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Abstract— In this paper, we propose a new approach for
computing force-closure grasps of two-dimensional and three-
dimensional objects. Assuming n hard-finger contact with
Coulomb friction model and based on central axes of the grasp
wrench (i.e., force and torque), we develop a new necessary and
sufficient condition for n-finger grasps to achieve force-closure.
We demonstrate that a grasp is force-closure if and only if, its
wrench can generate any arbitrary central axis. According to
this condition, we reformulate the force-closure test as a linear
programming problem without computing the convex hull of the
primitive contact wrenches. Therefore, we present an efficient
algorithm for computing n-finger force-closure grasps. Finally,
we have implemented the proposed algorithm and verified its
efficiency through some examples.

Index Terms— multifingered robotic hand, force-closure
grasp, grasp optimization.

I. INTRODUCTION

SERVICE robots will be equipped with multifingered
hands in order to carry out everyday tasks with common

and often irregular shaped objects in human environment.
The grasp planning problem is to determine the position
of the contact points on the object surface, while satisfying
basic grasp properties. Force-closure is an important property
in multifingered robotic grasps [1], [2], [3]. Under a force-
closure grasp, any external wrench applied on the object can
be balanced by applying appropriate grasp forces with the
robotic hand at contact points.

In this paper, we focus on the problem of computing n-
finger force-closure grasps of arbitrary 2D and 3D objects.
Based on the grasp wrench central axes distribution, we
propose a general formulation of the force-closure test and
we present new force-closure algorithms.

II. RELATED WORKS
A grasp on an object is said to be force-closure if and

only if arbitrary forces and torques can be exerted on the
object through a set of contact points. Salisbury and Roth
[4] have proved that a necessary and sufficient condition
for force-closure is that the primitive contact wrenches
of contact forces positively span the entire wrench space.

Manuscript received September 10, 2007. This work was partially
conducted within the EU Integrated Project COGNIRON (the Cognitive
Companion) and funded by the European Commission Division FP6-IST
Future and Emerging Technologies under Contrat FP6-002020.

Belkacem bounab is with the Laboratory of Structure Mechanics of
Military Polytechnic School LMS-EMP, bp 17, 16111-Bordj El-Bahri,
Algeria, and with LAAS-CNRS of University of Toulouse, 7 Avenue du
Colonel Roche 31077-Toulouse, France (e-mail: belkacem.bounab@laas.fr).

Daniel Sidobre is with LAAS-CNRS of University of Toulouse, 7 Avenue
du Colonel Roche 31077-Toulouse, France (e-mail: daniel.sidobre@laas.fr).

Abdelouhab Zaatri is with Laboratory of Advanced Technology Applica-
tions, 25000-Constantine, Algeria (e-mail: zaatri@hotmail.com).

This condition is equivalent to the origin of wrench space
lying strictly inside the convex hull of the primitive con-
tact wrenches. Nguyen [5] demonstrated that non-marginal
equilibrium grasps achieve force-closure and presented a
geometrical algorithm for computing 2-finger force-closure
grasps. Ferrari and Canny [6] have developed an algorithm
for computing an optimal grasp. Ponce and Faverjon [7] pro-
posed several sufficient conditions for 3-finger equilibrium
grasps of planar object, and implemented an algorithm with
Gaussian elimination and linear programming methods. Jia-
Wei Li et al. [8] have proposed a geometric algorithm for
computing 3-finger force-closure 2D grasps. Their method
begins by processing friction cones using an operation called
disposition H to remove unnecessary regions of these cones.
Liu [9] has proposed an algorithm for computing all n-finger
force-closure grasps on polygonal object by transforming
the problem from R

3 to R
1. Recently, Sudsang and Phoka

[10] have developed another algorithm for 3-finger force-
closure grasp based on a technique for representing a friction
cone as a line segment in a dual plane. Due to complicated
geometry, there are only a few examples in the literature
for computing 3D force-closure grasps. Ponce et al. [11]
have illustrated that 4-finger force-closure grasps fall into
three classes: concurrent, pencil, and regulus grasps, and
developed techniques for computing them. Jia-Wei Li et
al. [12] have extended their work in [8] and proposed a
geometric algorithm for computing 3-finger force-closure
grasps. Liu [13] has developed a qualitative test algorithm of
n-finger force-closure grasp. He has reformulated the force-
closure condition given in [4] as a ray-shooting problem, and
he solved it by a linear programming method. In [14], Liu
et al have proposed an algorithm for searching force-closure
grasps of a 3D object represented by discrete points.

In this work, a general approach for computing n-finger
force-closure grasps is proposed. We demonstrate that a grasp
achieves force-closure if and only if, its wrench can generate
any arbitrary central axis. So, we reformulate the problem as
a linear programming one without computing the convex hull
of the primitive contact wrenches, which reduces the amount
of computation. This approach is applicable to 2D and 3D
grasps for any number of contacts points.

The rest of the paper is organized as follows, in Section III,
we present the background of grasp wrench and central axis.
Using some grasp examples, we illustrate the relationship
between central axes and force-closure concept. In Section
IV, we demonstrate the proposed equilibrium and force-
closure conditions. In Section V, we present the algorithm.
Finally, in Section VI we have implemented a comparative
study on polygonal and polyhedral objects.
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III. GRASP WRENCH AND CENTRAL AXIS
This section includes basic grasping terminologies and

then introduces the grasp wrench central axis. Further, we
analyze the relationship between these axes and the notion
of force-closure via 2D and 3D grasp examples.

A. Grasp Wrench
Suppose that n hard fingers are grasping a rigid object in

3D workspace (Fig.1-a). Assume that the Coulomb friction
exists at contact points ci. The static coefficient of friction
µ = tanα depends on materials which are in contact. To
ensure non-slipping between fingertips and object, the force
fi must lie inside the friction cone. So, grasp forces fi must
satisfy the following constraints

√

f 2
ix + f 2

iy 6 µ fiz ; fiz > 0 (1)

Where ( fix, fiy, fiz) denotes x,y and z components of the
grasp force fi w.r.t. the ith coordinate frame (xi,yi,zi), zi
is the normal to the surface object at contact point ci.

To simplify the problem by eliminating the nonlinear
constraints given by (1), each friction cone can be linearized
by a m-sided polyhedral convex cone (Fig.1-a). Under this
approximation, grasp force fi, expressed in the object coor-
dinate frame, is given by

fi =
m
∑
j=1

ai jvi j ; vi j = Tisi j , ai j > 0 (2)

The matrix Ti specifies the location of the ith coordinate
frame with respect to the object coordinate frame. si j denotes
the jth edge vector of the polyhedral convex cone expressed
in the ith coordinate frame, vectors si j are given by

si j =
(

µ cos(2π j/m), µ sin(2π j/m), 1
)T (3)

The wrench induced on the object by the grasp force fi,
denoted wi, applied at the origin of the object coordinate
frame o is given by

wi =

{

fi
τi/o = ci × fi

}

(4)

Substituting (2) into (4) yields

wi =
m
∑
j=1

ai jwi j (5)

Where wi j denotes the primitive contact wrenches of the ith
finger. They are given, w.r.t. the object coordinate frame, by

wi j =

{

vi j
ci × vi j

}

(6)

The net wrench applied by the hand on the grasped object
is the sum of all primitive contact wrenches. It is given by

Wg =
n
∑
i=1

m
∑
j=1

ai jwi j =

{

Fg
τg/o

}

(7)

The whole external wrench applied on the object is the
sum of the grasp wrench Wg, which is applied by the robotic

Fig. 1. Geometric interpretation of Coulomb friction model: (a) friction
cone approximation in 3D grasps, (b) 2D grasp.

hand, and the task wrench Wt which is required to achieve
task (perturbations are included). It is given by

Wext = Wg +Wt =

{

Fg
τg/o

}

+

{

Ft
τt/o

}

(8)

In 2D grasps (Fig.1-b), the grasp force fi must lie inside
the friction cone defined by two vectors vi1 and vi2. Ni is the
normal to the surface object at contact point ci. The force fi
can be represented as follows

fi = ai1vi1 +ai2vi2 (9)

Coefficients ai1 and ai2 are nonnegative constants.

B. Central Axis

The central axis of a wrench, is the geometric place of
the points with respect to which the wrench is reduced to a
force and a parallel torque. The central axis is also defined
by the following theorem [15].
Poinsot’s theorem: “Every collection of wrenches applied to
a rigid body is equivalent to a force applied along a fixed
axis and a torque around the same axis”.
Using this theorem, the central axis ∆g of the grasp wrench
Wg is defined as follows

∆g =

{ Fg×τg/o
‖Fg‖2 +λFg : i f Fg 6= 0

0+λτg/o : i f Fg = 0
: λ ∈ R (10)

The axis ∆g is a directed line through a point. For Fg 6= 0,
the axis is a line in the Fg direction going through point
I =

Fg×τg/o
‖Fg‖2 . For Fg = 0, the axis is in τg/o direction going

through the origin [15]. For Fg 6= 0, the torque around ∆g is

τg/I =
Fg · τg/o
‖ Fg ‖2 ·Fg (11)

In 2D grasps, for any given point on the grasp plane, the
torque and the force are orthogonal. When Fg 6= 0, the central
axes are in the grasp plane and from (11), the torque around
these axes is null. When Fg = 0, the torque τg/o is applied
around central axis which is normal to the plane.
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C. Central Axes of the Grasp Wrench

In order to illustrate the relationship between grasp central
axes and the force-closure concept, we draw central axes
of some 2D and 3D grasps [16]. We vary randomly the
amplitudes and the orientations of fingertips’ forces fi inside
the friction cones using (2) for 3D grasps and (9) for 2D ones.
Grasp wrench central axes are computed from (10). We show
some examples of force-closure and non-force-closure grasps
with their central axes distributions (Fig. 3 and Fig. 4).

Using an appropriate normalization of the central axes
equations, we ensure that all this axes are inside a unit circle
for 2D grasps (or sphere for the 3D case).

Fig. 2. (a) Central axis parameters in 2D grasp (b) Dual representation.

Fig. 3. Examples of 2D grasps and their central axes distributions.

For 2D grasps, we use variables θ1 and θ2 to draw central
axes. Thus, a central axis ∆g of equation y = ax+b in (x,y)
plane has a corresponding point (θ1,θ2) in the dual plane
(Θ1,Θ2). A and B are the intersection points with the unit
circle of origin o (Fig.2). The friction angle is set to 10◦ and
taking (θ2 > θ1), all central axes are presented in the upper
triangle of the (Θ1,Θ2) plane (Fig.2-b). In 3D workspace,
we use the coordinates of the two intersection points between
central axes and a unit sphere of origin o, to represent the
distribution of grasp central axes for 3D grasps (Fig. 4). The
friction angle is set to 20◦.

In 2D grasps (Fig. 3), the first example is a 2-finger grasp
(Fig. 3-a), it cannot balance external positive torques with
center lines passing through gray region. The representation
in dual plane shows that the grasp wrench cannot generate
all central axes configurations. Example shown in (Fig. 3-b)
is a 3-finger non-force-closure grasp, this grasp cannot resist
to negative torques applied in gray region. Hence, there is
no central axis passing through this region, which can be
clearly deduced from dual representation. In example shown
in (Fig. 3-c), the 4-fingers cannot produce negative torques in
gray region. When a grasp is force-closure (Fig. 3-d), grasp
wrench generates all possible central axes, we see in the dual
representation that the upper triangle is wholly colored.

Fig. 4. Examples of 3D grasps and their central axes distributions.
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For 3D grasps (Fig. 4), in the first example (Fig. 4-a),
the 3-fingered grasp is non-force-closure because the three
friction cones cannot all intersect with the plane formed by
contact points [12]. We observe that the grasp wrench cannot
generate all central axes. Example shown in (Fig. 4-b) is a
4-finger non-force-closure grasp. It cannot produce forces
along −Z axis and we see that this grasp cannot produce
all possible central axes. When a grasp is force-closure (Fig.
4-c), grasp wrench generates all central axes.

From the examples shown in Fig. 3 and Fig. 4, we
conclude that if a grasp is non-force-closure, its wrench
cannot generate all central axes. When the grasp achieves
force-closure, its wrench can generate any arbitrary central
axe. Hence, we can derive a force-closure test based on the
grasp wrench central axes independently of fingers’ number.

IV. FORCE-CLOSURE AND EQUILIBRIUM
CONDITIONS

In the present section, we demonstrate the proposed equi-
librium and the force-closure conditions.
A. Necessary and Sufficient Equilibrium Condition

In the study of the equilibrium, we consider only the grasp
forces applied by the n fingers of the robotized hand. We
divide these forces into two parts: force Fi which is applied
by the ith finger at the contact point ci, and forces Fr applied
by the remainder of the n−1 fingers. Therefore, the object
is subjected to two external wrenches wi = (Fi,τi/ci)

T and
wr = (Fr,τr/ci)

T w.r.t the point ci. Torques τi/ci produced by
Fi w.r.t. ci are null. So, the equilibrium condition is

Wg = wi +wr = 0 =⇒

{

Fr = −Fi
τr/ci = 0 (12)

According to Poinsot’s theorem, we divide the central axes
∆g given by (10) into two classes. ∆i, are the central axes
of the wrench wi, and ∆r central axes of wr. The second
condition (τr/ci = 0) in (12), defines a subclass of central axis
∆∗

r with null torques and passing through ci. We denote ∆∗
g

the union of ∆i and ∆∗
r (∆∗

g = ∆i
⋃

∆∗
r ). Now, we put forward

the following proposition for n-finger equilibrium grasps
Proposition 1: A 3D (res. 2D) n-finger grasp is said to
achieve equilibrium if and only if, all grasp wrench central
axes of class ∆∗

g can positively span R
3 (res. R

2) at ci.
Proof: i) Sufficient Condition: A set of vectors positively
span R

n if any vector in R
n can be written as a positive

combination of the given vectors [9]. Hence, the central axes
∆∗

g can positively span R
3 (R2 for 2D grasps) at ci if and

only if, it exist at least one central axis of class ∆∗
r that pass

through point ci and pointing inside the negative ith friction
cone (cone pointing outside the object). Hence, there exist
force Fi inside the ith friction cone that is opposite to the
force Fr (Fig. 5-a and 5-b) and the grasp is in equilibrium.
ii) Necessary Condition: Now, we consider that the wrench
wr cannot generate central axis ∆∗

r , that pass through point
ci and inside the negative ith friction cone. Hence, the axes
∆∗

g do not positively span R
3 (R2 for 2D grasp) and, the

force Fi cannot be balanced. Therefore, the grasp is not in
equilibrium and the proposition 1 is necessary. �

Fig. 5. Axis ∆∗
g positively span (a) R

2 (b) R
3, (c) 2-finger 2D grasp achieves

equilibrium but non-force-closure, (d) 2-finger force-closure grasp.

B. Necessary and Sufficient Force-Closure Condition
Force-closure is the ability to constrain completely the

motion of the grasped object via contact forces. The grasp
is said to be force-closure, if the grasp wrench Wg can
balance any task wrench Wt . The following definition gives
the relation between equilibrium and force-closure grasps [5]
Definition 2: A grasp is said to achieve force-closure if and
only if, it is in equilibrium for any arbitrary task wrench.

As noted in [7], force-closure grasps always achieve equi-
librium but equilibrium grasps are not always force-closure.
Example shown in (Fig. 5-c), is an equilibrium grasp but it
is a non-force-closure grasp because fingertips forces cannot
generate torques with center lines passing through contact
points. Figure 5-d shows a 2-finger force-closure grasp.
Forces in the second friction cone can generate one central
axis ∆∗

r passing through point c1, and inside the negative side
of the first friction cone. The difference between grasp shown
in (Fig. 5-c) and (Fig. 5-d) is that, in the second example
the grasp torque w.r.t. c1 can positively span R

2. Hence, we
complete the proposition 1 by the following condition.
Proposition 2: A 3D (res. 2D) n-finger grasp is force-closure
if and only if, w.r.t. one arbitrary point (eg. c1):

1) the proposition 1 is satisfied at c1, and
2) the torque applied by the n fingers positively span R

3

(res. R
2) at c1.

Proof: i) Sufficient Condition: When all central axes of class
∆∗

g positively span R
3 (res. R

2) at c1 and the torque produced
by the n fingers w.r.t. c1 can positively span R

3 (res. R
2),

the wrench at c1 is

W ∗
g/c1

=

{

F∗
g

τg/c1

}

(13)

Where F∗
g denote grasp forces applied along central axes ∆∗

g,
and τg/c1 is the torque applied by all contact forces w.r.t. c1.

The forces F∗
g and the torques τg/c1 are independent

entities because; torques produced by F∗
g w.r.t. c1 are nulls.

So, if τg/c1 and F∗
g positively span R

3 (res. R
2), the wrench

W ∗
g/c1

can balance any task wrench Wt/c1 applied at c1. With
respect to any other point p, the wrench W ∗

g/c1
is given by

W ∗
g/p =

{ F∗
g

τg/c1 + τ∗g/c1

}

(14)

The forces F∗
g are passing through c1. Their torque w.r.t.

any point p is given by τ∗
g/c1

= (c1 − p)×F∗
g . The torque
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τ∗g/c1
can balance any external torque; because the forces F∗

g
positively span R

3 (res. R
2). We conclude that for any point

p, W ∗
g/p can balance any arbitrary task wrench. So, the grasp

is force-closure and the proposition 2 is sufficient.
ii) Necessary Condition: Obviously, when the torques pro-
duced by the n fingers w.r.t. an arbitrary point cannot
have both signes (around any direction), the grasp is non-
force-closure. Hence, proposition 2-(1) is necessary. Also, if
proposition 2-(2) is not satisfied, there exist task forces that
cannot be balanced by F∗

g . So, proposition 2 is necessary. �

V. ALGORITHMS
The problem of computing 2D and 3D n-finger force-

closure grasps is simplified by using proposition 2.
The proposed algorithm has two steps. We start by com-

puting the torque applied by the n friction cones w.r.t. the first
contact point c1. If this torque cannot positively span R

3 (R2

for 2D grasp) the grasp is non-force-closure. Furthermore,
the second step consist of verifying that all central axes ∆∗

g
produced by the grasp wrench can positively span R

3 (R2

for 2D grasps). Else, the grasp is non-force-closure.

A. Force-Closure Algorithm
For 3D grasps, the torque applied by the n friction cones

w.r.t. the point c1 can positively span R
3 if the following

inequalities are satisfied
{ | ∑n

i=2 ∑m
j=1 τi jx | −∑n

i=2 ∑m
j=1 | τi jx |< 0

| ∑n
i=2 ∑m

j=1 τi jy | −∑n
i=2 ∑m

j=1 | τi jy |< 0
| ∑n

i=2 ∑m
j=1 τi jz | −∑n

i=2 ∑m
j=1 | τi jz |< 0

(15)

Where, | | denotes the absolute value and, (τi jx,τi jy,τi jz)
denotes x,y and z components of the torque τi j w.r.t. the
object coordinate frame (x,y,z). They are given as follows

{ τi jx = x · ((ci − c1)× vi j)
τi jy = y · ((ci − c1)× vi j)
τi jz = z · ((ci − c1)× vi j)

(16)

The second step verifies that all central axes ∆∗
g can

positively span R
3. Using the friction cones linearization

procedure, we can formulate the equilibrium condition given
by (12) as the relaxed 6 equations system
{

∑n
i=1 ∑m

j=1 ai jvi j = −δZ1
∑n

i=2 ∑m
j=1((ci − c1)×ai jvi j) = 0 ; ai j > 0 , δ > 0 (17)

Central axes ∆∗
g can positively span R

3 if and only if,
their positive combination can produce the unit vector −Z1,
inverse of the normal at the point c1. Therefore, if the system
given by (17) has solutions, the 3D grasp is force-closure.

In the grasp planning processus, we must quantify the
force-closure in order to optimize the generated grasps. So,
we reformulate the equilibrium condition given by the system
(17) as the following linear programming problem

min
a

f T a such that
{

A a = 0
la 6 a 6 ua (18)

{ a = (a11,a12, · · · ,a1m,a21, · · · ,a2m, · · · ,anm,δ )T

la = (0, · · · ,0,ξ > 0)T ; ua = (1, · · · ,1)T

f = (1, · · · ,1,−1)T
(19)

The matrix A of dimension (6× (mn+1)) is given by

A =

(

v11 · · · v1m v21 · · · · · · vnm Z1
τ11 · · · τ1m τ21 · · · · · · τnm 0

)

(20)

In the case of 2D grasps, The torque applied by the n
friction cones with respect to the point c1 has both signs if
the following inequality is satisfied

|
n
∑
i=2

(τi1 + τi2) | −
n
∑
i=2

(| τi1 | + | τi2 |) < 0 (21)

Where, τi1 = z · ((ci −c1)×vi1) and τi2 = z · ((ci −c1)×vi2),
are torques of frictions cones limits w.r.t. the point c1 and
around axis z which denotes the normal on the grasp plane.

When the left side of (21) is strictly negative, the force-
closure test is concluded if all the central axes ∆∗

g can
positively span R

2. The equilibrium condition can be alge-
braically reformulated by the following 3 equations

{

∑n
i=1(ai1vi1 +ai2vi2) = −δN1

∑n
i=2((ci − c1)× (ai1vi1 +ai2vi2)) = 0 (22)

Where, (ai1,ai2) ≥ 0 and δ > 0. Like the 3D case, we
can solve the system (22) by reformulating it as a linear
programming problem given by (18), where m = 2 and the
dimension of the matrix A is 3× (2n+1).

B. Force-Closure Quality
Using the two phases simplex method, the first phase, also

known as the initialization step [17], can determines in a
finite number of iterations the basic feasible solutions. If this
phase has no solution, we conclude that the original problem
(18) is inconsistent [17], and the grasp is non-force-closure.

When the initialization step has a solution, the given grasp
is force-closure. Then, we begin the main step with this
feasible solution to obtain the optimal one given by the
vector a∗(i), where (i = 1, · · · ,2n + 1) for 2D grasps and
(i = 1, · · · ,mn+1) for 3D grasps. The proposed force-closure
qualities depend on the optimal vector a∗(i). It mesures
the minimal contact forces that contribute to obtain the
maximum of δ . We reformulate the qualities as follows

Q2d = a∗(2n+1)=δ ∗

∑2n
i=1 a∗(i) ; Q3d = a∗(nm+1)=δ ∗

∑nm
i=1 a∗(i) (23)

VI. IMPLEMENTATION AND RESULTS
We have implemented the proposed algorithm in Matlab.

In the first example (Fig. 6), we have computed multi-finger
grasps of polygonal objects. The friction cone is set to 20◦.
We choose the first point c1 and, we generate randomly
the n− 1 contacts. The force-closure qualities Q2d for the
quadrilateral grasps are: (a) 0.940, (b) 0.766, (c) 0.538. We
compare these qualities with the largest ball inscribed inside
the convex hull of the primitive wrenches. This quality is
one of the most popular criterion [1]-[18]. Qualities given in
[12] are: (a) 0.173, (b) 0.088, (c) 0.026. We remark that the
order of the three grasps (a, b and c) in terms of quality is
respected with the quality given in (23). We show in (Fig.
6-d, 6-e and 6-f), 4-finger grasps of a star.

We present in Fig. 7 some grasps on 3D objects (glass
of 9486 triangular facets, mechanical part of 2824 facets).
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The friction cones are linearized with m = 25 sides. Friction
angles are set to 20◦. Generating the n− 1 contacts on the
facets centroid at random, we confirm that the qualitative
force-closure test (initialisation step) is applicable for any
number of contacts points. To compare the proposed quality
Q3d with the radius ε of the largest ball inscribed inside the
convex hull, we use the qhull library [19] to compute the
6-dimensional convex hull of the primitif wrenches. Table
1 summarizes the computed grasps qualities of Fig.7. We
also present the volume of the hull Vch which is directly
reported by qhull. When the number of contacts is fixed,
we remark that qualities ε and Q3d are generally equivalent.
But if we compare two grasps with different number’s finger,
there exist some differences between the measures of Q3d
and ε . For example, grasps illustrated in Fig.7 (b), (c) and
(d), ε show that (c) and (d) are better than (b), but the
measures of Q3d show the inverse because the proposed
quality Q3d determines the minimum forces that contribute
in force-closure. Hence, it measures the force-closure taking
into consideration the number of contacts.

VII. CONCLUSIONS AND FUTURE WORKS
The main contribution of this paper is the development

of a general approach for computing 2D and 3D force-
closure grasps without computing the convex hull of the

Fig. 6. Examples of 2D grasps. Qualities Q2d are: (a) 0.940, (b) 0.766,
(c) 0.538, (d) 0.394, (e) 0.651, (f) 0.939.

Fig. 7. Generated force-closure grasps on 3D objects: (a,b) 3-finger, (c,d)
7-finger, (e,f) 3-finger, (g) 5-finger.

TABLE I
COMPARISON BETWEEN ε AND Q3d FOR GRASPS SHOWN IN FIG. 7

Grasp a b c d e f g
Q3d 0.538 0.885 0.627 0.794 0.761 0.831 0.806

ε 0.024 0.062 0.081 0.156 0.022 0.032 0.087
Vch10−1 0.088 0.099 0.449 0.604 0.059 0.036 0.225

primitive contact wrenches. Based on grasp wrench central
axes, we have proposed necessary and sufficient conditions
to achieve equilibrium and force-closure grasps. Further, we
have presented an efficient algorithm for computing n-finger
force-closure grasps and demonstrated its efficient implemen-
tation through examples. Future work will be concentrated on
development of oriented task qualities and on grasp planning.
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