to construct

a new shape matrix. Examples of directives can be, for

instance: “distribute the places evenly along a circumference

with radius r”, or “produce a column where the distance

between consecutive place is equal”, or even “in case of

failure of n robots, abort mission and return home”. Another

good example of formation directives, in our understanding,

is the concept of queues as defined by [21].

The failure of one robot is conveniently treated by the

described method in the previous paragraphs, unless the

failing robot is the lead robot. In this case, a new lead

robot has to be assigned and a new formation matrix has

to be generated. Since every place is identified by an ID,

and the place occupied by the lead robot, P1, always is

the first, in case of its failure the new team leader will

be the robot in place P2. This new lead robot needs to be

informed about the mission specifications, in terms of target

destination and contingency plans. Since the previous lead

robot is ‘dead, it is not able to share the required information

with the new one. To overcome this problem and to cope

with the possibility of failure of more than one lead robot,

the complete mission specification should be provided to

all robots in the team as a backup strategy. During mission

execution, only the lead robot makes use of it.

VI. RESULTS

One important feature supported by our framework is the

ability to perform ordered formations switches. Here we will

describe a test where this feature is emphasized. The robots

that compose the team have a differential drive model, and

are equipped with 5 infra–red sensors for obstacle avoidance

(located at the front of the robot with 30 deg spacing). They

are assumed to be equipped with sensors that enable them to

3773

measure the distance and relative bearing to a given robot.

Furthermore, when negotiating for a formation matrix it is

assumed that all followers are able to see the lead robot.

We will use a team of six robots placed at random initial

locations (the initial status of the team can be seen in figure 6,

at time instant 0). Four formation shapes are provided to the

lead robot. These shapes are described by Shex, Slin, Sv

and Stri, which are writen as follows:

Shex =











0 0

150 π/4

150 −π/4

277 π/8

277 −π/8

362 0











Slin =











0 0

125 π/2

125 −π/2

250 π/2

250 −π/2

375 π/2











Sv =











0 0

150 π/4

150 −π/4

300 π/4

300 −π/4

450 π/4











Stri =











0 0

150 π/4

150 −π/4

300 π/4

212 0

300 −π/4











A sketch of those shapes is presented in figure 1. The

team leader is ordered to move towards the target, starting

in an hexagon formation (Fhex and figure 1(a)). After 36 sec

of mission time, it should switch to a line shape (Flin and

figure 1(b)). It should navigate in line during 44 sec and then

switch to an inverted V (Fv and figure 1(c)). After another

24 sec, again a formation switch is imposed. Now, the robots

should stabilize a triangle formation (Ftri and figure 1(d)).

The mission ends when the lead robot is in the neighborhood

of the target.

The formation matrices generated (at each formation

switch) are the following:

Fhex =











0 0 150

1 −π/4 150

1 π/4 150

3 0 150

2 −π/2 150

4 0 150











Flin =











0 0 150

1 −π/2 125

1 π/2 125

3 π/2 125

2 −π/2 125

4 π/2 125











Fv =











0 0 150

1 −π/4 150

1 π/4 150

3 π/4 150

2 −π/4 150

4 π/4 150











Ftri =











0 0 150

1 −π/4 150

1 π/4 150

3 π/4 150

2 −π/4 150

2 π/4 150











Figure 6 depicts the simulated trajectory evolution of

the team, using the control architectures described in [11].

Snapshots are provided at each time instant prior to formation

change. Figure 7 shows each robot position error together

with the average position error of the team (formation). This

position error is the distance between the desired location of

the robot and the actual location at which it is [22].

The mission ends with the team reaching its goal in the

desired shape and with low formation error.

In summary, we have an approach that does not require

an absolute reference frame ([14], [17] require it) by exploit-

ing the fact that when traveling all robots have the same

heading. We do require explicit communication between

the robots, but the number of exchanged messages is fixed

and dependent on the number of robots ,N : 2N (for the

centralized implementation) or
∑N

m=1 m (for the distributed

3500

t = 0 s t = 35.5 s t = 79.5 s

t = 103.5 s t = 129.9 s

x (m)x (m)

x (m)x (m)x (m)

y
(m

)

y
(m

)

y
(m

)

y
(m

)

y
(m

)

5

5

55

10

10

10

1010

15

15

15

20

20

0

00

-5-5

22

222

44

444

88

888

66

666

R1

R2

R3

R4

R5

R6

Fig. 6. Simulation of a team of six robots performing a mission where
several formation switches occur.

Formation

R2

R3

R4

R5

R6

Position error

D
is

ta
n

ce
(c

m
)

time (s)
0

0

100

100

200

300

400

500

600

20 40 60 80 120

Fig. 7. Formation error of the experiment depicted in Figure 6.

implementation). On the contrary, in [17] this number is

dependent on the quality of the result and can increase to very

high values. In terms of required time to reach a solution,

in our case is directly proportional to N . In [14] since it

implements a search algorithm for all possible assignments, it

will expectably take longer to conclude. So will the approach

in [17] because of the negotiation process. The advantage of

those is that no preassigned lead robot is necessary, and that

with more complex alocation strategies probably better alo-

cations might be accomplished. Another comparable solution

is the one in [15]. As advantages it has the minimal required

communication, no preassigned lead robot and the absence of

absolute reference frames. Nevertheless the alocation strategy

is very rigid (dependent on robots ID) leading to possible

3774

highly suboptimal allocations and also has problems with

some formation switches (as the authors recognize in the

switch from diamond to column formation).

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have developed two algorithms (a centralized and

a distributed version) for allocating robots to places in a

formation, given its desired shape and team leader. These

algorithms are based on a negotiation by auction. It do not

achieve optimal assignments, nor is that its purpose. Instead

we aimed at simple, easy to implement algorithms, with low–

bandwidth requirements. Also, a decentralized algorithm for

the definition of leader–follower hierarchy was proposed.

Its outcome is a complete formation matrix, that stores

information about the team hierarchy and shape. We have

shown one simulation result, where these algorithms are used

to drive four formation switches.

B. Future Work

Our plans for future work include the use of cognitive

functions [23] to improve the algorithms of formation matrix

generation. The purpose, here, is to guess and anticipate

other team members position, as they move towards it,

and in this way completely avoid the necessity for explicit

communication.

REFERENCES

[1] N. Miyata, J. Ota, T. Arai, and H. Asama, “Cooperative transport
by multiple mobile robots in unknown static environments associated
with real–time task assignment,” IEEE Transactions on Robotics and

Automation, vol. 18, no. 5, pp. 769–780, October 2002.
[2] R. Soares, E. Bicho, T. Machado, and W. Erlhagen, “Object trans-

portation by multiple mobile robots controlled by attractor dynamics:
theory and implementation,” in Proc. of the IEEE/RSJ Intl. Conference
on Intelligent Robots and Systems, to appear, 2007.

[3] W. Burgard, M. Moors, C. Stachniss, and F. Schneider, “Coordinated
multi–robot exploration,” IEEE Transactions on Robotics, vol. 21,
no. 3, pp. 376–386, June 2005.

[4] J. Cortés, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and

Automation, vol. 20, no. 2, pp. 243–255, April 2004.
[5] F. Thomas and L. Ros, “Revisiting trilateration for robot localization,”

IEEE Transactions on Robotics, vol. 21, no. 1, pp. 93–101, February
2005.

[6] A. Howard, L. Parker, and G. Sukhatme, “Experiments with large
heterogeneous team: exploration, mapping, deployment and detection,”
The International Journal of Robotics Research, vol. 25, no. 5–6, pp.
431–447, 2006.

[7] T. Balch and R. C. Arkin, “Behavior-based formation control for
multirobot teams,” IEEE Transactions on Robotics and Automation,
vol. 14, no. 6, pp. 926–939, December 1998.

[8] J. Desai, J. Ostrowski, and V. Kumar, “Modeling and control of
formations of nonholonomic mobile robots,” IEEE Transactions on

Robotics and Automation, vol. 17, no. 6, pp. 905–908, December 2001.
[9] T. Barfoot and C. Clark, “Motion planning for formations of mobile

robots,” Robotics and Autonomous Systems, vol. 46, pp. 65–78, 2004.
[10] G. A. Kaminka and R. Glick, “Towards robust multi–robot forma-

tions,” in Proc. IEEE Int. Conf. Robotics and Automation, Orlando,
FL, 2006.

[11] E. Bicho and S. Monteiro, “Formation control for multiple mobile
robots: a non-linear attractor dynamics approach,” in 2003 IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems, Las Vegas, NV, October
27-31 2003, pp. 2016–2022.

[12] S. Monteiro, M. Vaz, and E. Bicho, “Attractor dynamics generates
robot formations: from theory to implementation,” in Proc. IEEE Intl.

Conference on Robotics and Automation, New Orleans, LA, 2004.

[13] E. Bicho, A. Moreira, S. Diegues, M. Carvalheira, and S. Monteiro,
“Airship formation control,” in 3rd Int. Conf. on Informatics in

Control, Automation and Robotics, in Workshop Multi-Agent Robotic

Systems (MARS 2006), Setubal, portugal, August 1–5 2006.
[14] F. Michaud, D. Letourneau, M. Guilbert, and J. Valin, “Dynamic

robot formations using directional visual perception,” in Proc. of

the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, EPFL
Lausanne, Switzerland, October 2002, pp. 2740–2745.

[15] J. Fredslund and M. Matarić, “A general local algorithm for robot
formations,” IEEE Transactions on Robotics and Automation, special

issue on Multirobot systems, vol. 18, no. 5, pp. 837–846, October
2002.

[16] P. Kostelnik, M. Samulka, and M. Janosik, “Scalable multi–robot
formations using local sensing and communication,” in Proc. of the

Third Intl. Workshop on Robot Motion and Control, November 9–1
2002, pp. 319–324.

[17] R. Brimble and J. Press, “Minimal cost robot formations,” in Proc.

of the 11th International Conference on Advanced Robotics, Coimbra,
Portugal, June 30 – July 3 2003, pp. 1487–1495.

[18] T. Gold, J. Archibald, and R. Frost, “A utility approach to multi–
agent coordination,” in Proc. of the Intl. Conference on Robotics and

Automation, San Francisco, USA, April 2000, pp. 2052–2057.
[19] R. Fierro and A. Das, “A modular architecture for formation control,”

in Proc. of the Third Intl. Workshop on Robot Motion and Control,
November 9–11 2002, pp. 285–290.

[20] M. Lemay, F. Michaud, D. Létourneau, and J. M. Valin, “Autonomous
initialization of robot formations,” in Proc. IEEE Int. Conf. Robotics

and Automation, New Orleans, LA, 2004.
[21] S. Ge and C. Fua, “Queues and artificial potentials trenches for

multirobot formations,” IEEE Transactions on Robotics, vol. 21, no. 4,
pp. 646–656, August 2005.

[22] S. Monteiro and E. Bicho, “Attractor dynamics approach to formation
control: theory and application,” submitted.

[23] W. Erlhagen and E. Bicho, “The dynamic neural field approach to
cognitive robotics,” Journal of Neural Engineering, vol. 3, pp. 36–54,
September 2006.

3775

