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Abstract— This paper addresses the problem of optimizing
the maximal independent contact region for two-fingered force-
closure grasp of a rigid object in 2D. Existing methods for
optimizing this criterion considered only independent graspable
regions on a given pair of edges. We propose an algorithm that
takes nearby edges into consideration so that larger independent
contact regions can be obtained. Our method takes the input
polygons, computes graspable regions for each pair of edges,
merge all adjacent regions together, and then find the best
independent contact region inscribed in those regions. Two
different criteria to define the best independent contact region
are studied. The first criterion maximizes area of the axis-
parallel rectangle in the configuration space, while the other
criterion maximizes the smaller side’s length of the rectangle.
For a given object with n vertices, the first criterion can be
optimized using the algorithm from Karen Daniels et al. in
O(n2 log2 n) time, while the other criterion can be optimized
using the algorithm from Evanthia Papadopoulou and D. T. Lee
in O(n2 log n) time.

I. INTRODUCTION

Grasping is an important operation in many manufacturing
processes. Especially, two-fingered grasping modules are
extensively applied in several procedures due to their simple
and robust operation. To ensure that the object is grasped
securely, the classical force-closure condition is considered.
A grasp of an object achieves force-closure when it can resist
any external wrench exerted on the grasped object. The well-
known qualitative test for a force-closure grasp is to check
whether the contact wrenches of the grasp positively span
the whole wrench space [1]. This is equivalent to checking
whether the convex hull of the primitive contact wrenches
contains the origin [2].

Other approaches of qualitative test for a force-closure
grasp by considering the workspace, not the wrench space,
were also investigated. Nguyen [3] proposed a geomet-
ric method for testing two-finger force-closure grasps on
polygonal objects. Ponce et al. proposed the concept of
non-marginal equilibrium which implies the force-closure
property. Based on this concept, the qualitative tests of three-
finger grasps for polygonal objects [4] and four-finger grasps
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for polyhedral objects [5] were proposed. Alternatively, Blake
considers both the workspace and the configuration space
[6], and classifies planar grasps into three types using the
symmetry set, the anti-symmetry set, and the critical set along
with the friction function.

Quantitative tests of force-closure grasps are also con-
sidered to define the quality of grasps. Ferrari and Canny
[7] considered the best performance in resisting external
wrenches as the optimality criterion. Based on this criterion,
Zhu and Wang [8] addressed the problem of planning optimal
grasps that maximize the Q distance and expresses the
best performance in firmly holding an object while resisting
external wrench loads. Zhu et al. [9] solved the same problem
by optimizing the pseudodistance function.

Most methods mentioned above are used to determine
grasps that require precision of fingertip on the objects. To
allow some positioning errors, the notion of independent
contact regions was introduced by Nguyen [3]. In short,
an independent contact region is a parallel-axis rectangular
region in fingers’ configuration space which represents areas
on object’s boundary where fingers can be placed indepen-
dently to compose a force-closure grasp. In [3], Nguyen
also showed how to geometrically determine independent
contact regions for two-fingered grasps of a polygon. Tung
and Kak [10] attacked the completeness of the previous work
and proposed an algorithm which is correct and complete.
Recently, Cornella and Suarez investigated an algorithm of
determining independent grasp regions on 2D discrete objects
[11]. A four frictionless grasp is considered. The algorithm
determines the independent regions of two fingers when the
locations of the other two fingers are given. Nancy S. Pollard
points out that more-than-sufficient contact points can give
more quality and flexibility of grasp, and in [12], a fast
algorithm to synthesize many-contact grasps that preserve
some properties of an example grasp is presented.

In order to find the best independent contact region, one
needs to define what best means. There have been many
different definitions of the best independent contact region
due to different purposes and constraints of grasping devices.
The two popular criteria are: (1) the largest n-cube, and
(2) the largest rectangular region (product of lengths on
every axis). Using the first criterion, the optimization can
be done by linear programming as discussed in [4] and [5].
Faverjon and Ponce [13] tackled the problem of two-fingered
grasping on curved objects using the second criterion. In their
work, a numerical optimization algorithm was presented,
but they could not guarantee the algorithm’s completeness.
Cornella and Suarez [14] presented an approach to determine
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independent contact regions on polygonal objects considering
arbitrary number of friction or frictionless contacts on given
edges. Their approach subdivides configuration space so that
the graspable region in each subdivision is convex, then
computes the independent contact region in each subdivision.

So far, existing works in the literature on determining inde-
pendent contact regions require that each contact point must
lie on a given edge. This restriction hinders the discovery of
independent contact regions across multiple adjacent edges.
Therefore, in this paper, we present how independent contact
regions across edges can be found for the case where there
are two fingers with friction. Our method requires that the in-
put object consists of non-self-intersecting simple polygons.
The proposed algorithm for reporting optimal independent
contact region of a polygonal object with n vertices runs
in O(n2 log n) under the n-cube optimizing criterion, and in
O(n2 log2 n) under the largest rectangle optimizing criterion.
Note that our method does not require that the object be
simple or connected.

II. BACKGROUND

In two dimensions, a hard finger in contact with some
object at a point x = (x1, x2) exerts a force f = (f1, f2)
parallel to the normal vector of the contact surface. The force
f will generate torque det(x, f) = x1f2 − f1x2 with respect
to the origin. The force and the torque are combined to form a
three dimensional wrench w = (f ,det(x, f)). In the absence
of friction, all forces that can be produced at a single contact
point are normal to the contact surface and point inward.
Therefore, the force that can be exerted is unique up to
positive scaling. Since det(x, cf) = c det(x, f), the wrench
is also unique up to positive scaling.

In the presence of friction, a single contact point can exert
forces in different directions. The set C of all forces that can
be exerted at the contact point is called the friction cone. As
a result, the set of wrenches that can be produced is:

W = {(f ,det(x, f)) : f ∈ C}.

A d-finger grasp is defined geometrically by the position
xi(i = 1, ..., d) of the fingers on the boundary of the grasped
object. We can associate with each grasp the set of wrenches
W ⊂ <3 that can be exerted by the fingers. If we denote by
Wi the wrench set associated with the ith finger, we have

W =

{
d∑

i=1

wi : wi ∈ Wi for i = 1, ..., d

}
.

Definition 1: A two dimensional grasp is said to achieve
force-closure when the corresponding wrench set W is equal
to <3.

In other words, a grasp achieves force-closure when any
external wrench can be balanced by wrenches at the finger-
tips. A somewhat weaker condition is equilibrium, defined
below.

Definition 2: A grasp is said to achieve equilibrium when
there exist forces (not all of them being zero) in the friction
cones at the fingertips such that the sum of the corresponding
wrenches is zero.

It is formally shown in [3] and [4] for two finger cases
that a sufficient condition for force-closure is non-marginal
equilibrium grasps, i.e., grasps such that the forces achiev-
ing equilibrium lie strictly inside the friction cones at the
fingertips.

Proposition 1: A sufficient condition for two-fingered
force-closure is non-marginal equilibrium

That is, grasps achieving equilibrium with non-zero forces
for some friction coefficient achieve force-closure for any
strictly greater friction coefficient. Due to [3], the following
proposition characterizes two-finger equilibrium.

Proposition 2: A necessary and sufficient condition for
two points to form an equilibrium grasp with non-zero con-
tact forces is that the line joining both points lies completely
in the two double-sided friction cones at the points.

III. REPRESENTING FORCE-CLOSURE GRASPS

Let us now state the problem. The object of interest does
not have to be connected nor simple, but its boundary must
not be self-intersecting. Its boundary can be broken into
simple polygons. We are concerned with the problem with
two simple polygons because if there are more than two
simple polygons that define the object, we can pick two at a
time and run the same algorithm over all possible pairs. (We
are only interested in two-fingered grasps.)

The configuration of the problem consists of two parame-
ters, each of which defines where a finger is placed along the
boundary of the grasped object. In this section, we describe
how to represent and construct the configuration space that
characterizes all force-closure grasps.

We now define entities of a polygon needed in our con-
sideration as follows. A simple polygon P is defined by
n distinct vertices vi ∈ <2 where i ∈ Zn

1. We will
assume that vi are arranged counterclockwise if it represents
the outer boundary of the object, or arranged clockwise if
it represents the hole inside the object. Edges Ei are line
segments with endpoints vi and vi+1. Every point p on P ’s
boundary can be mapped to the length of curve measured
counterclockwise from v0 to p along the boundary. We will
write length(p) to represent such length. Lengths of Ei can
be computed by the equation li = ‖vi+1−vi‖. It is obvious
that Li = length(vi) =

∑
j∈Zi

lj . We denote by L the
total length of P ’s boundary, which can be computed by
L =

∑
i∈Zn

li.
Next, let us define tangents of Ei as ti = (vi+1 − vi)/li.

The normal vectors ni of Ei are unit vectors that are
perpendicular to ti and point inward (ni can be obtained by
rotating ti π/2 radian counterclockwise). The cone of forces
Ci that can be exerted on the edge Ei is defined by two
vectors ni+(tanα)ti and ni−(tanα)ti where α ∈ [0, π/2)
is the half-angle of the friction cone.

Since we will be dealing with two fingers that might not
reside on the same polygon, we need two sets of entities for
different polygons. Let all entities defined above correspond
to the polygon P which is in contact with the first finger,

1Zn is a group of non-negative integers less than n. Addition and
subtraction are computed modulo n.
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and let n′, v′i, E′
i, length′, l′i, L′i, L′, t′i, n′i and C ′

i be
defined similarly for the polygon P ′ in contact with the
second finger. If the two fingers are on the same polygon,
then n = n′, length = length′, L = L′ and Xi = X ′

i where
X = v, E, l, L, t,n or C.

The configuration space C of the two fingers is [0, L) ×
[0, L′). Given a configuration (u, u′) ∈ C, we say that
(u, u′) composes a two-fingered grasp if and only if the two
contact points length−1(u) and (length′)−1(u′) produce
force closure. (Recall that length is a function that maps
a vertex into a number, so length−1 gives a vertex.) The
graspable set G ⊆ C is the set of all configurations that
compose two-fingered grasps. Graspable subsets Gi,j are
graspable regions on edges Ei and E′

j defined by

Gi,j = G ∩ ([Li, Li+1]× [L′j , L
′
j+1]).

A. Computing Gi,j

Because each Gi,j corresponds to configurations whose
one finger is on Ei and the other is on E′

j , Gi,j has been
well-studied. According to Proposition 2, it has been shown
in [13] that Gi,j can be defined by eight linear inequalities in
the parameters u and u′. However, there is an easier way to
define Gi,j as follows. Define the inverted force cone −C ′

j

as {−x | x ∈ C ′
j}. [3] showed that emptiness of Ci,j =

Ci ∩ (−C ′
j) implies emptiness of Gi,j . If Ci,j is not empty,

we claim that Gi,j can be defined by no more than six points
on the bounding rectangle.

Since a two-fingered grasp can be either compres-
sive(squeezing grasp) or expansive(stretching grasp), we de-
fine for simplicity DCi,j = Ci,j ∪ (−Ci,j) as the double-
sided cone of Ci,j so that both the stretching and squeezing
cases can be dealt with together. Now we prove the above
claim by examining DCi,j centered on Ei. Let us first extend
both sides of the edges Ei and E′

j to infinity, choose an
arbitrary real number u, find p(u) = length−1(u) on Ei,
then let DCi,j(u) be the cone DCi,j centered at p(u).
The intersection I(u) of E′

j and the cone DCi,j(u) is a
line segment on E′

j which represents the region that the
second finger can be placed to achieve force closure with the
first finger at p(u). This means for a given position of the
first finger u, length′(I(u)) is the corresponding graspable
interval in the second finger’s configuration space (Fig. 1(a,
b)).

It is easy to see that if u moves by ∆u, p(u) will move in
the direction of ti by the same distance ∆u, the endpoints
of I(u) will move in the direction of −t′j by the distance
proportional to ∆u, and the endpoints of length′(I(u)) move
in the −∆u direction by the distance proportional to ∆u (Fig.
1(c, d)). These linear relationships imply that the graspable
region is bounded by two straight lines. It is now obvious
that cutting Ei and E′

j to their original lengths is equivalent
to imposing four rectangular constraints u ≥ Li, u ≤ Li+1,
u′ ≥ L′j and u′ ≤ L′j+1 in the (u, u′)-space (Fig. 1(e)).
Therefore, Gi,j can be defined with no more than six points
on the bounding rectangle. In the real implementation, all
defining points of Gi,j can be found by computing endpoints

Ei

E ′
j

DCi,j(u)

p(u)

I(u)

(a) (b)

Ei

E ′
j

p(u)

(c) (d)

u

p(u + ∆u)

∆u{

∆u
{ {λ1∆u λ2∆u

(e)
Li Li+1

L′
j

L′
j+1

Gi,j

length′(I(u))

λ1∆u

λ2∆u

{

{

{

Fig. 1. (a) I(u) is the graspable region of the second finger when the first
finger is at p. (b) length′(I(u)) is an interval in u′ configuration space. (c)
Endpoints of I(u) move by the distances proportional to ∆u. (d) Endpoints
of length′(I(u)) move by the same distances as endpoints of I(u), giving
two straight lines bounding the graspable region. (e) Gi,j is the result of
cutting the infinite area by the rectangle.

of four intersections: DCi,j(vi) ∩ E′
j , DCi,j(vi+1) ∩ E′

j ,
DCi,j(v′j) ∩ Ei, and DCi,j(v′j+1) ∩ Ei (Fig. 2).

B. Extending Configuration Space

An independent contact region when mapped to the con-
figuration space becomes one, two, or four rectangles whose
sides are parallel to u and u′ axes. The region maps into
one rectangle if it does not contain v0 or v′0, two rectangles
if it contains v0 or v′0 but not both, or four rectangles if
it contains both v0 and v′0 (Fig. 3). To eliminate the need
to find independent contact regions with multiple rectangles,
we extend the domain of length−1 and (length′)−1 to the
whole real line so they both become functions with periods L
and L′ respectively. (length and length′ are no longer one-
to-one.) The new G in the expanded configuration space <2

can be defined from the old G with these periodic relations:
• (u, u′) ∈ G ⇔ (u + L, u′) ∈ G.
• (u, u′) ∈ G ⇔ (u, u′ + L′) ∈ G.

We claim that despite infiniteness of G, every independent
contact region has one corresponding rectangle within G ∩
[0, 2L] × [0, 2L′]. This is easily proved by the following
argument.
• Suppose a position of one finger is given, there must

be some positions of the second finger that do not form
force closure with the first finger.
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(a)

DCi,j(vi)

vi vi+1

v′
j

v′
j+1

DCi,j(vi+1)

vi vi+1

v′
j

v′
j+1

DCi,j(v
′
j+1)

vi vi+1

v′
j

v′
j+1

DCi,j(v
′
j)

vi vi+1

v′
j

v′
j+1

(c)

(b)

(d)

(e)

Ia

Ib

Ic Id

length′(Ia)

length′(Ib)

length(Ic)

length(Id)

u′

u
Gi,j

Fig. 2. Four intersections Ia, Ib, Ic and Id are shown in (a), (b), (c) and
(d). Gi,j can be immediately defined by these intersections as shown in (e).

u

u′

L

L′

0
v0

v′
0

Fig. 3. The independent contact region shown in thick lines (left) maps to
four rectangles in the configuration space (right).

• It follows that all u-constant line segments in G are
shorter than L′ and all u′-constant line segments in G
are shorter than L.

• Since every independent contact region can be mapped
into some rectangles in G whose sides are axis-parallel
segments in G, one of these rectangles must lie inside
[0, 2L]× [0, 2L′].

The special case where the two fingers touch the same
polygon can be handled with a smaller configuration space.
G will be symmetric about the axis u = u′, which means we
can cut out one half of G that lies above (or below) the line
u = u′ (Fig. 4(a)). The remaining part of G above u′ > L (or
to the right of u > L) can also be eliminated because to every
rectangle crossing the line u′ = L (or the line u = L), there
corresponds a rectangle in [0, 2L]× [0, L] (or [0, L]× [0, 2L])
that represents the same configurations (Fig. 4(b)). Finally,
the region to the right of the line u = u′ − L (or above the

line u = u′ + L) is redundant because no point on this line
is in G (Fig. 4(c)). Therefore, the region of consideration is
the shaded portion as shown in Fig. 4(d).

u

u′

0

L

L

2L

2L

Axis of Symmetry

u′ = u

u

u′

0

L

L

2L

2L

Same Configurations

u

u′

0

L

L

2L

2L

Not Graspable

u′ = u − L

Impossible

Same Configurations

Not Graspable

u′ = u

u

u′

0

L

L

2L

2L

(a)

(c) (d)

(b)

Remaining Portion

Fig. 4. (a) The axis of symmetry is u′ = u. (b) For each rectangle that
crosses the line u′ = L, there corresponds another rectangle in [0, 2L] ×
[0, L] that crosses the line u = L. (c) The line u′ = u and u′ = u − L
never intersect G, and the part of G to the right of u′ = u− L represents
the same configurations as the remaining portion in [0, L]× [0, L]. (d) The
remaining portion to consider is shown in the shaded area.

C. Constructing G

Now we know that each Gi,j contains at most six defining
vertices, so all Gi,j can be constructed within O(nn′) time. In
the final algorithm, we will need the polygonal representation
of G, so adjacent Gi,j must be merged together into big
pieces. We might need many simple polygons to define G
because G does not have to be simple nor connected.

A vertex of some Gi,j is a defining vertex of G, or defines
G, if it is a vertex on a boundary of G. It can be observed
that a vertex v of some Gi,j defines G if and only if one of
the following is true:
• v is not at a corner of the bounding rectangle.
• v is a corner of four bounding rectangles (one contains

Gi,j and the other three are adjacent), but is not con-
tained in some Gk,l bounded by these rectangles.

Note that if Gi,j is neither empty nor full (“full” means
Gi,j = [Li, Li+1] × [L′j , L

′
j+1]), at least one vertex of Gi,j

must be a defining vertex of G.
The algorithm to find all simple polygons that define

boundaries of G is described as follows. Let us first attach
a state “used/unused” to all vertices of all Gi,j . All vertices
are initialized as “unused”. We scan through all values of i
and j, and do the following:
• While Gi,j has an “unused” vertex v that defines G,
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– It is clear that v is on a boundary of G, so we can
trace the boundary of G from v until we get back
at v.

– All vertices traced along the way defines a simple
polygon which is a boundary of G. Mark these
vertices as “used”.

Note that tracing the boundary of G from Gi,j may involve
many Gk,l.

The tracing process can be simplified by first defining
adjacencies of vertices that define G. Situations when two
vertices v1 and v2 that define G are adjacent in G are listed
below:
• If v1 and v2 are adjacent in the polygonal representation

of Gi,j and they lie on different sides of the bounding
rectangle of Gi,j , they are adjacent in G.

• If v1 and v2 are adjacent in the polygonal representation
of Gi,j and they lie on the same side of the bounding
rectangle of Gi,j , we assume without loss of generality
that v1,v2 ∈ {Li} × [L′j , L

′
j+1]. v1 and v2 will be

adjacent in G if Gi−1,j ∩ v1v2 = ∅.
• If v1 and v2 belong to different pieces, i.e. Gi,j and

Gk,l, we assume without loss of generality that v1 ∈
Gi,j ,v2 ∈ Gi−1,j . v1 and v2 can be adjacent in G if and
only if they lie on the same segment {Li}× [L′j , L

′
j+1]

and
– v1v2 ⊆ Gi−1,j and v1v2 ∩Gi,j = {v1}, or
– v1v2 ⊆ Gi,j and v1v2 ∩Gi−1,j = {v2}.

IV. OPTIMAL INDEPENDENT CONTACT REGIONS

With the polygon G in hand, we can find the best inde-
pendent contact region. In this paper, we study two meanings
of best defined by two objective functions:

1) ab
2) min{a, b}

where a and b are side lengths of an independent contact re-
gion. (Recall that independent contact regions are rectangles
that lie in G.)

The first criterion, introduced in [13], defines the best
independent contact region as the rectangle with greatest
area, while the other criterion, introduced in [4], prefers
the rectangle with greatest inscribed square. Optimizing the
second objective function is equivalent to finding the largest
axis-parallel square inscribed in G, so we name this problem
The Largest Square Independent Contact Region Problem.
The problem of optimizing the first criterion is accordingly
named The Largest Rectangular Independent Contact Region
Problem.

A. The Largest RECTANGULAR Independent Contact Re-
gion Problem

The problem of finding the largest rectangle inscribed in a
polygon (with or without holes) has been thoroughly studied
by Karen Daniels et al. in [15]. If that polygon has m
vertices, the algorithm can find the largest rectangle within
O(m log2 m) time bound.

We can supply vertices of G directly to the algorithm and
obtain the solution within O(m log2 m) = O(nn′ log2(nn′)).

We have experimented some examples shown in Fig. 5.
The method of Karen Daniels et a. is very complex to
implement. Therefore, dynamic programming technique is
applied instead. The dynamic program memorizes the bounds
of a rectangle which is possibly optimum. The bounds are
adjusted while G is traversed.

(a) (b)

(c) (d)

Fig. 5. Different test objects supplied to the algorithm that maximizes the
first criterion. Thick lines represent the optimal independent contact region
when the half-angle of the friction cone is 20◦. (a) The input object has 62
vertices. (b) The input object has 128 vertices. (c) The input object has 256
vertices. (d) The input object has 112 vertices.

B. The Largest SQUARE Independent Contact Region Prob-
lem

To solve this problem, we start by computing the L∞
Voronoi diagram [16] inside G. We claim that the largest
square in G must be centered at a Voronoi vertex. This is
justified by the following argument: Let v be a point in G
and let square(v) denote the largest square in G centered at
v.
• If v is inside a Voronoi region (or site), square(v) must

have one corner on an edge of G. Moving v away from
that edge will increase the size of square(v). We can
move v in such direction until it reaches a Voronoi edge
or a Voronoi vertex while square(v) is growing.

• If v is on a Voronoi edge, square(v) has two corners on
two edges of G. If these edges are parallel, the Voronoi
edge must also be parallel to them, and we can move v
in either direction along the Voronoi edge until it hits a
Voronoi vertex without changing the size of square(v).
But if the two edges are not parallel, it is always possible
to define the direction along the Voronoi edge that brings
v away from the two edges. Moving v in this away
direction, the size of square(v) is increasing along the
way, and v will eventually coincide with a Voronoi
vertex.

Therefore, we only need to check squares centered at Voronoi
vertices to find the largest square inscribed in G.
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E. Papadopoulou and D. T. Lee presented in [16] an
algorithm to construct the L∞ Voronoi diagram of a polygon
(with or without holes) with m vertices within O(m log m)
time bound and showed that the number of Voronoi vertices is
O(m). When a Voronoi vertex is generated by the algorithm,
the size of the square centered at that vertex is known. As
a result, the largest square inscribed in the polygon can be
found in O(m) time after all Voronoi vertices have been
found.

By supplying G to the algorithm, we need O(m log m) =
O(nn′ log(nn′)) time to construct the L∞ Voronoi diagram
and O(m) = O(nn′) to search for the largest square. The
overall running time is therefore O(nn′ log(nn′)). However,
the algorithm of constructing L∞ Voronoi diagram have not
been implemented. Some preliminary results shown in Fig.
6 are obtained by computing dynamic program in the same
fashion as maximizing the largest rectangular independent
contact regions.

(a) (b)

(c) (d)

Fig. 6. Different test objects supplied to the algorithm that maximizes
the second criterion. Thick lines represent the optimal independent contact
region when the half-angle of the friction cone is 20◦. (a) The input object
has 62 vertices. (b) The input object has 128 vertices. (c) The input object
has 256 vertices. (d) The input object has 112 vertices.

The Voronoi diagram can also be used to measure the
quality of a given grasp. If we are given (u, u′) ∈ G,
square(u, u′) can be computed, and its size can be used
as an indicator of the ability to preserve force closure under
perturbation.

V. CONCLUSION AND FUTURE WORK

We are concerned with the problem of determining the
optimal independent contact region for two-fingered grasps of
a 2D object with Coulomb friction. The configuration space
of the two fingers is <2 and independent contact regions
are rectangles whose sides are parallel to the two axes. Two
reasonable definitions of the best independent contact region
are given by Ponce and Faverjon in [13] and [4]. We pre-
sented two methods to find the optimal independent contact

region for two optimization criteria. The first criterion defines
the largest rectangular independent contact region problem
(discussed in section IV-A) that can be solved in O(n2 log2 n)
time complexity, while the second criterion defines the largest
square independent contact region problem (discussed in
section IV-B) that can be solved in O(n2 log n) provided that
the input object is defined by simple polygons with n total
vertices. Both methods can yield independent contact regions
across edges.

Extension to three-fingered grasping problems will be
simple if there exists a representation of graspable volume
which is simple enough. Once we have all Gi,j,k, G can be
constructed, and we can work on it. Though an analytical
algorithm for optimizing both criteria is not known yet, the
idea to construct a discretized version of 3D generalized
Voronoi diagram using graphics hardware by Hoff et al.
presented in [17] can be modified to produce discretized L∞
Voronoi diagrams of three dimensional shapes.
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