
Using Dynamic Processing Windows for Robot Group Control

Ala′ Qadi Steve Goddard Jiangyang Huang Shane Farritor

Computer Science & Engineering Mechanical Engineering

University of Nebraska–Lincoln Itron, Inc University of Nebraska–Lincoln

Lincoln, NE 68588-0115 West Union, SC 29696 Lincoln, NE 68588-0656

{aqadi, goddard}@cse.unl.edu jiangyang.huang@itron.com sfarritor@unl.edu

Abstract

This paper presents a method for determining the feasible

processing window for a leader robot that controls a group

of follower robots. A processing window is defined as the

time interval from the instant the platform starts collect-

ing data to the moment the robot leader finishes planning

and communicates with follower robots. The method de-

termines the minimum processing window after considering

the different bounds affecting the control of the robot, such

as of robot’s processing power, robot sensors and the mo-

tion of the robots in the group. We present a derivation of the

bounds that affect the processing window of the leader robot

and an algorithm for determining the feasible window or ad-

justing the parameters that affect the processing window in

case a feasible processing window cannot be achieved be-

cause of an overload condition. The application considered

in this paper is a group of mobile robots that self deploy, re-

trieve, and reconfigure barrels to improve the safety of high-

way construction/maintenance workers.

1 Introduction

The processing window is defined as the time interval

from the instant the robot starts collecting data to the mo-

ment the robot finishes leader planning and communicates

with follower robots. The processing window concept was

introduced in our earlier work for a different robotic appli-

cation [18]. In this paper we apply the concept to a differ-

ent application with different requirements. We analyze a

robotic application of a group of robots moving in a leader-

follower combination and derive the bounds affecting the

processing window for the leader robot. We also propose

an algorithm for resolving the overload condition case and

calculating slack processing time that can be used for run-

ning any non mission-critical software that might need to be

executed on the leader robot.

The application considered in this paper is a group of

robots that self deploy, retrieve, and reconfigure barrels to

improve the safety of highway construction/maintenance

workers. Safety barrels guide traffic and serve as a visible

barrier between traffic and work crews. These barrels con-

sist of a brightly colored plastic drum (approximately 130

cm high and 50 cm in diameter) that is attached to a heavy

base. The robotic safety barrel replaces the heavy base with

a mobile robot that transports the safety barrel. The robots

work in teams to provide traffic control.

The system is designed with a distributed planning and

control approach where the goal is to reduce the per-robot

cost (several robots are needed and they are often struck by

traffic). This is accomplished by eliminating expensive sen-

sors and computation on the individual barrel robots (fol-

lowers) by centralizing the intelligence and sensing (leader).

The leader robot uses a laser scanner to detect the fol-

lower robots and localizes the follower robots using image

processing. However, local control is distributed to each

individual barrel robot to reduce the required communica-

tion bandwidth-again reducing cost [7]. Relative position

is calculated by Hough transformation using a single laser

rangefinder mounted in the lead robot. The relative orienta-

tion is accomplished with an Extended Kalman Filter (EKF)

[12].

Maintaining the system localization, desired separation

between the leader and the followers and reducing error in

path diversion imposes upper bounds on the processing win-

dow for the system. The real-time scheduling algorithm and

robot’s processing capacity imposes a lower bound on the

processing window. An overload condition occurs at higher

velocities and sharper turns in the robots’ path. When an

overload condition occurs an undesired or predictable be-

havior of the system might occur. This paper presents a so-

lution to this problem.

2 Background and Related Work

The system that we consider in this case fits the category

of real-time systems. A real-time system is a system that is

required to complete its work and deliver its services on a

timely basis. The main difference between a real time sys-

tem and a normal system is that a real-time system is not

just required to produce the correct output, but to produce

the correct output on time [15]. The main essential terms

used in in real-time systems are

• Task: A sequential piece of code that is executed re-

peatedly with some pattern.

• Period of a task: Time interval between the release of

two consecutive instances of a task.

• Deadline of a task: The time instant by which the job

must complete execution.

Real-time scheduling theory has been extensively applied

to robotic systems (e.g. [10, 22, 17, 20, 23, 17, 5, 4, 11]).

Of these papers the most closely related work is by Shi, et

al. [20] who proposed a rate monotonic scheduling method

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3782

to analyze the system performance in deploying a group

of barrel robots with smooth trajectories in highway work

zones. But they did not consider the motion of the leader

robot. Their system also did not consider the orientation es-

timation task for each barrel robot. None of the previous

models exactly fits the nature and requirements of our cur-

rent application. In [18] we provided a schedulability anal-

ysis for a different application were a robot is moving in an

unpredictable environment. In this paper we adapt and ex-

tend the same concepts in [18] to a leader-follower robotic

application.

Other related work in terms of robot group control can

be found in [1, 3, 6, 8, 9, 14, 16, 21]. Fredslund et al. [9]

proposed another local sensing method for robot formations.

Each follower uses a laser rangefinder to determine the dis-

tance to its leader and then pans the camera to center the

leader in the cameras’ field of view. Blach et al. [1] pro-

posed a behavior-based approach for maintaining the for-

mation of a team of military unmanned ground vehicles as

a scout unit. Each powerful vehicle is equipped with GPS,

vision and hazard sensors. Lewis et al. [14] applied the con-

cept of virtual rigid structures for formation maintenance.

Each robot is controlled to maintain a rigid geometric rela-

tionship to another robot and to a frame of reference. But

their application range is constrained in experimental envi-

ronments because the localization is computed by a fixed

and independent vision-based camera system.

Das et al. [6] presented a paradigm for switching between

decentralized controllers that allows for changes in forma-

tion. A single omni-directional camera is used in all robots

and a host computer is used as a centralized processing unit.

Parker et al. [16] presented a control approach for het-

erogeneous robots in which a more capable leader assists

simpler follower robots to navigate using a chaining for-

mation method. There is other work that focuses on issues

such as motion planning such as, motion planning [3], hy-

brid control, [8], separate visual servoing task for each fol-

lower [21]. Due to the limited scope, those results are not

discussed here. However what is common in the previously

mentioned related work is that the followers are provided

with considerable sensing capabilities. In contrast, in our

application the followers have very limited sensing capabil-

ities in order to cut down on the cost of the system.

3. Deriving Bounds on Processing Windows

All the tasks that have to be executed on the leader robot

are shown in the task processing graph in Figure 3. For

space limitation we will describe these tasks very briefly:

• Dead Reckoning Task: uses dead reckoning to calcu-

late local coordinates of the leader robot.

• Scan Task: collects the data from the laser range finder.

• Localization Task: localizes the follower robots us-

ing the hough transform method for finding circles in

images [2]. We developed a modified version of the

hough transform in order to reduce the execution time.

Instead of searching the whole image space, each fol-

lower has a smaller hough transform window assigned

to it. The execution time of the localization task is

given by Equation (1)

ehough = π ·r2
H ·n ·ecal +min(361, k ·n) ·etrans (1)

ecal represents the time to initialize the accumulator

matrix for one follower and find the maximum value

after the transform is executed for one element of the

matrix. etrans is the execution time for the Hough

transform for one scan point. n is the number of fol-

lowers. k is the maximum number of scan points for

one follower. Here it is assumed that the distance be-

tween the leader and the follower is at least 150 cm,

which is quite reasonable considering the mechanical

dimensions of the two robots. Thus, in the worst case,

the maximum number of scan points for one follower

is k = 2 · arctan(25/150)/0.5 ≈ 34. 361 is the max-

imum number of scan points obtained from the laser

rangefinder. Thus, for all n followers the maximum

number of scan points is 361. rH is the radius of the

Hough Transform window. Substituting k = 34 in

Equation (1) we get Equation (2).

ehough = π ·r2
H ·n·ecal+min(361, 34·n)·etrans (2)

Figure 1 shows an example of how the Hough Trans-

form is used to localize the position of the follower

robots.

Figure 1. Follower position localization by Hough Trans­

form

• Orientation Estimation Task: uses an extended Kalman

filter to estimate the orientation of the follower robots.

• Communication Send Task: sends command and data

from the leader to the followers.

• Communication Receive Task: Receives data from the

followers to the leader.

3783

• Command Task: receives external commands from a

remote control station to the leader.

We will use a modified real time model that is based

on processing windows that best fits our application. The

model was proposed in our earlier work in [18]. The model

divides the tasks into three sets of tasks, uses fixed prior-

ity scheduling and calculates lower and upper bounds on the

processing window. The three task sets are

• Tw The task that includes all the tasks associated

with the processing window: Scan Task, Localization

Task, Orientation Estimation, Communication Send

and Communication Receive.

• Thp The task set that includes all the tasks with higher

priority than Tw: Dead Reckoning Task.

• Tlp The task set that includes all the tasks with lower

priority than Tw: Command Task.

System schedulibilty imposes a lower bound on the pro-

cessing window while motion and sensing imposes upper

bounds on the processing window. In order for the system

(Leader robot) to execute all the tasks within their required

deadlines and deliver the required results, the processing

window must always satisfy Equation (3),

wsch ≤ w ≤ min(MSB) (3)

where wsch is the scheduilibity bound computed from Equa-

tion (11) and MSB is the array of upper bounds imposed on

the processing window by sensor and motion requirements.

Because we have n followers, there is an MSB array for

each follower. For n followers, Equation (3) becomes Equa-

tion (4).

wsch ≤ w ≤ min(MSB1, ...,MSBn) (4)

Figure 2 shows how wsch and MSB define the operating

space for the processing window.

Figure 2. Operating Area Illustration

Section 3.1 presents the derivation of the lower bound on

the processing window. Section 3.2 presents the derivation

of the upper bounds on the processing window and Section

3.3 presents an algorithm for dealing with an overload con-

dition.

3.1 Deriving the Lower Bound on Processing Win­
dows

The function g(n, E, ∆I,R) [18] calculates the amount

of time necessary to finish processing the all the tasks in Fig-

ure 3. The function g(n, E, ∆I,R) can be derived from the

task graph and careful examination of the nature of the tasks.

The final value of g(n, E, ∆I,R) is given by Equation (5),

due to space limitations we will not discuss the derivation

of g(n, E, ∆I,R) in detail in this paper. The periods for the

task set are shown in Table 1.

Figure 3. Leader Task Processing Graph

n is the number of robots and ∆t is the time interval be-

tween sending a message to the followers and receiving the

reply. ∆t was determined experimentally to be 67ms.

g(n, E, ∆I,R) = escan + ehough

+ n · (erecv + esend + eestimate) + ∆t + esched

(5)

Substituting for ehough from Equation (1) we get Equa-

tion (6)

g(n, E, ∆I, R) = escan + π · r2
H · n · ecal

+ min(361, k · n) · etrans

+ n · (erecv + esend + eestimate) + ∆t + esched

(6)

The processing window and the period for the Command

task are derived using Equation 14 in [19]

w ≥
g(n, E, ∆I,R) +

∑

Tj∈Thp
ej

1 −
∑

Tj∈Thp

ej

pj

(7)

Substituting for g(n, E, ∆I,R) from Equation (6) and for
ej and pj from Table 1 in Equation (7) we can calculate the
lower bound on w. Using the method described in [19] to
assign periods for tasks in Tlp we can use pcmd = 2w and
solve Equation in [19]. Thus

2 · w ≥
∑

Tj∈Tlp

ej +

⌈

2 · w

w

⌉

· g(n, E, ∆I, R) +
∑

Tj∈Thp

⌈

2 · w

pj

⌉

· ej

(8)

w ≥
1

2





∑

Tj∈Tlp

ej + 2 · g(n, E, ∆I, R) +
∑

Tj∈Thp

⌈

2 · w

pj

⌉

· ej





(9)

Substituting 2·w
pj

+ 1 for
⌈

2·w
pj

⌉

we get

w ≥
1

2

∑

Tj∈Tlp

ej+g(n, E, ∆I,R)+
1

2

∑

Tj∈Thp

(

2 · w

pj

+ 1

)

· ej

(10)

3784

Task Task Set Execution Time e (ms) Period p (ms) Deadline d (ms)

Dead Reckoning Thp edr = 5 pdr = 40 40

Scan Tw escan = 106 w w

Localization Tw ehough = π · r2

H · n · ecal + min(361, k · n) · etrans w w

Orientation Estimation Tw eestimate = 1 w w

Communication Send Tw esend = 2 w w

Communication Receive Tw erecv = 1 w w

Command Tlp ecmd = 25 pcmd = 2w 2w

Table 1. Task parameters

Solving for w we get Equation (11)

w ≥

1

2

∑

Tj∈Tlp,Thp
ej + g(n, E, ∆I,R)

1 −
∑

Tj∈Thp

ej

pj

(11)

3.2 Deriving Upper Bounds on Processing Win­
dows

Robot group motion, localization and error correction

all impose upper bounds on the processing window for the

leader. The motion of the robot group imposes two bounds

on the processing window, bearing angle bound and separa-

tion bound. The localization of the followers by the leader

robot imposes the localization bound. And the error cor-

rection imposes the path diversion bound on the processing

window. Next we drive these bounds.

Figure 4. Leader­Follower Kinematics

Localization bound: The localization bound comes

from the use of the Hough transform to localize followers

as explained in the task descriptions. In order to track the

followers and distinguish them from each other the next fol-

lower position should be within the Hough Transform win-

dow. This is because the previous follower position is used

as the center for the Hough Transform window. Therefore

to be able to localize the followers, the relative separation

∆ρ from the leader must be less or equal to Hough Trans-

form window radius rH . rH is set to the follower radius rF .

This is because the followers are circular, and therefore it is

not possible for another follower to be within a distance less

than rF . Thus,

‖ ∆ρ ‖ < rH (12)

‖ ~ρi − ~ρi−1 ‖ < rH (13)

‖ ∆ρ ‖ can be calculated from kinematic analysis [12] ac-

cording to Equation (14)

‖ ∆ρ ‖=
√

ρ2
i + ρ2

i−1
− 2ρiρi−1 cos(∆β) (14)

To simplify the problem, it is assumed that the separation

ρ ≥ 150cm, as in the worst case computation time of the lo-

calization task. Under this assumption, ∆β is small (.25

/150=0.167) and cos(∆β) = 0.9861, which is approxi-

mately equal to one. Thus the dominant factor affecting the

distance ‖ ∆ρ ‖ is the separation ρ . ‖ ∆ρ ‖ is approxi-

mated by Equation (15).

‖ ∆ρ ‖≈
√

ρ2
i + ρ2

i−1
− 2ρiρi−1 = |~ρi − ~ρi−1| (15)

|~ρi − ~ρi−1| can be calculated from Equation (16) where ρ̇ is

the separation velocity.

|~ρi − ~ρi−1| = |ρ̇|∆t (16)

The separation can be calculated from Equation (17) and the

change in time ∆t is equal to the processing window. Thus

Equation (18) is our final desired equation that we can use

to substitute in Equation (12), to calculate the bound on w.

Substituting for both ρ̇ and ∆t we get Equation (19)

ρ̇ = VF cos(θ + β) − VL cos(β) (17)

|~ρi − ~ρi−1| = |VF cos(θ + β) − VL cos(β)|w (18)

w ≤
rF

|VF cos(θ + β) − VL cos(β)|
(19)

Figure 5 shows and the leader at point XLi, YLi and the

follower at point XFi, YFi, after one processing window has

elapsed, the leader is at point XLi+1, YLi+1 and the fol-

lower is at point XFi+1, YFi+1. At point XFi+1, YFi+1 we

can see the relative separation ∆ρ, the position of the fol-

lower at point XFi, YFi relative to the follower position at

point XFi+1, YFi+1 denoted by XF
Li, Y

F
Li. Recall from

Section 3 that the Hough transform window center is at the

relative previous follower position. Therefore the Hough

Transform window is centered at XF
Li, Y

F
Li as shown in

Figure 5.

Bearing Angle Bound: This bound is related to the

robot kinematics as shown in Figure 4. This bound keeps

this bearing angle β within a desired threshold. As long as

∆β ≤ Tβ . Where ∆β is the change in the bearing angle

during one processing window.

3785

Figure 5. Illustration of Localization bound parameters

We found experimentally that this bound is much higher

than other bounds and does not cause the system to enter

into a critical region of the operating space.

Separation Bound: This bound keeps the separation be-

tween the leader and any follower ρ within a desired thresh-

old Tρ. The threshold is a percentage of the desired sep-

aration ρd. For different situations during the robot group

motion, the desired separation might be different. There-

fore if the change in the actual separation ∆ρ is less or

equal to the percentage of the desired separation. Therefore

∆ρ ≤ Tρ · ρd. Approximating ∆ρ using the same method

we used for the localization bound we get Equation (20).

w ≤
Tρ · ρd

|VF cos(θ + β) − VL cos(β)|
(20)

Follower path diversion bound: This bound allows us

to control the smoothness follower path is. This bound

also helps prevent followers from diverting from the orig-

inal path due to error and noise. Therefore we always want

to keep the follower within a threshold Tǫ of the desired sep-

aration ρd on its desired path within one processing window.

The follower at most moves a distance of VF · w.

Therefore in case of an error the follower would still be in

the circle with radius VF · w as shown in Figure 6. Figure 6

shows how by using the path diversion bound we can limit

the diversion of follower of the original path due to an error

between any two consecutive follower path points within a

radius of VF ·w. Thus Equation (21) gives the path diversion

bound.

w ≤
Tǫ · ρd

VF

(21)

Figure 6. path diversion Illustration

3.3 Adjustment Algorithm

Because the system might likely enter the critical re-

gion of the operating space we developed an algorithm

for maintaining the system state in the safe operating

area. The algorithm chooses min(MSB1, ...,MSBn) as

the value for processing window as long as Equation (4) is

valid. We define the slack time as the difference between

min(MSB1, ...,MSBn) and wsch. Thus

tslack = min(MSB1, ...,MSBn) − wsch (22)

The slack time can be used for executing any soft deadline

or extra tasks running on the system that do not belong to

Tw,Thp or Tw.

The case of min(MSB1, ...,MSBn) < wsch leads to

an unpredictable and undesired behavior of the system. We

call this condition an overload condition, in an overload con-

dition the system enters the critical region of the operating

space as shown in Figure 2. Action must be taken to restore

the system to the safe operating space. This action must be

in one of two categories:

• Decrease wsch by changing one or more of the pa-

rameters of g(n, E, ∆I,R) such that wsch ≤ w ≤
min(MSB1, ...,MSBn).

• Increase min(MSB1, ...,MSBn) by changing one of

the parameters of min(MSB1, ...,MSBn) such that

wsch ≤ w ≤ min(MSB1, ...,MSBn).

In our case g(n, E, ∆I,R) is dependent on the num-

ber of followers n and the radius of the Hough Transform

window. Reducing the number of followers is not an op-

tion after the system is deployed and reducing the radius

of the Hough Transform window beyond rH will affect

the localization bound too. Therefore if the system en-

ters the critical region, the recovery is done by increas-

ing min(MSB1, ...,MSBn). First the type of MSB that

caused the system to enter the critical region is identified.

Because all of the MSBs are dependent on either VL or VF

or both and because we have control on these parameters,

we can adjust these parameters to move the system out of

the critical area and into a safe operating area again.

We always adjust VL because the EKF algorithm [12]

calculates the correct parameters for the follower once the

3786

leader velocity is determined to maintain the follower sepa-

ration behind the leader.

If the system enters the critical area then after determin-

ing the type of MSB that caused the condition, VL is cal-

culated as follows:

• If the MSB that caused the overload condition is the

bearing angle bound then VL is calculated from Equa-

tion (23).

VL =
1

sin(β)

(

ρ

(

Tβ

wsch

+ ωL

)

+ VF sin(β + θ)

)

(23)

• If the MSB that caused the overload condition is the

separation bound then VL is calculated from Equa-

tion (24).

VL =
1

cos(β)

(

VF sin(β + θ) −
Tρρd

wsch

)

(24)

• If the MSB that caused the overload condition is the

localization bound then VL is calculated from Equa-

tion (25).

VL =
1

cos(β)

(

VF sin(β + θ) −
rH

wsch

)

(25)

• If the MSB that caused the overload condition is the

path diversion bound then VL is calculated from Equa-

tion (26).

VL =
Tǫρd

wsch

(26)

Even though the path diversion bound is calculated us-

ing VF , we calculate VL and feed it to the EKF algo-

rithm to calculate VF .

After VL is calculated the processing window is set to

wsch and tslack to zero.

4 Experimental Results

Figure 7 shows the system setup with one leader and two

followers. Commands are sent to the leader through a re-

mote control station. The remote control station commands

are: move in a straight line, turn, turn direction, turn radius

and desired speed.

We demonstrate the need for the adjustment algorithm

through two cases that show the occurrence of an overload

condition when the system enters a critical area in the op-

erating space. The localization and separation bounds can

cause the system to enter a critical area when |VF cos(θ +
β) − VL cos(β)| becomes maximum. Because all the fol-

lower robots follow behind the leader robot, the range of

β is [90◦, 270◦]. The range of θ is [90◦, 270◦]. If VL and

VF are constants then using two variable calculus [13] we

can find that the maximum of |VF cos(θ + β) − VL cos(β)|
is

√

V 2
F + V 2

L which occurs at θ = ±90◦ and β =
180◦ arctan(VF /VL). The situation might arise when the

separation between the leader and the followers is large and

Figure 7. Robots and Setup

the path involves short or sharp turns for the leader. How-

ever if VF and VL are variable, the overload condition might

occur even without sharp turns.

We demonstrate how the overload situation arises and is

corrected with two experimental tests with one leader and

two followers.

4.1 Test 1: Closed Path, Smooth Turns

In this test the robot group travels in a closed path with

turn parameters, desired leader speed VLd = 25cm/s and

turn radius rt = 2m and desired separation ρ = 390cm.

Figure 8 shows the leader’s and followers’ actual path. Fig-

ure 9 shows the processing and slack time. Figure 10

shows the effective motion and sensor bounds on the pro-

cessing window that cause the system to enter critical re-

gions. We can see that processing window overlaps either

the min(MSB) and wsch depending on which region of the

operating space the system is in. We can see that wsch is

constant because none of the paraments for wsch changes

through the experiment. Figure 11 shows the desired and

actual leader velocity. We can see that the path diversion

bound and separation bound become less than the scheduli-

bilty bound at the sharper parts of the turns.

4.2 Test 2: Closed Path, Sharper Turns

In this test the robot group travels in a closed path with

turn parameters, desired leader speed VLd = 30cm/s and

turn radius rt = 1.2m and desired separation ρ = 325cm
1. Figure 12 shows the leader and followers actual path.

Figure 13 shows the processing and slack time. Figure 14

shows the effective bounds that cause the system to enter

critical regions. Figure 15 shows the desired and actual

leader velocity. We can see that the critical regions in this

test at the turns are larger than Test 1 because the turns are

sharper.

1This paper is accompanied by a video of part of Test 2. The file name

is Qadi using processing windows for Robot Group Control.mpg

3787

Figure 8. Test 1: Robots path

Figure 9. Test 1: Processing Window and Slack Time

Figure 10. Test 1: Effective Processing Window Bounds

5 Conclusion

We have adopted the analysis techniques provided in [18]

to a leader-follower robot group combination application to

calculate schedulibilty and motion and sensing bounds on

the processing window for the leader robot. We have pre-

sented an algorithm for dealing with overload conditions

Figure 11. Test 1: Desired and Actual Leader Velocity

Figure 12. Test 2: Robots path

Figure 13. Test 2: Processing Window and Slack Time

that occur when the follower robots make sharp turns be-

hind the leader robot. The algorithm guarantees a feasible

processing window such that all tasks meet their deadlines

and there is no unpredicted system behavior. The algorithm

also calculates slack time that can be available to use for any

non mission critical tasks. In case of an overload condition,

the algorithm identifies which bound caused the overload

3788

Figure 14. Test 2: Effective Processing Window Bounds

Figure 15. Test 2: Desired and Actual Leader Velocity

condition and adjusts the leader velocity in order to restore

the system to a safe state. Our experimental results show

that our method eliminated the critical operating regions and

kept the system in a safe operating. The same method can

be applied to different applications with different process-

ing capability. The derivation of the bounds will follow the

same guidelines and will depend on the application kinemat-

ics and requirements.

References

[1] T. Balch and R.C.Arkin. Real-time obstacle avoidance for fact mo-

bile robots. IEEE Transactions on Systems, Man and Cybernetics,

14(6):926–939, Sept.-Oct 1998.

[2] D. Ballard. Generalizing the hough transform to detect arbitrary

shapes.

[3] T. Barfoot and C. Clark. Motion planning for formations of mobile

robots. Robotics and Autonomous Systems, 46(2):65–78, February

2004.

[4] G. Beccari, S. Caselli, M. Reggiani, and F. Zanichelli. Rate modula-

tion of soft real-time tasks in autonomous robot control systems. In

Proceedings of the 11th Euromicro Conference on Real-Time Systems

ECRTS, pages 153–158, York, U.K., June 1999.

[5] L. Becker, E. Nett, S. Schemmer, and M. Gergeleit. Robust schedul-

ing team-robotics. Journal of Systems and Software, 7(1):3–16, 2005.

[6] A. Das, R. Fierro, V. Kumar, J. Ostrowski, J. Spletzer, and C. Taylor.

vision-based formation control framework. IEEE Transactions on

Robotics and Automation, 18(5):813–825, 2002.

[7] S. Farritor and M. Rentschier. Robotic highaway saftey marker.

In C. Mellish, editor, ASME International Mechanical Engineering

Congress and Exposition, Montreal, May 2002.

[8] R. Fierro, A. K. Das, V. Kumar, and J. Ostrowski. Hybrid control of

formations of robots. In Proceedings of IEEE International Confer-

ence on Robotics and Automation, volume 1, 2001.

[9] J. Fredslund and M. Mataric. A general algorithm for robot forma-

tions using local sensing and minimal communication. IEEE Trans-

actions on Robotics and Automation, 18:837–846, 2002.

[10] R. George and Y. Kanayama. A rate monotonic scheduler for the real-

time control of autonomous robots. In In Proceedings of the 1996

IEEE International Conference on Robotics and Automation, pages

239– 248, Minneapolis, MN, April 1996.

[11] H. Hassan, J. Simo, and A. Crespo. Enhancing the flexibility and

the quality of service of autonomous mobile robotic applications. In

Proceedings of the 14th Euromicro Conference on Real-Time Systems

ECRTS, 2002.

[12] J. Huang. Localization and Follow-The-Leader Control of A Het-

erogeneous Group of Mobile Robots. PhD thesis, University of

Nebraska-Lincoln, May 2007.

[13] R. Larson, B. Edwards, and R. Hostetler. Calculus. McDougal Lit-

tell/Houghton Mifflin, June 2001.

[14] M. Lewis and K.-H. Tan. High precision formation control of mobile

robots using virtual structures. Autonomous Robots, 4(4):387–403,

1997.

[15] J. Liu. Real-time Systems. Prentice-Hall, 2000.

[16] L. E. Parker, B. Kannan, F. Tang, and M. Bailey. Tightly-coupled

navigation assistance in heterogeneous multi-robot teams. In Pro-

ceedings of the IEEE International Conference on Intelligent Robots

and Systems, pages 157–162, Sendai, Japan, 2004.

[17] M. Piaggio, A. Sgorbissa, and R. Zaccaria. Preemptive versus

non-preemptive real time scheduling in intelligent mobile robotics.

Journal of Experimental and Theoretical Artificial Intelligence,

12(2):235–245, September-October 2000.

[18] A. Qadi, S. Goddard, J. Huang, and S. Farritor. Dynamic speed and

sensor rate adjustement for mobile robotic systems. In Proceedings

of The 19th Euromicro Conference on Real-Time Systems, pages 239–

248, Pisa, Italy, July 2007.

[19] A. Qadi, S. Goddard, J. Huang, and S. Farritor. Modelling computa-

tional requirements of mobile robotic systems using zones and pro-

cessing windows. Technical Report TR-UNL-CSE-2007-0016, Uni-

veristy Of Nebraska-Lincoln, Depratement of Computer Science and

Engineering, September 2007.

[20] J. Shi, S. Goddard, A. Lal, and S.Farritor. A real-time model for the

robotic highway safety marker system. In Proceedings of the 10th

IEEE Real-Time and Embedded Technology and Application Sympo-

sium, pages 331–440, Toronto, CA, May 2004.

[21] R. Vidal, O. Shakernia, and S. Sastry. Formation control of non-

holonomic mobile robots with omnidirectional visual servoing and

motion segmentation. In IEEE International Conference on Robotics

and Automation, pages 584–589, Taipei, Taiwan, 2003.

[22] M. Wargui, M. Tadjine, and A. Rachid. A scheduling approach

for decentralized mobile robot control. In Proceedings of the 1997

IEEE/RSJ International Conference on system Intelligent Robots and

Systems, pages 1138–1143, September 1997.

[23] M. Zaera., M. Esteve, C. Palau, J. Guerri, F. Martineza, and P. de Cor-

doba. Real-time scheduling and guidance of mobile robots on factory

floors using monte carlo methods under windows nt. In Proceedings

of 8th IEEE International Conference on Emerging Technologies and

Factory Automation, pages 67–74, 2001.

3789

