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Abstract— The object caging problem focuses on designing
a formation of fingers that keeps an object within a bounded
space without immobilizing it. This paper addresses the prob-
lem of designing such formation for object represented by
a polytope in any finite dimensional workspace and for any
specified number of pointed finger. Our goal is to characterize
all the caging sets, each of which corresponds to a largest
connected set of initial formations of fingers guaranteed to
cage the object, up to maintaining a certain class of real-valued
measurement induced by the whole fingers’ formation below a
critical value. In our previous works, such measurement is sim-
ply the distance between two fingers (the formation). We found
that it is possible to apply the framework based on graph search
from the previous works to broader classes of measurements. In
this paper, we introduce two of measurements, called dispersion
and concentration and propose a generalized approach to query
and to report all caging sets with respect to a given dispersion
or concentration.

I. INTRODUCTION

Originally, the caging problem was posed by Kuperberg
in [1] as a problem of designing an algorithm for finding a
formation of points that prevents a polygon from moving
arbitrarily far from a position. In the past few decades,
the concept of caging has been applied to a number of
manipulation and related problems such as transportation
using mobile robots, part feeding, and grasping [2].

A number of works have proposed solutions for caging
problems with different workspace, finger types, caging
methods used, number of fingers in the system, and con-
strains imposed on the object,. Rimon and Blake [3] applied
the stratified Morse theory to solve the problem of caging
an object in the plane with 1-DOF two-fingers gripper and
introduced the notion of caging set (also known as capture
region [4]), a set of system configurations (e.g., finger
formation) that can prevent the object from escaping. They
proposed a solution applies to general planar objects, either
polygonal or curved by employing numerical computations.
Pipattanasomporn and Sudsang [5], Vahedi and Stappen [6]
have independently developed O(n2 log n) algorithms for
characterizing all two-finger squeezing and stretching cage
sets of a polygon with n vertices. They also provided data
structures for querying whether a given finger placement
forms a cage in O(log n). Recently, the former group to-
gether with Vongmasa [7] extended the previous algorithm to
three dimensions while the latter group [8] further developed
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an approach to cage a convex object with three fingers in two
dimensions.

In two finger squeezing or stretching caging, one could
establish a cage via setting up a certain finger formation
on two opposite concave sections and maintain the distance
between the fingers, preventing them from moving too far
apart (for squeezing caging) or too close to each other (for
stretching caging). In this paper, we propose a solution to
object caging problem given any number of controllable
point fingers by extending the idea of caging by maintaining
the distance between two fingers to caging by maintaining
a real-valued measurement induced by the whole formation
of fingers. It can be shown that keeping such measurement
below an appropriate value after setting up the formations
appropriately guarantees to block the object from escaping,
caging the object. We call the stated measurement dispersion
which is a characteristic of the whole formation of fingers
that only depends on the relative finger positions within the
formation. The more loose the formation of fingers is, the
larger its dispersion. Naturally, the following functions pro-
vide behaviors meeting our criteria: (a) the sum of squared
distance of adjacent fingers in a circular formation: d2, and
(b) the maximum squared distance of adjacent fingers in a
circular formation: d∞, i.e.

d2(x) 7→ ‖xφ − x1‖2 + ‖x1 − x2‖2 + ... + ‖xφ−1 − xφ‖2,

d∞(x) 7→ sup{‖xφ − x1‖2, ‖x1 − x2‖2, ..., ‖xφ−1 − xφ‖2};

where x = (x1,x2, ...,xφ) is the formation of φ fingers and
xi denotes the position of the i-th finger in such formation.
Controlling multiple fingers with some dispersion such as d∞
allows each finger (or robots) to easily maintain the cage by
keeping the distances to its adjacent fellows below a critical
value.

This paper presents a solution to such caging problem.
The solution generalizes that of our previous works [5] and
[7], furthermore applicable to a system any given number
of fingers in any dimensional workspace. We propose a) a
framework for characterizing all caging sets with respect to
a given measurement meeting the criteria along with b) a
method to query which caging set corresponds to a given
formation if one exists. Like our previous works, instead of
performing a search directly on the configuration space, we
construct a certain class of roadmap, called caging roadmap,
designed to incorporate every formation that potentially leads
to a distinct caging formation and perform a graph search
algorithm on such roadmap.

The rest of the paper is organized as follows. In the next
section, we state our assumptions and review necessary back-
grounds concerning the caging sets, the critical measurement,
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and the paths as these are fundamental tools for analyzing
and developing caging roadmaps in Section III. A general
framework for constructing caging roadmaps, along with an
algorithm to report all caging sets with respect to a dispersion
or a concentration and to query such caging sets are given
in Section IV. Finally, in Section V, we conclude the paper
with some discussion and future works.

II. ASSUMPTIONS AND DEFINITIONS

We assume that the object P is a rigid body without
internal inaccessible region such that P can be represented
by a bounded simplicial η-complex, P ⊆ Rη (implying
that Rη\P is a connected component), and all φ fingers in
the system are dimensionless points. We are interested in
finding a condition that guarantees to prevent the object from
moving arbitrarily far from the fingers by controlling the
dispersion of fingers. For example, suppose that we initially
setup a finger formation that immobilizes an object as shown
in Fig. 1(i). The object will remain caged as long as the
formation dispersion is maintained below some critical value
δ. If the formation dispersion is allowed to grow indefinitely,
at some point where the dispersion gets larger than the
critical value, the object is no longer caged – possibly be
brought arbitrarily far from the fingers without penetrating
any of them. Alternatively, an object may be caged by
maintaining the dispersion greater than some critical value,
or maintaining concentration of fingers below the value if
the fingers start at an appropriate formation (see Fig. 1(ii)).
Given an initial formation, a measurement f is used in
limiting possible formations so as to cage an object. All
possible formations (relative to object’s frame of reference)
that appear as the object is caged by limiting the possible
formation’s measurement below a critical value comprises a
caging set with respect to the measurement f . We aim to
identify all of such distinct caging sets and evaluate their
critical values given a measurement f , a dispersion or a
concentration. It is noted that the union of all caging sets
with respect to a measurement is generally a subset of the
union of all caging sets, following the definition of caging
set in [3]. It has been shown in [6] that for a system with
two-fingers, caging sets w.r.t. d2 and −d2 are all the caging
sets while this is not true when more fingers involved.

We define dispersion as a convex function that maps from
Rηφ (a finger formation) to R such that the measurement
is preserved under rigid transformations of formation i.e.
given a dispersion d, for any (x1, x2, ..., xφ) ∈ Rηφ such
that xi ∈ Rη, and for any rigid transformation T : Rη → Rη,
d(x1,x2, ...,xφ) = d(T (x1), T (x2, ..., T (xφ)). Both d2 and
d∞, exemplified in the introduction, are also convex function
since addition and supremum operators preserve convexity
and every squared norm of formation difference is a convex
function due to its hessian positive semi-definiteness [9].
In addition, they are invariant to rigid transformations of
formation since they only depends on the distances between
fingers preserved over rigid transformations. We also define
concentration in the same manner except that it is a concave
function; for example, −d2 and −d∞ are both concentration

immobilizing
non-cagingcagingcaging & critical

more

concentration

(i)

(ii)

less dispersion

moreless

Fig. 1. Classification of formations by (i) dispersion and (ii) concentration.

functions. In this paper, we deal with caging by maintaining
dispersion and concentration which are resemble to squeez-
ing and stretching caging, respectively. For convenience, let
us refer to dispersion and concentration as f∨ and f∧. If
the context applies to both dispersion and concentration, we
usually drop the subscripts from f∨ and f∧, i.e. f , called
measurement.

Let us consider the entire system in the object’s frame of
reference. Under this frame, the object is fixed near the origin
and whether the object is caged depends solely on the ability
to moves the fingers arbitrarily far from the object. For the
object to escape from a formation of fingers, an unbounded
path representing such escape motion of fingers must exist.
Here, we can define the workspace W ⊆ Rη as a set of points
not occupied by open(P), and the configuration space as
C = Wφ ⊆ Rηφ, the set of all valid finger formations. The
configuration space C is connected since W is connected.
We say that ζ is a path on X ⊆ C if ζ is a continuous
function that maps an interval of R to X. For convenience,
we assume that the domain of a path is the open interval
(0, 1) and refer to its initial and final point as ζ(0) and ζ(1),
respectively, without using the limit operators. We list the
notations related to paths that will be used in the paper in
the following paragraph.

A path is said to be bounded, if and only if, its image
is bounded. Otherwise, the path is unbounded. We can con-
catenate paths, or conversely subdivide a path into subpaths,
say: ζ = ζ1ζ2...ζm, such that the end point of ζk approaches
the starting point of ζk+1 for any positive integer k < m.
We define the measurement of a path ζ with respect to a
measurement f as F (ζ) ≡ sup f(ζ((0, 1))), i.e. the greatest
measurement among all formations in the image of ζ Again,
F may be referred as F∨ or F∧ when f is specified as f∨
or f∧, respectively. We say that ζ is non-increasing, if and
only if, f(ζ) is non-increasing and F (ζ) = f(ζ(0)). While
ζ is non-decreasing, if and only if, f(ζ) is non-decreasing
and F (ζ) = f(ζ(1)). The reverse of a non-increasing path ζ
is defined as ζ̄ such that ζ̄(t) = ζ(1− t) is non-decreasing
and vice versa. Given paths ζ and ξ that connect the same
pair of end points, ζ is said to dominate ξ, if and only if,
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Fig. 2. (i) an example of a two dimensional configuration space C (shown as a shaded region) where v1, v2, ..., v12 are its 0-faces. (ii) and (iii) the
structure induced from C = C1 ∪ C2 ∪ C3. In this situation, observe that D1

2 and D1
3 are exactly E2

6 and E7
11, respectively.

F (ζ) ≤ F (ξ). A path ζ on X ⊆ Rηφ is called optimal on
X, if and only if, for every path ξ on X that dominates ζ,
the path ζ also dominates ξ.

Since a path ζ that starts at x ∈ C such that F (ζ) = δ
corresponds to a motion that starts from an initial formation
x such that the formation measurement is kept below δ
during the entire motion, the existence of some unbounded
path ζ from x such that F (ζ) = f(x) implies that we
cannot guarantee to cage the object using x as an initial
formation. (the dispersion at the initial formation is already
large enough for the object to escape). Let ΓX(x) be the set
of all unbounded paths on X that begins at x, and f∗(x) be
the least measurement among the unbounded paths from x
i.e. f∗(x) ≡ inf{F (ΓC(x))}.

Definition 1: The set of all non-caging, and the set of all
caging formations in C with respect to f are:

• C− ≡ {x ∈ C : f∗(x) = f(x)}, and
• C+ ≡ {x ∈ C : f∗(x) > f(x)}, respectively,

such that f∗(x) is the critical measurement when x ∈ C+.
Observe from the definition that (i) f∗(x) ≥ f(x) for any
x ∈ C, and the compliment of C− is C+, (ii) C+ must be
bounded. If C+ is unbounded, then there exists an unbounded
path from x that lies entirely in C+. Let y be the point on this
path with f(y) equal to the measurement of this path. We
then have f∗(y) = f(y) contradicting that y is in C+. This
fact allows us to crop the workspace W with a sufficiently
large η-cube B such that every formation outside and on
the boundary of B is non-caging (the size of B depends on
the measurement). Let us denote the compact version of the
configuration space by C ≡ Wφ where W ≡ W ∩ B, and
let Γ′X(x) be the set of all paths on X from x to some
non-caging formation. It is possible to evaluate the critical
measurement for an initial formation x ∈ C by identifying
a path with least measurement in Γ′C(x) instead of ΓC(x).

Lemma 1: f∗(x) = f ′(x) ≡ inf{F (Γ′C(x))}, ∀x ∈ C.
Proof: Suppose that f ′(x) < f∗(x), there must be a

path ζ in Γ′C(x) from x to y ∈ C− such that F (ζ) < f∗(x).
However, there exists an unbounded path ξ from y with
F (ξ) = f(y). The path ζξ is in ΓC(x) but F (ζξ) = F (ζ) <
f∗(x), this is a contradiction.

In case that f ′(x) > f∗(x), there must be an unbounded
path ζ in ΓC(x) from x such that F (ζ) < f ′(x). Since C+ is
bounded, some non-caging formation y must lie on the path
ζ. Therefore, ζ = αβ such that β is an unbounded path
from y. Since y is non-caging, it follows that α ∈ Γ′C(x)
but F (α) = F (ζ) < f ′(x), this is a contradiction.

Let ∼ be a binary relationship on C+ such that x ∼ y, if

and only if, f∗(x) = f∗(y) and x,y are connected by a path
ζ with F (ζ) < f∗(x). Obviously, ∼ forms an equivalent
relation on C+, partitioning C+ into disjoint subsets such
that every formation in the same subset has the same critical
measurement. All of such disjoint subsets are all distinct
caging sets with respect to f in the system.

In the next section, we propose the caging roadmap
[10], overlaid on C. This caging roadmap not only helps
us characterize all caging sets and determine their critical
measurements but also holds sufficient information for iden-
tifying which caging set contains a given formation.

III. ROADMAPS FOR OBJECT CAGING

A caging roadmap consists of dimensionless components
in C, called nodes, and their paths on C that satisfies:

• accessibility and departability: each point (finger for-
mation) in C connects to a node in the roadmap by
some non-increasing path in C,

• connectivity: for each path ζ on C connecting a pair
of nodes, there exists a path ζ′ on the roadmap that
dominates ζ.

Let M ≡ V ∪ E where Accessibility and departability
ensures that every point in the configuration can access some
node in V with a non-increasing path on C. Together with
connectivity, the following fact holds:

Proposition 1: For any path ζ on C, it is possible to
construct a path ζ′ ≡ αβγ that dominates ζ such that:

• α(1) ∈ M, α is non-increasing,
• β lies on M,
• γ(0) ∈ M, γ is non-decreasing.

Proof: By accessibility and departability, there exists
a non-increasing path α from ζ(0) to u ∈ V and a non-
increasing path γ̄ from ζ(1) to v ∈ V. By connectivity,
β on M that dominates ᾱζγ̄ exists. This means that:
F (β) ≤ F (ᾱζγ̄). Since F (ᾱ) = f(ζ(0)) ≤ F (ζ) and
F (γ̄) = f(ζ(1)) ≤ F (ζ), it follows that F (β) ≤ F (ζ).
Therefore, ζ′ ≡ αβγ dominates ζ.
When ζ is a path on C from a node to some non-caging
formation, the path α and γ vanish. The latter also vanishes
since the non-caging formation is connected to a node by
a non-increasing path and a formation that connects to a
non-caging formation by a non-increasing path must be non-
caging, implied from the definition. Therefore:

Corollary 1: f∗(x) = inf{F (Γ′M(x))}, ∀x ∈ V.
Our approach to constructing caging roadmaps M∨ ≡

V∨ ∪ E∨ and M∧ ≡ V∧ ∪ E∧ for general f∨ and f∧,
respectively, operates on a subcover {C1, C2, ...} of the
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configuration space (i.e. C =
⋃

i Ci, see Fig. 2(i), for
example) such that C1, C2, ... are convex (ηφ)-faces. We
refer to the faces belonging to C1, C2, ... as: (a) v1,v2, ...,
the 0-faces, which are also 0-faces of C (see Fig. 2(i)), (b)
Dj

i , the (ηφ−1)-face which is an intersection of adjacent Ci

and Cj (see Fig. 2(ii)), and (c) Ej
i , the 1-face which links

a pair of 0-faces: vi and vj (see Fig. 2(iii)). In those faces,
we identify nodes (i.e. the local minimum points of f ) and
paths linking between node pairs. Yet, the strategy employed
depends on the applied measurement.

A. Convex Measurement

When the measurement function is convex, say f∨, it can
be implied from Jensen’s inequality that:

Lemma 2: For any point x in a convex set C ⊆ Rηφ and
any minimum point u of f∨ in C (f∨(u) = inf f∨(C)), the
path ζ(t) = (1− t)x + tu lies on C and is non-increasing.

Proof: Since C is convex and ζ is a straight line; thus,
lies in C. Suppose that f∨(ζ(t0)) < f∨(ζ(t1)) for some 0 ≤
t0 < t1 ≤ 1. But it can be implied from Jensen’s inequality
that the measurement at ζ(t1) between ζ(t0) and ζ(1) = u,
is not greater than f∨(ζ(t0)), i.e. f∨(ζ(t1)) ≤ f∨(ζ(t0)),
because f∨(u) ≤ f∨(ζ(t0)), a contradiction.

Given a minimum point ui in Ci, f∨(ui) = inf f∨(Ci),
it follows from the previous lemma that:

Corollary 2: V∨ ≡ {u1,u2, ...} satisfies accessibility
and departability.

Observe that an image of every path on Ci ∪Cj from ui

to uj must contain at least one point in Dj
i or the path is not

continuous. Let us denote by wj
i a minimum point of f∨ in

Dj
i , f∨(wj

i ) = inf f∨(Dj
i ). Clearly, measurement of paths

passing Ci∩Cj cannot be lower than that of wj
i . By Lemma

2, there exists a non-increasing path ζ from wj
i to ui and

a non-increasing path ξ from wj
i to uj since wj

i is in both
Ci and Cj . Concatenating these paths yields an optimal path
εj

i ≡ ζ̄ξ on Ci ∪ Cj because F∨(εj
i ) = F∨(ζ̄) = F∨(ξ) =

f∨(wj
i ). These optimal paths serve as building blocks for

constructing a path connecting any two nodes in V. Given
a path in C, it is possible subdivide it into subpaths, each
of which passes some Dj

i and is in the union of adjacent
convex sets, say Ci ∪ Cj . We replace each subpath passing
Dj

i with εj
i so that the new path results in a concatenation of

the optimal paths. Obviously the new path dominates the old
one. Consequently, we define E∨ ≡

⋃
i,j εj

i ([0, 1]) so that:
Lemma 3: M∨ satisfies connectivity.
It follows from Corollary 2 and Lemma 3 that:
Theorem 1: M∨ is a caging roadmap.

B. Concave Measurement

Unlike convex measurement, minimum points of concave
measurement f∧ tends to be at 0-faces of the convex faces
in the subcover, see Fig. 3 for example. Let us denote the
δ-superlevel set of the concave function f∧ by S(δ) ≡ {x ∈
Rηφ : f∧(x) > δ}, S(δ) is convex for any δ, see [9].

Lemma 4: Any point x in a convex set C ⊆ Rηφ is
connected to some extreme point of C by a non-increasing
path on C.

C1

v1 v2

v3v4

(0, 0)

f∧(x, y) = −1

f∧(x, y) = −4

f∧(x, y) = −9
x

y

1

2

3 p∧

f̂∧(p∧) = −4

Fig. 3. In this example, C1 is in the subcover of a two-dimensional C, and
the concave measurement is defined as f∧(x, y) = −(x2 + y2). C1 has
four extreme points v1, v2, v3, and v4. Observe that one possible optimal
path on C1 from v1 to v4 is a path ζ∧ that moves along the straight line
segments v1v2, v2v3 and then v3v4.

Proof: Let H be a support hyperplane of S(f∧(x)) at
x. We denote H+ the closed halfspace that does not contain
S(f∧(x)) and is bounded by H . Clearly, some extreme point
of C, say v, is in H+ otherwise x is not in the convex set
C. We then have a straight line path on H+ from x to the
extreme point v: ζ(t) = (1 − t)x + tv; since C is convex.
Suppose for a contradiction that f∨(ζ(t0)) < f∨(ζ(t1)) for
some 0 ≤ t0 < t1 ≤ 1. However, it can be implied from
Jensen’s inequality that the measurement at the point ζ(t0),
which is between ζ(t1) and x, is not less than f∧(ζ(t1)), i.e.
f∧(ζ(t0)) ≥ f∧(ζ(t1)), because ζ(t1) ∈ H+, f∧(ζ(t1)) ≤
f∧(x). This is a contradiction.

When the convex set C in the previously stated lemma
is a polytope, all of the extreme points of C corresponds to
some of its 0-faces. Hence,

Corollary 3: V∧ ≡ {v1,v2, ...} satisfies accessibility and
departability.

Let us return to the example in Fig. 3. It can be observed
that for any pair of 0-faces of C1 (v1 and v2, for instance)
we can find an path that is optimal on C1 and is entirely on
1-faces of C1 (like ζ∧). This motivates us to include, in E∧
all 1-faces of all convex faces in the subcover, E∧ ≡

⋃
i,j Ej

i .
To show that M∧ satisfies connectivity, we construct a

path ζ(∗) that lies on the roadmap and dominates an arbitrary
path ζ(0) on C connecting two 0-faces of C. Prior to the
construction of ζ(∗), we gradually construct a new path ζ(1)

based on ζ(0) such that ζ(1) dominates ζ(0) and the image
of ζ(1) “gets closer” to the roadmap, and from ζ(1) we
repeat the same process to evolve the path until we obtain
a path ζ(∗) which lies on the roadmap and dominates all of
its predecessors ζ(0), ζ(1), .... In each step in the evolution
process, the evolving path gets closer to the roadmap because
of the following fact.

Lemma 5: Let C,S be convex sets such that C is
bounded, dim(C) > 1 and S is open. For any path ζ on
C\S containing points in ∂C (affine boundary of C), some
path ζ′ on (∂C)\S also contains those points.

Proof: Let o be defined as follows: if C ∩S 6= ∅, o is
an interior point of C ∩ S; otherwise, o is an interior point
of C but not in the image of ζ. We denote ζ′(t) ∈ ∂C by a
projection of ζ(t) from o, that is: o, ζ(t), and ζ′(t) are co-
linear points. Obviously, ζ′ is a path because C is convex.
Since S is convex and ζ(t) that lies between ζ′(t) and o is
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Fig. 4. In this example, we use the same concave measurement as in
previous one, f∧(x, y) = −(x2 + y2). Shown in (i) as shaded region is a
two-dimensional K(i) = K
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3 , there lies the path ζ(i) =

ζ
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2 ζ
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3 such that F∧(ζ) = δ, (ii) the paths ζ(i+1) = ξ

(i)
1 ξ

(i)
2 ξ

(i)
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such that ξ
(i)
k dominates ᾱ

(i)
k ζ

(i)
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(i)
k for k = 1, 2, 3 lies on K(i+1) =

∂K
(i)
1 ∪ ∂K

(i)
2 ∪ ∂K

(i)
3 and dominates ζ(i).

not in S for any t, ζ′ lies on (∂C)\S.
Since S(F∧(ζ)) is an open convex set for any path ζ and

by Lemma 5, it follows that:
Corollary 4: For a path ζ on C ⊆ Rηφ connecting points

on ∂C, there exists a path ζ′ on ∂C that dominates ζ and
connecting the same pair of points.

In an evolution step, we evolve the path ζ(i) on a κ-
dimensional structure K(i) to ζ(i+1) on a (κ−1)-dimensional
structure K(i+1). Let K(i) =

⋃
j K

(i)
j where K

(i)
j is a

convex κ-face comprising a subcover of K(i). It is possible to
decompose the path ζ(i) into subpaths: ζ(i) = ζ

(i)
1 ζ

(i)
2 ζ

(i)
3 ...;

such that each ζ
(i)
k is inside K

(i)
s(k) (s represents a sequence

of adjacent convex faces in the subcover that ζ(i) traverses
through). Applying Lemma 4, on ζ

(i)
k , we connect the end

points of ζ
(i)
k : say ζ

(i)
k (0) and ζ

(i)
k (1); with non-increasing

paths, namely α
(i)
k and β

(i)
k , to some 0-faces of K

(i)
s(k) (see

Figure 4(i)). By Corollary 4, it is possible to find a path,
say ξ

(i)
k , that lies on ∂K

(i)
s(k) and dominates ᾱ

(i)
k ζ

(i)
k β

(i)
k .

Concatenate each subpaths constructed this way to obtain
ζ(i+1) = ξ

(i)
1 ξ

(i)
2 ξ

(i)
3 ... that dominates ζ(i). Observe that

ζ(i+1) lies on a (κ − 1)-dimensional structure K(i+1) =⋃
k ∂K

(i)
s(k) (see Figure 4(ii)). This means that, in the next

step, each subpaths of ζ(i+1) will lie on some convex (κ−1)-
face in the subcover of K(i+1). The path evolution process
continues until we obtain a path that lies on a 1-dimensional
structure. Since we intend to evolve the path initially on
K(0) = C whose subcover is given by {C1, C2, ...}, E∧ is
defined to contain only 1-faces of C, that is: E∧ ≡

⋃
i,j Ej

i .
Lemma 6: M∧ satisfies connectivity.

Proof: Given a path ζ(0) connecting any two nodes.
We apply the aforesaid path evolution process in such a way
that, at i-th step of the process (0 ≤ i < ηφ), the subcover
of K(i) contains only (ηφ − i)-faces of C1, C2, ... where
K(0) = C =

⋃
i Ci. After the process ends, we obtain a path

ζ(ηφ−1) that dominates ζ(0) and lies on 1-faces of C1, C2, ...
which are members of E∧.

Theorem 2: M∧ is a caging roadmap.

IV. ALGORITHMS

The process of characterizing all caging sets and determin-
ing all their critical values begins with constructing a caging

roadmap of C for a given W, an instance of a workspace and
φ the number of fingers. Then, we compute all the critical
measurements for each node and partition them into caging
sets by running an algorithm resemble to Dijkstra’s shortest
path to propagate the critical measurements throughout the
roadmap. Such process is explained in detail in the first two
subsections, while the last one concerns how to determine
whether a formation is in what caging set.

A. Roadmap Construction

Construction of both M∨ and M∧ requires the subcover
{C1, C2, ...} of C such that C1, C2, ... are convex and their
0-faces are 0-faces of C. One can start from a subcover
of W obtained by decomposing W into convex η-faces
W1,W2, ... such that 0-faces of W1,W2, ... are 0-faces of
W i.e. the decomposition does not introduce new vertices.
Since C = Wφ, it follows that {C1, C2, ...} ≡ {W p(1)

1 ×
W

p(2)
2 × ... :

∑
j p(j) = φ}. This choice of subcover is valid

because cartesian products of convex sets produce a convex
set. In the implementation, efficient algorithms for convex
decomposition of W when dimension of W is two or three
are available [11], [12].

Construction of roadmap based on the subcover of C then
proceeds according to the definition of M∨ and M∧ stated
in the previous section. It can be observed that the amount
of 0, 1, (ηφ − 1), ηφ-faces of C implies that of nodes and
edges of the roadmaps. We then let X(z) =

∑η
i=0 x(i)zi be

the generating function of a complex structure X where x(i)
denotes the number of i-faces of X. Analogously, we have
C(z) =

∑ηφ
i=0 c(i)zi = W (z)φ = (

∑η
i=0 w(i)zi)φ, which

means that:
• |V∨| = c(ηφ) = w(η)φ,
• |E∨| = c(ηφ− 1) = φw(η)φ−1w(η − 1),
• |E∧| = c(1) = φw(0)φ−1w(1),
• |V∧| = c(0) = w(0)φ,
The roadmap structure corresponds to a graph structure

(V, E) where V ≡ {vi} and E ≡ {ej
i} are sets containing the

graph’s nodes and edges such that ej
i connects vi and vj . It is

not necessary to compute the exact coordinates of the nodes
nor the geometry of edges. What we need is just the min-
imal measurement required to traverse between end points
connected by a path on each ej

i , let us call this measurement
the cost of edge ej

i which denotes c(ej
i ). This is because

we are only interested in the critical measurements, not how
the fingers or object escapes. From the previous section, the
cost of an edge ej

i is F∨(εj
i ) = f∨(wj

i ) or supEj
i in case

of convex or concave measurement, respectively. We may
naively reduce the problem of locating each minimum point
to a convex optimization problem with convex or concave
objective function (the measurement function) and the linear
constraints (Dj

i or Ej
i ). This requires to solve at most |E| of

such problem instances.

B. Caging Sets and Critical Measurements

By Corollary 1, we propagate the critical measurements
throughout the graph, starting from non-caging nodes on
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∂(Bφ), see Section II, with the recurrence:

f∗(vi) = inf{sup{c(ej
i ), vj} : ej

i ∈ E}

The critical measurement propagation works like that in
the Dijkstra’s shortest path algorithm as in [7] i.e. pick a node
that is not visited and has the known least measurement to a
non-caging formation, visit it and set that least measurement
to the critical measurement, update its adjacent nodes with
new least measurement to a non-caging formation, repeat the
process until all nodes are visited. An additional disjoint set
data structure over the set V is required so as to characterize
the caging sets. Initially, every node in V belongs to a set.
As soon as node vi is visited, vi will be put in the same
caging set as its adjacent node vj if f∗(vi) = f∗(vj) and
the cost of the edge ej

i is less than the critical measurement
i.e. c(ej

i ) < f∗(vi). After the visit at each node, we perform
disjoint set union in O(log∗ |V|) at most the number of the
node’s adjacent edges. Since each edge connects two nodes,
this additional process requires O(|E| log∗ |V|) running time.

C. Caging Set Query

Query a caging set given an arbitrary formation x in C
answers the problem that such formation is either caging or
non-caging and its critical measurement if it is caging. To do
so, we identify a node in the roadmap that x connects to by
a non-increasing path. This can be achieved via identifying
some Ci containing x. In case of convex measurement,
the starting point is ui by Lemma 2. In case of concave
measurement, it is possible to pick any 0-face on H+ as
in Lemma 4 as a starting point. Since there exists a non-
increasing path to the starting point, say the node v ∈ V , the
critical measurement at x is f∗(x) = sup{f(x), f∗(v)}.
To identify such Ci we need a point location algorithm
preprocessed on W. Then, we query φ times for each finger
in the formation x to identify its containing convex sets
among W1,W2, .... The convex set Ci which results from
the product of all such convex sets is the container of x.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We proposed an approach designed to efficiently gather
and retrieve information required to perform object caging
via maintaining dispersion of the fingers. This approach
generalizes our previously proposed ones in [5] and [7],
extending the proposed algorithm to work with a system with
arbitrary many φ fingers in any η dimensional workspace.
The algorithm is based on constructing the caging roadmap
Such roadmap consists of nodes and paths carefully chosen
so as to incorporate all the distinct caging sets and facilitate
the query task.

B. Future Works

We intend to implement the algorithm to gain more
insight on the caging sets when the number of fingers are
large. We suspected that caging with dispersion only have
stable solutions (large caging sets, the difference between
the minimal and the critical measurement) at an amount

of fingers for a specific object. For example, three fingers
are sufficient to cage a Y-shaped object on a plane if their
dispersion (d2) is kept under a certain critical value (the three
fingers are at each concave section of the object). Adding
more fingers to the system does not provide any significantly
better solutions in this case. Observe that the caging sets of
the system with two fingers is a subset of that with three,
for example: two of the three fingers are at the same spot;
and three finger solutions are parts of four finger solutions,
and so on. When many fingers involve, the solutions are
mostly degenerated and if the non-degenerated exist, they are
likely to be unstable. Since in a system of more than two
fingers, caging sets with respect to the convex and concave
measurements are not all the caging sets. Roughly speaking,
more fingers introduce more strategies in caging i.e. we can
only either squeeze or stretch with two fingers; however,
with an additional finger, we can do both at the same time.
It remains open for further developing an algorithm to the
larger set of cages as in [3].
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