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Abstract—1In this paper, we propose a new approach for
computing force-closure grasps of two-dimensional and three-
dimensional objects. Assuming n hard-finger contact with
Coulomb friction model and based on central axes of the grasp
wrench (i.e., force and torque), we develop a new necessary and
sufficient condition for n-finger grasps to achieve force-closure.
We demonstrate that a grasp is force-closure if and only if, its
wrench can generate any arbitrary central axis. According to
this condition, we reformulate the force-closure test as a linear
programming problem without computing the convex hull of the
primitive contact wrenches. Therefore, we present an efficient
algorithm for computing n-finger force-closure grasps. Finally,
we have implemented the proposed algorithm and verified its
efficiency through some examples.

Index Terms— multifingered robotic hand, force-closure
grasp, grasp optimization.

I. INTRODUCTION

ERVICE robots will be equipped with multifingered

hands in order to carry out everyday tasks with common
and often irregular shaped objects in human environment.
The grasp planning problem is to determine the position
of the contact points on the object surface, while satisfying
basic grasp properties. Force-closure is an important property
in multifingered robotic grasps [1], [2], [3]. Under a force-
closure grasp, any external wrench applied on the object can
be balanced by applying appropriate grasp forces with the
robotic hand at contact points.

In this paper, we focus on the problem of computing n-
finger force-closure grasps of arbitrary 2D and 3D objects.
Based on the grasp wrench central axes distribution, we
propose a general formulation of the force-closure test and
we present new force-closure algorithms.

II. RELATED WORKS

A grasp on an object is said to be force-closure if and
only if arbitrary forces and torques can be exerted on the
object through a set of contact points. Salisbury and Roth
[4] have proved that a necessary and sufficient condition
for force-closure is that the primitive contact wrenches
of contact forces positively span the entire wrench space.
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This condition is equivalent to the origin of wrench space
lying strictly inside the convex hull of the primitive con-
tact wrenches. Nguyen [5] demonstrated that non-marginal
equilibrium grasps achieve force-closure and presented a
geometrical algorithm for computing 2-finger force-closure
grasps. Ferrari and Canny [6] have developed an algorithm
for computing an optimal grasp. Ponce and Faverjon [7] pro-
posed several sufficient conditions for 3-finger equilibrium
grasps of planar object, and implemented an algorithm with
Gaussian elimination and linear programming methods. Jia-
Wei Li et al. [8] have proposed a geometric algorithm for
computing 3-finger force-closure 2D grasps. Their method
begins by processing friction cones using an operation called
disposition H to remove unnecessary regions of these cones.
Liu [9] has proposed an algorithm for computing all n-finger
force-closure grasps on polygonal object by transforming
the problem from R> to R'. Recently, Sudsang and Phoka
[10] have developed another algorithm for 3-finger force-
closure grasp based on a technique for representing a friction
cone as a line segment in a dual plane. Due to complicated
geometry, there are only a few examples in the literature
for computing 3D force-closure grasps. Ponce et al. [11]
have illustrated that 4-finger force-closure grasps fall into
three classes: concurrent, pencil, and regulus grasps, and
developed techniques for computing them. Jia-Wei Li et
al. [12] have extended their work in [8] and proposed a
geometric algorithm for computing 3-finger force-closure
grasps. Liu [13] has developed a qualitative test algorithm of
n-finger force-closure grasp. He has reformulated the force-
closure condition given in [4] as a ray-shooting problem, and
he solved it by a linear programming method. In [14], Liu
et al have proposed an algorithm for searching force-closure
grasps of a 3D object represented by discrete points.

In this work, a general approach for computing n-finger
force-closure grasps is proposed. We demonstrate that a grasp
achieves force-closure if and only if, its wrench can generate
any arbitrary central axis. So, we reformulate the problem as
a linear programming one without computing the convex hull
of the primitive contact wrenches, which reduces the amount
of computation. This approach is applicable to 2D and 3D
grasps for any number of contacts points.

The rest of the paper is organized as follows, in Section III,
we present the background of grasp wrench and central axis.
Using some grasp examples, we illustrate the relationship
between central axes and force-closure concept. In Section
IV, we demonstrate the proposed equilibrium and force-
closure conditions. In Section V, we present the algorithm.
Finally, in Section VI we have implemented a comparative
study on polygonal and polyhedral objects.
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IIT. GRASP WRENCH AND CENTRAL AXIS

This section includes basic grasping terminologies and
then introduces the grasp wrench central axis. Further, we
analyze the relationship between these axes and the notion
of force-closure via 2D and 3D grasp examples.

A. Grasp Wrench

Suppose that n hard fingers are grasping a rigid object in
3D workspace (Fig.1-a). Assume that the Coulomb friction
exists at contact points c;. The static coefficient of friction
U =tana depends on materials which are in contact. To
ensure non-slipping between fingertips and object, the force
fi must lie inside the friction cone. So, grasp forces f; must
satisfy the following constraints

VIR <ufe 5 fz20 (1)

Where (fix, fiy, fi;) denotes x,y and z components of the
grasp force f; w.rt. the ith coordinate frame (x;,y;,z;), zi
is the normal to the surface object at contact point c;.

To simplify the problem by eliminating the nonlinear
constraints given by (1), each friction cone can be linearized
by a m-sided polyhedral convex cone (Fig.1-a). Under this
approximation, grasp force f;, expressed in the object coor-
dinate frame, is given by

m
fi=Y aivij 5 vij=Tisij , aij =0 (@)
Jj=1

The matrix 7; specifies the location of the ith coordinate
frame with respect to the object coordinate frame. s;; denotes
the jth edge vector of the polyhedral convex cone expressed
in the ith coordinate frame, vectors s;; are given by

s,-j:( pcos(2mj/m), wsin(2mj/m), 1 )T &)

The wrench induced on the object by the grasp force f;,
denoted w;, applied at the origin of the object coordinate
frame o is given by

_ fi
Wi_{ Tijfo = Ci X fi } @

Substituting (2) into (4) yields
m

wi =Y aijwij ©)
j=1

Where w;; denotes the primitive contact wrenches of the ith
finger. They are given, w.r.t. the object coordinate frame, by

= Vij
Wij —{ i X Vij } (6)

The net wrench applied by the hand on the grasped object
is the sum of all primitive contact wrenches. It is given by

n m F
Wg—zzaijwij—{ ,L_[’ } @)
i=1j=1 g/o

The whole external wrench applied on the object is the
sum of the grasp wrench Wy, which is applied by the robotic

2D Object

ith Finger

(b)

Fig. 1. Geometric interpretation of Coulomb friction model: (a) friction
cone approximation in 3D grasps, (b) 2D grasp.

hand, and the task wrench W; which is required to achieve
task (perturbations are included). It is given by

_ _ ) F F
Wext - Wg+m - { Tg/o }+ { Tt/o } (8)

In 2D grasps (Fig.1-b), the grasp force f; must lie inside
the friction cone defined by two vectors v;; and v;;. N; is the
normal to the surface object at contact point ¢;. The force f;
can be represented as follows

fi=anvi +apvp )

Coefficients a;; and a;; are nonnegative constants.

B. Central Axis

The central axis of a wrench, is the geometric place of
the points with respect to which the wrench is reduced to a
force and a parallel torque. The central axis is also defined
by the following theorem [15].

Poinsot’s theorem: “Every collection of wrenches applied to
a rigid body is equivalent to a force applied along a fixed
axis and a torque around the same axis”.
Using this theorem, the central axis Ay of the grasp wrench
W, is defined as follows
FgxT/y 2 .
W + Fg o1l f Fg 75 0

Ag:{ AER
O—F/'L’L'g/o ZifF =0

(10)

The axis Ag is a directed line through a point. For F, # 0,

the axis is a line in the F, direction going through point
F, L S .

1= Lrgz/" . For F; =0, the axis is in 7y, direction going
(17l 8 g/o

through the origin [15]. For Fg # 0, the torque around A, is

Y

In 2D grasps, for any given point on the grasp plane, the
torque and the force are orthogonal. When F,, # 0, the central
axes are in the grasp plane and from (11), the torque around
these axes is null. When Fg = 0, the torque 7y, is applied
around central axis which is normal to the plane.
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C. Central Axes of the Grasp Wrench

In order to illustrate the relationship between grasp central
axes and the force-closure concept, we draw central axes
of some 2D and 3D grasps [16]. We vary randomly the
amplitudes and the orientations of fingertips’ forces f; inside
the friction cones using (2) for 3D grasps and (9) for 2D ones.
Grasp wrench central axes are computed from (10). We show
some examples of force-closure and non-force-closure grasps
with their central axes distributions (Fig. 3 and Fig. 4).

Using an appropriate normalization of the central axes
equations, we ensure that all this axes are inside a unit circle
for 2D grasps (or sphere for the 3D case).

(01,62) €[0,2m]
01262

02 r«\Ag

Oi

o1 2n

(b)

Fig. 2. (a) Central axis parameters in 2D grasp (b) Dual representation.

(b): 3-finger non-force-closure grasp.

‘,\
Moment'

02(rad)

(c) : 4-finger non-force-closure grasp. ? 91 (rad) ¢

4 6

3
01 (rad)

Fig. 3. Examples of 2D grasps and their central axes distributions.

For 2D grasps, we use variables 6; and 6, to draw central
axes. Thus, a central axis A, of equation y =ax+b in (x,y)
plane has a corresponding point (6;,6,) in the dual plane
(©1,0;). A and B are the intersection points with the unit
circle of origin o (Fig.2). The friction angle is set to 10° and
taking (6, > 0), all central axes are presented in the upper
triangle of the (®;,0,) plane (Fig.2-b). In 3D workspace,
we use the coordinates of the two intersection points between
central axes and a unit sphere of origin o, to represent the
distribution of grasp central axes for 3D grasps (Fig. 4). The
friction angle is set to 20°.

In 2D grasps (Fig. 3), the first example is a 2-finger grasp
(Fig. 3-a), it cannot balance external positive torques with
center lines passing through gray region. The representation
in dual plane shows that the grasp wrench cannot generate
all central axes configurations. Example shown in (Fig. 3-b)
is a 3-finger non-force-closure grasp, this grasp cannot resist
to negative torques applied in gray region. Hence, there is
no central axis passing through this region, which can be
clearly deduced from dual representation. In example shown
in (Fig. 3-c), the 4-fingers cannot produce negative torques in
gray region. When a grasp is force-closure (Fig. 3-d), grasp
wrench generates all possible central axes, we see in the dual
representation that the upper triangle is wholly colored.

(a) : 3-finger non-
force-closure grasp

(b) : 4-finger non-
force-closure grasp

(¢) : 3-finger force-
closure grasp

Fig. 4. Examples of 3D grasps and their central axes distributions.
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For 3D grasps (Fig. 4), in the first example (Fig. 4-a),
the 3-fingered grasp is non-force-closure because the three
friction cones cannot all intersect with the plane formed by
contact points [12]. We observe that the grasp wrench cannot
generate all central axes. Example shown in (Fig. 4-b) is a
4-finger non-force-closure grasp. It cannot produce forces
along —Z axis and we see that this grasp cannot produce
all possible central axes. When a grasp is force-closure (Fig.
4-c), grasp wrench generates all central axes.

From the examples shown in Fig. 3 and Fig. 4, we
conclude that if a grasp is non-force-closure, its wrench
cannot generate all central axes. When the grasp achieves
force-closure, its wrench can generate any arbitrary central
axe. Hence, we can derive a force-closure test based on the
grasp wrench central axes independently of fingers’ number.

IV. FORCE-CLOSURE AND EQUILIBRIUM
CONDITIONS

In the present section, we demonstrate the proposed equi-
librium and the force-closure conditions.

A. Necessary and Sufficient Equilibrium Condition

In the study of the equilibrium, we consider only the grasp
forces applied by the n fingers of the robotized hand. We
divide these forces into two parts: force F; which is applied
by the ith finger at the contact point c¢;, and forces F, applied
by the remainder of the n — 1 fingers. Therefore, the object
is subjected to two external wrenches w; = (FivTi/c,»)T and
wy = (Fy, T, /c,-)T w.r.t the point ¢;. Torques 7;;., produced by
F; w.r.t. ¢; are null. So, the equilibrium condition is

Fr:_Fi

Trfe; = 0 (12)

Wg:w,‘—i—w,:Oz{

According to Poinsot’s theorem, we divide the central axes
A, given by (10) into two classes. A;, are the central axes
of the wrench w;, and A, central axes of w,. The second
condition (7, /., = 0) in (12), defines a subclass of central axis
A} with null torques and passing through ¢;. We denote A,
the union of A; and A} (A;i = AiUA}). Now, we put forward
the following proposition for n-finger equilibrium grasps
Proposition 1: A 3D (res. 2D) n-finger grasp is said to
achieve equilibrium if and only if, all grasp wrench central
axes of class A, can positively span R3 (res. R?) at ;.
Proof: i) Sufficient Condition: A set of vectors positively
span R" if any vector in R" can be written as a positive
combination of the given vectors [9]. Hence, the central axes
A% can positively span R? (R* for 2D grasps) at ¢; if and
only if, it exist at least one central axis of class A} that pass
through point ¢; and pointing inside the negative ith friction
cone (cone pointing outside the object). Hence, there exist
force F; inside the ith friction cone that is opposite to the
force F, (Fig. 5-a and 5-b) and the grasp is in equilibrium.
it) Necessary Condition: Now, we consider that the wrench
w, cannot generate central axis A, that pass through point
¢; and inside the negative ith friction cone. Hence, the axes
A% do not positively span R (R? for 2D grasp) and, the
force F; cannot be balanced. Therefore, the grasp is not in
equilibrium and the proposition 1 is necessary. [

VW/;
CY

(@) (b) (©) (d)

>3

Fig. 5. Axis A positively span (a) R? (b) R, (c) 2-finger 2D grasp achieves
equilibrium but non-force-closure, (d) 2-finger force-closure grasp.

B. Necessary and Sufficient Force-Closure Condition

Force-closure is the ability to constrain completely the
motion of the grasped object via contact forces. The grasp
is said to be force-closure, if the grasp wrench W, can
balance any task wrench W;. The following definition gives
the relation between equilibrium and force-closure grasps [5]
Definition 2: A grasp is said to achieve force-closure if and
only if, it is in equilibrium for any arbitrary task wrench.

As noted in [7], force-closure grasps always achieve equi-
librium but equilibrium grasps are not always force-closure.
Example shown in (Fig. 5-c), is an equilibrium grasp but it
is a non-force-closure grasp because fingertips forces cannot
generate torques with center lines passing through contact
points. Figure 5-d shows a 2-finger force-closure grasp.
Forces in the second friction cone can generate one central
axis Ay passing through point ¢, and inside the negative side
of the first friction cone. The difference between grasp shown
in (Fig. 5-c) and (Fig. 5-d) is that, in the second example
the grasp torque w.r.t. ¢; can positively span R?. Hence, we
complete the proposition 1 by the following condition.
Proposition 2: A 3D (res. 2D) n-finger grasp is force-closure
if and only if, w.rt. one arbitrary point (eg. c1):

1) the proposition 1 is satisfied at ¢y, and

2) the torque applied by the n fingers positively span R3

(res. R2) at c;.
Proof: i) Sufficient Condition: When all central axes of class
Ay positively span R3 (res. R?) at ¢; and the torque produced
by the n fingers w.r.t. ¢; can positively span R (res. R?),

the wrench at ¢ is
*
C
sfa Tg /e

Where F," denote grasp forces applied along central axes Ay,
and 7,/ is the torque applied by all contact forces w.r.t. cy.

The forces F, and the torques T,/ are independent
entities because; torques produced by F,* w.r.t. ¢; are nulls.
So, if 7,/., and F;’ positively span R3 (res. R?), the wrench
W;/cl can balance any task wrench W, /., applied at ¢;. With

13)

respect to any other point p, the wrench Wg*/cl is given by
g/p Tg/cl + T;/Cl

The forces F, are passing through c;. Their torque w.r.t.
any point p is given by ‘L';/ = (c1 — p) x F{. The torque

€1
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T
pi/siltively span R? (res. R?). We conclude that for any point
D, Wg*/ , can balance any arbitrary task wrench. So, the grasp
is force-closure and the proposition 2 is sufficient.

ii) Necessary Condition: Obviously, when the torques pro-
duced by the n fingers w.r.t. an arbitrary point cannot
have both signes (around any direction), the grasp is non-
force-closure. Hence, proposition 2-(1) is necessary. Also, if
proposition 2-(2) is not satisfied, there exist task forces that

cannot be balanced by Fy. So, proposition 2 is necessary. [J

V. ALGORITHMS

The problem of computing 2D and 3D n-finger force-
closure grasps is simplified by using proposition 2.

The proposed algorithm has two steps. We start by com-
puting the torque applied by the n friction cones w.r.t. the first
contact point ¢;. If this torque cannot positively span R3 (R?
for 2D grasp) the grasp is non-force-closure. Furthermore,
the second step consist of verifying that all central axes A’
produced by the grasp wrench can positively span R3 (IRé
for 2D grasps). Else, the grasp is non-force-closure.

can balance any external torque; because the forces Fy

A. Force-Closure Algorithm

For 3D grasps, the torque applied by the n friction cones
w.r.t. the point ¢; can positively span R? if the following
inequalities are satisfied

| Lo X0y e | = X Xy | Tijx [< O

{ |):?:2):7:1 Tijy | XY | Tijy [<0

| Lo X Tije | =X Xy [ 5ije [< 0

Where, | | denotes the absolute value and, (Tijx,Tijy, Tijz)

denotes x,y and z components of the torque 7;; w.r.t. the
object coordinate frame (x,y,z). They are given as follows

{ Tijx = x- ((ci —c1) X vij)

5)

Tijy =¥+ ((ci—c1) xvij) (16)
Tije = 2+ ((ci —c1) X vij)

The second step verifies that all central axes Ag can
positively span R3. Using the friction cones linearization
procedure, we can formulate the equilibrium condition given
by (12) as the relaxed 6 equations system

i1 L1 aijvij = =62 o

{ i X1 ((ci—cr) xaijvij) =0 ° @ij=0,8>0 (7

Central axes A; can positively span R? if and only if,
their positive combination can produce the unit vector —Z,
inverse of the normal at the point c¢;. Therefore, if the system
given by (17) has solutions, the 3D grasp is force-closure.

In the grasp planning processus, we must quantify the
force-closure in order to optimize the generated grasps. So,
we reformulate the equilibrium condition given by the system
(17) as the following linear programming problem

. T Aa=0
malnf a such that { la <a<ua (18)
a:(allvaIZa"'aalmva217"'7a2m7"'7anma5)T
la:(07"'70a§>0)T 5 ua:(l,---,l)T (19)
f:(17"'717_1)T

The matrix A of dimension (6 x (mn+ 1)) is given by

A: vll DY vlm V21 DY e vnm Zl (20)
Ty - Tim T - Tum 0
In the case of 2D grasps, The torque applied by the n
friction cones with respect to the point ¢; has both signs if
the following inequality is satisfied

n

n
Y (m+t2) | =Y (| +]]) <0
i=

i=2

2

Where, T1=2" ((C,‘ —6‘1) X V,’l) and Tp=2" ((C,‘ —6‘1) X viz),
are torques of frictions cones limits w.r.t. the point ¢; and
around axis z which denotes the normal on the grasp plane.
When the left side of (21) is strictly negative, the force-
closure test is concluded if all the central axes A, can
positively span R2. The equilibrium condition can be alge-
braically reformulated by the following 3 equations
{ Yiii(anvit +anvi) = —6N 22)
Yo ((ci—c1) x (aivit +apvip)) =0
Where, (a;j1,ap) >0 and 6 > 0. Like the 3D case, we
can solve the system (22) by reformulating it as a linear
programming problem given by (18), where m = 2 and the
dimension of the matrix A is 3 x 2n+1).

B. Force-Closure Quality

Using the two phases simplex method, the first phase, also
known as the initialization step [17], can determines in a
finite number of iterations the basic feasible solutions. If this
phase has no solution, we conclude that the original problem
(18) is inconsistent [17], and the grasp is non-force-closure.

When the initialization step has a solution, the given grasp
is force-closure. Then, we begin the main step with this
feasible solution to obtain the optimal one given by the
vector a*(i), where (i =1,---,2n+ 1) for 2D grasps and
(i=1,---,mn+1) for 3D grasps. The proposed force-closure
qualities depend on the optimal vector a*(i). It mesures
the minimal contact forces that contribute to obtain the
maximum of 6. We reformulate the qualities as follows

a*(2n+1)=06* a*(nm+1)=56*
Qo = W 3 Q3q = )(:l"flia*)(lj
VI. IMPLEMENTATION AND RESULTS

We have implemented the proposed algorithm in Matlab.
In the first example (Fig. 6), we have computed multi-finger
grasps of polygonal objects. The friction cone is set to 20°.
We choose the first point ¢; and, we generate randomly
the n — 1 contacts. The force-closure qualities O, for the
quadrilateral grasps are: (a) 0.940, (b) 0.766, (c) 0.538. We
compare these qualities with the largest ball inscribed inside
the convex hull of the primitive wrenches. This quality is
one of the most popular criterion [1]-[18]. Qualities given in
[12] are: (a) 0.173, (b) 0.088, (c) 0.026. We remark that the
order of the three grasps (a, b and c) in terms of quality is
respected with the quality given in (23). We show in (Fig.
6-d, 6-e and 6-f), 4-finger grasps of a star.

We present in Fig. 7 some grasps on 3D objects (glass
of 9486 triangular facets, mechanical part of 2824 facets).

(23)
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The friction cones are linearized with m = 25 sides. Friction

angles are set to 20°. Generating the n — 1 contacts on the

facets centroid at random, we confirm that the qualitative

force-closure test (initialisation step) is applicable for any
number of contacts points. To compare the proposed quality
Q34 with the radius € of the largest ball inscribed inside the
convex hull, we use the ghull library [19] to compute the

TABLE I

COMPARISON BETWEEN € AND (J3; FOR GRASPS SHOWN IN FIG. 7

Grasp a b c d e f g
03« | 0538 0.885 | 0.627 _0.794 | 0.761 _0.831 | 0.806
€ 0.024 _0.062 | 0.081 0.156 | 0.022_0.032 | 0.087
[ V1071 ] 0.088  0.099 | 0449 0.604 [ 0.059 0.036 [ 0.225 |

6-dimensional convex hull of the primitif wrenches. Table
1 summarizes the computed grasps qualities of Fig.7. We

also present the volume of the hull V;, which is directly
reported by ghull. When the number of contacts is fixed,
we remark that qualities € and O3, are generally equivalent.
But if we compare two grasps with different number’s finger,
there exist some differences between the measures of Oz,
and €. For example, grasps illustrated in Fig.7 (b), (c) and
(d), € show that (c) and (d) are better than (b), but the

measures of Q3; show the inverse because the proposed
quality Q3; determines the minimum forces that contribute

in force-closure. Hence, it measures the force-closure taking

into consideration the number of contacts.

VII. CONCLUSIONS AND FUTURE WORKS

[1]

[2]
[3]

The main contribution of this paper is the development
of a general approach for computing 2D and 3D force-

closure grasps without computing the convex hull of the

[4]

[5]
[6]
[7]

[8]

[9]

(10]

(11]

‘ PN B - ) . A=
‘ A\ 7 \ -
o i \/ . \/ L
a5 c‘ 0 v
@ () i ©
I =% ' B i
)} X j\ i & ,>‘ R
N = i N r/ Ly o
X . X |
i ’ | |
e (d)m — s (e)n; T
Fig. 6. Examples of 2D grasps. Qualities Q,, are: (a) 0.940, (b) 0.766,

(c) 0.538, (d) 0.394, (e) 0.651, (f) 0.939.

(e) ()

Fig. 7.
7-finger, (e,f) 3-finger, (g) 5-finger.

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

Generated force-closure grasps on 3D objects: (a,b) 3-finger, (c,d)
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primitive contact wrenches. Based on grasp wrench central
axes, we have proposed necessary and sufficient conditions
to achieve equilibrium and force-closure grasps. Further, we
have presented an efficient algorithm for computing n-finger
force-closure grasps and demonstrated its efficient implemen-
tation through examples. Future work will be concentrated on
development of oriented task qualities and on grasp planning.
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