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Abstract— The paper deals with the motion planning for a
rolling system with limited contact area. The system under
consideration is represented by a hemispherical object that
can roll without slipping or spinning on the plane. Under
the constraints imposed on the size of the contact area, the
construction of motion can be regarded as a problem of
parallel parking in a finite number of movement steps. A
motion planning algorithm, realizing the movement steps by
tracing smooth figure eights on the hemisphere, is introduced.
To generate asymmetric figure eights, a generalization of the
Viviani curve is proposed. An exceptional case of the algorithm,
corresponding to a spinning maneuver, is constructed with the
use of the Cassini curve. The convergence of the algorithm
is analyzed and its computational feasibility is verified under
simulation.

I. INTRODUCTION

One of the key problems in the control of systems with
rolling constraints is the construction of motion planning
algorithms. In this paper we address this problem in the
kinematic formulation. We will be dealing with a typical
example of systems with pure rolling constraints, the ball-
plate system. It is known that this system is controllable
[1]. However, it is neither nilpotent nor differentially flat,
and therefore it cannot be put in chained form [2]. These
features set the ball-plate system into a special class of
non-holonomic systems, the class for which conventional
planning techniques are not applicable.

One can divide the existing approaches to motion planning
for the ball-plate system into two directions depending on
whether they are constructed in feedforward or feedback
[3]–[6] manner. The feedforward motion planning algorithms
can be, in turn, classified into two approaches. The first is
based on the optimal control theory [7]–[9], while the second
deals with geometric phases [1], [10], [11]. The geometric
phase approach is based on the fact that a closed path of the
control inputs results in a change of the contact coordinates.
For the ball-plate system it was first outlined in [1], where
a three-step algorithm combining one trivial and two non-
trivial maneuvers was proposed. This approach was revisited
in [12], where the number of non-trivial maneuvers was
reduced to one. A more general algorithm, based on the
transformation of the state equations of the kinematic model
to a triangular form and the use of alternating piecewise
constant inputs, was proposed in [13]. As shown there,
the triangular form allows to reduce the motion planning
problem to solving a system of two nonlinear algebraic
equations.
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It should be noted that most of the algorithms proposed
so far are devised for the whole sphere case. However, in a
number of applications the rolling motion must be conducted
under constraints imposed on the size of the contact area.
One of the first studies addressing the motion planning under
such constraints is reported in [14]. The motion planning
algorithm proposed in [14] utilizes the main ideas of [1] and
is based on the construction of a set of multiple spherical
triangles on the object surfaces. Also relevant to our research
is the study [15], where a motion planning algorithm, pos-
sessing a local-local topological property [16], was proposed.
The non-trivial maneuver of the planning algorithm in [15] is
composed of geodesic quadrilaterals whose size depends on
the workspace limitations. A somewhat similar algorithm,
iterating trapezoidal paths on the sphere, was proposed in
[17].

It should be noted that employing spherical polygons is not
always the best way to plan the rolling motion, especially
if the speed of the whole maneuver needs to be taken
into consideration. The algorithms [14], [15], [17] produce
piecewise smooth trajectories, but the motion of the system
needs to be stopped at the vertices of the spherical polygons
if one cares about generating impact-free movements. In
this connection, it can be more advantageous to replace the
polygons by smoother curves. In the simplest formulation,
the motion strategy can be based on tracing smooth figure
eights on the spherical object.

As shown in [18], the composition of figure eights from
two circles does not produce C∞ trajectories, and the switch-
ing point between the two circles needs to be passed with
zero instantaneous velocity. To generate infinitely smooth
trajectories, a generalization of the Viviani curve was pro-
posed in [18]. However, the generalization used in [18]
is not always well-defined and in some cases it produces
curves with three petals. To improve upon this shortcoming,
in this paper we propose a rigorous and at the same time
geometrically clear way to construct asymmetric figure eights
and define the reachability area for the parameterization
obtained. In addition, we show how the motion strategy based
on tracing smooth figure eights can be modified to realize a
spinning maneuver.

This paper is organized as follows. In Section II we sketch
a model of the ball-plate system and fix the notation. A
motion planning algorithm, based on tracing smooth figure
eights, is introduced in Section III. To generate C∞ trajecto-
ries, in Section IV we derive a generalized Viviani curve and
test the performance of the motion planning algorithm under
simulation. Section V addresses the exceptional case of the
algorithm, corresponding to a spinning maneuver. Finally,
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Fig. 1. System formalization.

conclusions are summarized in Section VI.

II. MATHEMATICAL MODEL

To describe the system under consideration, we introduce
the following coordinate frames (see Figure 1): Σb is an
inertial frame fixed at the base, Σo is a frame fixed at the
geometric center of the object (hemisphere), Σa is a frame
fixed at the contact plane. In addition, at the contact point
we introduce the contact frame of the object Σco, and the
contact frame of the plane, Σca.

The contact coordinates are given by the vectors uco =
[uo, vo]T, expressing the contact point on the hemisphere
surface, uca = [ua, va]T, expressing the contact point on the
plane, and by the contact angle ψ which is defined as the
angle between the x-axis of Σco and Σca. The position of a
point on the sphere is parameterized as

c(uo, vo) = R

⎡
⎣− sinuo cos vo

sin vo

− cosuo cos vo

⎤
⎦ , (1)

where R is the radius of the sphere. In this parameterization
the origin is placed at the south pole of the sphere. The lower
hemisphere is selected by imposing

−π/2 < uo < π/2, −π/2 < vo < π/2. (2)

The machinery of the derivation of the contact kinematic
equations under the assumption of pure rolling can be found
in [11]. For the parameterization (1) we obtain:

u̇o = sec vo(− cosψ u̇a + sinψ v̇a)/R, (3)

v̇o = (sinψ u̇a + cosψ v̇a)/R, (4)

ψ̇ = tan vo(− cosψ u̇a + sinψ v̇a)/R. (5)

If the position of the contact point in the contact plane is
parameterized as uca = uca(ϕ) from (3-5) we obtain the

system

u′o(ϕ) = sec vo(ϕ)(sinψ(ϕ)v′a(ϕ)−cosψ(ϕ)u′a(ϕ))/R, (6)

v′o(ϕ) = (sinψ(ϕ)u′a(ϕ) + cosψ(ϕ)v′a(ϕ))/R, (7)

ψ′(ϕ) = tan vo(ϕ)(sinψ(ϕ)v′a(ϕ)−cosψ(ϕ)u′a(ϕ))/R, (8)

describing the change of the contact coordinates as function
of ϕ. Here, primes denote the partial differentiation with
respect to the variable ϕ, while dots are reserved for the
time differentiation.

The kinematic model (3-5) can be represented in a differ-
ent form if the input variables are the components of u̇co.
This form is given as

u̇a = −R cosψ cos vo u̇o +R sinψ v̇o, (9)

v̇a = R sinψ cos vo u̇o +R cosψ v̇o, (10)

ψ̇ = sin vo u̇o. (11)

Assume that the position of the contact point on the
sphere is parameterized by a spherical curve c(ϕ) �
{x(ϕ), y(ϕ), z(ϕ)}T. Since the same point is defined by (1),
one has

c(uo, vo) = c(ϕ). (12)

Differentiating this relationship, one obtains

cuu̇o + cv v̇o = cϕϕ̇, (13)

where cϕ � ∂c/∂ϕ, cu � ∂c/∂uo and cv � ∂c/∂vo. The
partial derivatives cu and cv ,

cu = R

⎡
⎣− cosuo cos vo

0
sinuo cos vo

⎤
⎦ , cv = R

⎡
⎣sinuo sin vo

cos vo

cosuo sin vo

⎤
⎦ ,

(14)
are defined from (1). To express cu and cv as functions of
ϕ, one resolves (12) and obtains

cos vo =
√

1−(y(ϕ)/R)2, sin vo = y(ϕ)/R, (15)

cosuo =
−z(ϕ)/R√

1−(y(ϕ)/R)2
, sinuo =

−x(ϕ)/R√
1−(y(ϕ)/R)2

,(16)

Therefore,

cu =

⎡
⎣ z(ϕ)

0
−x(ϕ)

⎤
⎦ , cv =

⎡
⎣−x(ϕ)y(ϕ)/

√
R2−y2(ϕ)√

R2−y2(ϕ)
−y(ϕ)z(ϕ)/

√
R2−y2(ϕ)

⎤
⎦ , (17)

Next, taking into account that the vectors cu and cv are
orthogonal, one obtains from (13)

u̇o =
1

R2 cos2 vo
cT

ucϕϕ̇, v̇o =
1
R2

cT
vcϕϕ̇, (18)

and substituting (18) into (9-11) yields

u′a(ϕ) = − cosψ(ϕ)√
R2−y2(ϕ)

cT
ucϕ +

sinψ(ϕ)
R

cT
vcϕ,(19)

v′a(ϕ) =
sinψ(ϕ)√
R2−y2(ϕ)

cT
ucϕ +

cosψ(ϕ)
R

cT
vcϕ, (20)

ψ′(ϕ) =
y(ϕ)

R(R2−y2(ϕ))
cT

ucϕ. (21)
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III. MOTION PLANNING STRATEGY

In this section we address the motion planning problem
(state-to-state transfer) under the assumption that at the start
and end configurations the initial and final values of uco are
zero. The assumption restricts the generality of the problem
statement. However, the movement to be found under this
assumption can be thought of as a non-trivial maneuver of
a general reconfiguration strategy similar to that considered
in [1], [12], [13]. The generality can be restored if the non-
trivial maneuver is accompanied by a trivial one (bringing
uco to the desired values). As the change of the contact
coordinates uca and ψ corresponding to the trivial maneuver
can be computed in advance, their desired values can be
simply modified, and the trivial maneuver can be executed
right after the non-trivial one.

START
GOAL

Fig. 2. Motion planning problem. Dotted lines show the projection of the
contact point on the hemisphere onto the main hemisphere plain.

To take into consideration the constraints on the size of
the contact area, we will restrict the height of the admissible
spherical cap. Since the full-scale rolling is now impossible,
a feasible motion planning strategy can be based on tracing
closed curves on the surface of the sphere n times. Tracing
the curve one time can be called a movement step. Thus,
the non-trivial maneuver considered in the section can be
regarded, in general, as a hybrid parallel parking problem
(see Figure 2). It is hybrid because in addition to contin-
uous variables (contact coordinates) it includes the discrete
number of movement steps.

To generate smooth trajectories for the non-trivial ma-
neuver, one can parameterize the position of the contact
point on the sphere by a single periodic curve c(ϕ) =
c(ϕ ± 2kπ), k ∈ Z, such that c(0) = {0, 0,−R}T and
therefore uo(2πn) = vo(2πn) = 0. To satisfy the remaining
boundary conditions ua(2πn) = ua,des, va(2πn) = va,des,
ψ(2πn) = ψdes, for a given the number of steps n, there must
be at least three free parameters in a specific representation
of the curve c(ϕ).

In what follows, we will define c(ϕ) by asymmetric
spherical figure eights. Conceptually, the motion planning
problem can be then formulated as follows. Given a smooth
spherical figure eight, find its initial orientation on the sphere,
given by the angle ϑ of rotation around the axis OZ of the
frame Σo, and the sizes a and b of its two leaves such that
tracing the curve n times brings the system to the desired
configuration. More specifically, we define

c(ϕ) = Rz(ϑ)c̄(a, b, ϕ), (22)

where

Rz(ϑ) �

⎡
⎣cosϑ − sinϑ 0

sinϑ cosϑ 0
0 0 1

⎤
⎦ , (23)

and reduce the motion planning problem to finding the
parameters a, b, and ϑ. Computationally, the motion planning
procedure can be decoupled into two stages. At the first stage
we define the generalized parameters a and b, and at the
second stage we define the angle ϑ.

(a)

v a 

(b)

u a 
ϑ

P 0 

P 1 

y 0 

y 1 

x 0 

x 1 

Fig. 3. One-step movement in the contact plane. The 1st half-step (tracing
the 1st leaf of the figure eight) is shown in red, while the 2nd in blue color.
Also shown are the initial orientation and the assignment of local frames.

If we trace the spherical figure eight one time, the contact
point in the contact plane is shifted from P0 to P1 as shown
schematically in Figure 3. We will call the length of the
linear displacement h = |−−→P0P 1| the non-holonomic shift.
In Figure 3 we also introduce local frames associated with
the movement steps. It is assumed that the x-axes of the
local frames are oriented along the tangent vectors to the
contact curve in the contact plane. The orientation of the
frame P1x1y1 with respect to P0x0y0 defines the holonomy
angle η. Note that the angle ϑ, defining the orientation of the
frame P0x0y0 with respect to the frame Σa is unknown at
the moment. It will be adjusted later on from the requirement
that the vector of the resulting displacement should point to
the desired destination.

It is clear that the non-holonomic shift h and the holonomy
angle η are the same for all the movement steps. They are
functions of the generalized parameters a and b and do not
depend on the angle ϑ. To compute h(a, b) and η(a, b), we set
in (22) ϑ = 0 and integrate the system (19-21) numerically
for one step of movement (ϕ ∈ [0, 2π]) with zero initial
conditions. This defines h(a, b) �

√
ū2

a(2π) + v̄2
a(2π) and

η(a, b) � ψ̄(2π). Here, we use the bar to denote the contact
coordinates obtained for ϑ = 0.

Having formally defined the functions h(a, b) and η(a, b),
we establish their relation with hdes =

√
u2

a,des + v2
a,des and

ψdes. As we trace the spherical figure eight n times, the vector
of the non-holonomic shift will rotate each time by the angle
η as shown in Figure 4. Therefore, the points P0, P1, . . . , Pn

will lie on a circle of (now unknown) radius r and form a
part of what may appear to be a regular polygon1. Clearly,

η(a, b) = ψdes/n. (24)

1In fact, the points will be a part of a regular polygon only if the ratio
2πn/ψdes is integer.
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Fig. 4. The change of the vectors of the non-holonomic shift during n-step
movement.

The formula for h(a, b) can also be found from elementary
considerations. Indeed, from the relation between the length
of the chord of a circular arc and the corresponding central
angle we have

h(a, b) = 2r sin(η(a, b)/2), (25)

and
hdes = 2r sin(n η(a, b)/2), (26)

where r is the radius of the circular arc. Excluding it from
equations (25,26), we obtain

h(a, b) =
sin(η(a, b)/2)

sin(n η(a, b)/2)
hdes =

sin(ψdes/2n)
sin(ψdes/2)

hdes. (27)

Now, one can determine the parameters a and b from
solving the system (24,27). The practical calculation the
parameters a and b may seem to be involved because these
parameters are obtained by iterating the nonlinear system
(24,27) with numerical integration of the system (19-21) on
each iteration step. However, in our experience this procedure
is computationally feasible. With a good guess on the initial
values of a and b the solution is obtained relatively fast,
within a few seconds in our software implementation. The
computational feasibility is attributed by the low dimension
and the regular structure of the system (19-21).

Having established a and b, one can define the angle ϑ.
The total linear displacement during n-step movement is
defined in the vectorial form as d =

∑n−1
k=0

−−→
PkP k+1. The

projection of the vector d onto the axes of Σa and onto the
axes of the frame P0x0yo are denoted as, respectively, d(a)

and d(0). They are related as

d(a) = Rz(ϑ)d(0), (28)

where the matrix Rz(ϑ) is the upper diagonal 2 × 2 block
of the matrix (23). By definition, d(a) = {ua,des, va,des}T.
Since the mutual orientation of two adjacent local frames,
associated with the multi-step movement, is defined by the
angle η(a, b), expressing the vector d in the axes of P0x0yo

yields

d(0) =
n−1∑
k=0

Rk
z(η(a, b))

−−→
P0P

(0)
1 , (29)

where the vector
−−→
P0P

(0)
1 = {ūa(2π), v̄a(2π)}T was defined

at the first stage of the algorithm. Having defined d(a) and

d(0), we can calculate the angle between these vectors.
Taking into account that |d(a)| = |d(a)| = hdes, one obtains

ϑ = arccos
d(0) · d(a)

h2
des

. (30)

This completes the description of the motion planning algo-
rithm. Note that we did not say anything yet about the choice
of the generalized parameters a and b. This will be clarified
in the next section.

IV. GENERALIZED VIVIANI CURVE

In principle, there is a number of ways to construct
spherical figure eights, including manual specification and
spline interpolation techniques. However, if we look for the
solution in the class of elementary functions the choice does
not seem to be wide. As a candidate for the figure eight one
can use Viviani’s curve. This is the curve of intersection of
the surfaces of a sphere of radius R and a circular cylinder
of radius R − d tangent to the inner surface of the sphere
(Figure 5).

Fig. 5. Formation of the symmetric Viviani curve.

A parameterization of this curve suitable for our problem
(setting the tangent plane of the cylinder and the sphere to
be the contact plane) can be defined as

c̄(ϕ) =

⎡
⎣ 2

√
d(R− d) sinϕ

(d−R) sin 2ϕ
−d+ (d−R) cos 2ϕ

⎤
⎦ , (31)

where ϕ ∈ [0, 2π]. The classical Viviani curve is defined for
d = R/2. The orthogonal projection of the Viviani curve on
the contact plane defines the lemniscate of Gerono, while the
stereographic projection defines the lemniscate of Bernoulli.
The curve (31) is periodic and consists of two spherical
leaves defined by ϕ ∈ [0, π] and ϕ ∈ [π, 2π].

It should be noted that the curve (31) depends on one
parameter d, and its leaves are symmetric. This is not suitable
for our motion planning strategy because by tracing the
symmetric curve for a fixed number of steps one propels the
sphere without changing its orientation. To make the curve
(31) asymmetric, one can generalize the Viviani curve and
define it as the intersection of a sphere with a cylinder whose
axis is inclined and whose radius is variable. Such a cylinder
is a cone. The cone is tangent to the inner surface of the
sphere as shown in Fig. 6.
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Fig. 6. Formation of the generalized Viviani curve.

Let the axis of the cone be in the OXZ plane. The cone is
described by y2 + (z − zc)2 = r2(x), where zc = r(x)−R,
r(x) = R−d−x tan γ is the variable radius of the cone, and
γ is the angle of inclination of the cone’s axis. Consider the
intersection of the cone with the sphere x2 + y2 + z2 = R2

and define the solution as y(x) and z(x). The z-coordinate
of the intersection line is defined as

z =
x2 − 2R(d+ x tan γ)

2(d+ x tan γ)
. (32)

while the y-coordinate, y = ±√
R2−x2−z2, after some

algebra can be represented as

y = ±
√
x2(xmax−x)(x−xmin)(1+4 tan2 γ)

4(d+x tan γ)2
, (33)

where

xmax =
2(R−2d) tan γ+2

√
d(R−d)+R2 tan2 γ

1+4 tan2 γ
, (34)

xmin =
2(R−2d) tan γ−2

√
d(R−d)+R2 tan2 γ

1+4 tan2 γ
, (35)

are the points of, respectively, maximum and minimum,
of the x-coordinate. Note that d + x tan γ ≥ 0 because
r(x) ≤ R, and r(x) = R only in the singular case when the
generalized Viviani curve transforms to the circle. Therefore,
the representation (33) is defined well.

Next, we need to parameterize x(ϕ) ∈ [xmin, xmax]. A
“good” parameterization ensures that the derivative dy/dϕ =
(dy/dx) (dx/dϕ) is well defined and does not have sin-
gularities at x = xmin and x = xmax. To cancel the
corresponding radicals in dy/dx, we define x(ϕ) from the
differential equation dx/dϕ =

√
(xmax−x)(x−xmin). The

solution satisfying x(0) = 0 can be written down as follows

x(ϕ) =
(xmax+xmin)+(xmax−xmin) cos(ϕ−ε)

2
, (36)

where the angle ε is defined from

cos ε = −(xmax+xmin)/(xmax−xmin). (37)

Having defined x(ϕ), by direct calculation we obtain

y(ϕ) = ±
√

1+4 tan2 γ (xmax−xmin)x(ϕ) sin(ϕ−ε)
4(d+x(ϕ) tan γ)

.

(38)

Thus, the parametric form of the generalized Viviani curve
is defined by (36,38,32). If γ = 0 it transforms to the
conventional representation (31). The generalized Viviani
curve is periodic and consists of two spherical leaves defined
by ϕ ∈ [0, 2ε] and ϕ ∈ [2ε, 2π]. Selecting y(ϕ) in (38) with
plus sign corresponds to passing the first leave of the curve
counterclockwise and the second leave clockwise. Changing
the sign to minus changes the direction of passing the curve.

R

hc

Fig. 7. Admissible contact area.

If the size of the contact area is limited by the height hc

of the admissible spherical cap shown in Figure 7, one sets

R− hc/2 < d < R, |γ| < arctan

(
hc − 2(R− d)√
hc(2R− hc)

)
.

(39)
To be compatible with the presentation in Section III, one
can introduce a more symmetric set of parameters. Let a and
b be the radii of the truncated cone at, respectively, the points
of maxima and minima of the x-coordinate. Then,

a = (R−d)−xmax tan γ, b = (R−d)−xmin tan γ. (40)

To satisfy the constraint on the size of the admissible contact
area, one sets

0 < a < hc/(2R), 0 < b < hc/(2R). (41)

It can be shown that the transformation from the parameters
a and b to d and γ is defined as

d =
(R− a)(R− b) −√a(R− a) b(R− b)

R− (a+ b)
, (42)

tan γ = ±1
2

∣∣∣∣∣
√
a(R− a) −√b(R− b)

R− (a+ b)

∣∣∣∣∣ , (43)

where one sets plus sign if b > a and minus otherwise. One
can also show that in the limiting case (a+ b) → R one has

d = R/2, tan γ = ±1
2

|a− b|√
R2 − (a− b)2

. (44)

Having constructed the generalized Viviani curve in the
form c̄(a, b, ϕ), one can proceeds further and define the non-
holonomic shift h(a, b) and the holonomy angle η(a, b). It
can be deduced from geometric considerations that the non-
holonomic shift is symmetric with respect to the parame-
ters a, b, h(a, b) = h(b, a), while the holonomy angle is
asymmetric, η(a, b) = −η(b, a). The values of η and h,
normalized with respect to R, are plotted in Figure 8 as
functions of a/R and b/R. Inspecting the level curves2 of

2To keep the graph clean, the numerical values of the level sets are not
marked in Figure 8. As the structure of the surfaces is not complicated, the
change of the level sets can be guessed more or less easily.
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Fig. 8. Normalized non-holonomic shift h/R (top left) and holonomy angle
η (top right) as functions of a/R and b/R. Contour lines of h/R (blue)
and η (red) are shown in the bottom part for the workspace hc/R = 1,
(solid lines), hc/R = 3/4, (dashed lines), and hc/R = 1/2 (dotted lines).
The area where the solution of (24,27) is not unique is shown in darker
color.

these surfaces, one can see that the solution of the system
(24,27), if exists, is unique in a large part of the workspace
area. However, if a/R or b/R is relatively small the possible
solution may be double-valued (a level line for the surface
h/R may cross that for η at two points).

The existence of the solution can be established by in-
specting the reachable area of η and h/R when a/R and
b/R vary in the admissible intervals corresponding to the
assigned ratio hc/R in (41). The shapes of the reachable
area for hc/R = 1, hc/R = 3/4, and hc/R = 1/2
are shown in Figure 9. If the tangent line at the origin
of the reachable area is vertical, by setting the number
of steps n large enough one can always make the point
{(hdes/R) sin(ψdes/2n)/ sin(ψdes/2), ψdes/n}, hdes �= 0, to
lie within the reachable area. Since the analytical expressions
for η and h are not available, it is difficult to prove rigorously
that the tangent line is vertical at the origin. However, our
numerical simulations (zooming by plotting the reachable
area for very small ratios hc/R) show that it appears to hold
true.

Let us illustrate the motion planning by the generalized
Viviani curve by a simulation example. In the simulation,
the initial contact point coordinates are uco = [0, 0]T(rad),
uca = [0, 0]T(m), and the initial relative angle ψ is 0 rad. The
desired contact coordinates are set as uco = [0, 0]T(rad),
uca = [0.2, 0.3]T(m), and the desired relative angle ψ is
π/6 rad. The radius R of the hemisphere is 0.2m, and the
constraint on the admissible contact area is set as hc/R <
1/2. As can be seen from Figure 9, the minimal number
of steps necessary to reach the goal under the specified
constraint on the contact area is now n = 6. For this number
of steps we obtain a/R ≈ 0.2363, b/R ≈ 0.1822, and
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Fig. 9. Reachable area for hc/R = 1, (solid lines), hc/R = 3/4, (dashed
lines), and hc/R = 1/2 (dotted lines). The area where the solution of
(24,27) is not unique is shown in darker color. The definition of the minimal
number of movement steps for the simulation example is shown in brown
lines.

ϑ ≈ −0.1942(rad). The evolution of the contact point on the
contact plane and on the hemisphere is shown in Figure 10.
Note that the whole maneuver is executed by tracing six
times the generalized Viviani curve on the hemisphere.
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Fig. 10. Trajectory of the contact point on the plane (top left) and on
the sphere (top right), and the evolution of the contact angle (bottom). The
admissible area on the hemisphere is encircled. The 1st half-step is shown
in red, while the 2nd in blue color.

V. SPINNING MANEUVER

The movement corresponding to hdes = 0 and ψdes �= 0
is called the spinning maneuver [19]. It was discussed, as
a part of the general reconfiguration strategy, in [1] but the
solution was not completed there. A three-step algorithm for
the spinning maneuver, combining two straight line and one
circular movements, was proposed in [19].
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It should be noted that the algorithm proposed in Sec-
tion III does not directly work for the spinning maneuver
because when hdes → 0 the number of steps n → ∞. Of
course, the algorithm can be used as a part of the two-step
strategy: move to an intermediate point and come back with
the desired orientation. But this approach is neither succinct
not systematic because the intermediate point can be assigned
quite arbitrarily.

A clearer construction of the spinning maneuver in the
spirit of Section III (tracing generalized figure eights) can
be devised with one simple modification. Note that the
movement half-steps in Section III were defined to have
different orientation of path tracing, counterclockwise for the
first leaf and clockwise for the second. The solution to the
spinning maneuver is to keep the orientation the same. If we
do so, the contact point on the contact plane would trace
closed curves as shown schematically in Figure 11. In the
end of tracing the contact coordinates uco and uca will return
to their starting values but the contact angle ψ will change.

Fig. 11. Trajectory of the contact point on the contact plane for the Viviani
curve-based planning of the spinning maneuver.

Since only one coordinate now (the angle ψ) needs to
be balanced by the size of the figure eight, it suffices to
deal with the symmetric figures. Assume ψdes > 0 (for
ψdes < 0 the direction of passing the curves in Figure 11
should be changed to clockwise). Given the number of steps
n and the desired orientation ψdes, the size d is defined
from 2nη(d) = ψdes. Given the admissible height of the
contact area hc (and therefore dmin = R − hc/2), the
minimal number of steps is clearly n = 
ψdes/(2η(dmin))�,
where 
x� rounds the elements of x to the nearest integer
more than or equal to x. For the symmetric Viviani curve
(31) we can analytically define the area of the spherical
leaf and by the Gauss-Bonnet theorem obtain η(d) =

4
(
−
√

d
R (1 − d

R ) + arctan(
√

R
d − 1)

)
. It should, however,

be noted that in tracing the leaves of the Viviani curve the
parameter ϕ needs to be changed first from 0 to π and
then from 2π to π. This results into discontinuity of the
higher derivatives at the half-step connection points3, and in
practical implementation these points should be passed with
zero instantaneous velocity [18].

Let us now show how to construct C∞ trajectories for the
spinning maneuver. For this purpose, we resort to the Cassini
curve whose different shapes are shown in Figure 12. The
shapes are defined by two parameters, a and b. Place the start
point at the origin and select the positive (counterclockwise)
direction of passing the curve. The coordinates of the contact
point on the contact plane, parameterized by the Cassini

3Also note that to guarantee that the curve on the contact plane is closed,
the angle ϑ at the connection points needs to be changed discontinuously.

Fig. 12. The shapes of the Cassini curve.

curve, are defined as

uca(ϕ) =

⎡
⎢⎢⎣ a sinϕ

√√
(b/a)4−sin2 2ϕ− cos 2ϕ

d− a cosϕ

√√
(b/a)4−sin2 2ϕ− cos 2ϕ

⎤
⎥⎥⎦ ,
(45)

where d =
√
b2 − a2 and ϕ ∈ [0, 2π]. This parameterization

is valid only for b > a, which is what we need4. In the
limiting case b → ∞ the curve becomes the circle. Note
that for our purpose the curve must be concave. Otherwise,
tracing the curve would not produce figure eights on the
sphere. This results to the restriction b/a <

√
2.

The remaining is similar to what has been presented in
Section III, only now we deal with the differential equations
(6-8). Integrating the system (6-8) numerically for one step
of movement (ϕ ∈ [0, 2π]) with zero initial conditions, one
defines, using the spherical distance, the nonholonomic shift
on the sphere h(a, b) � R arccos (cos(uo(2π)) cos(uo(2π)))
and the holonomy angle η(a, b) � ψ(2π). The parameters a
and b can then be obtained by solving the system h(a, b) =
0, η(a, b) = ψdes/n. As the first equation here constrains the
choice of the parameters a and b, the function η defines a
three-dimensional curve. This curve and its projections on
the coordinate planes are shown in Figure 13.

Note that for the solution uo(ϕ), vo(ϕ) to be admissible,
the height of the resulting spherical curve should be limited
by the height of the admissible contact area shown in
Figure 7. From considerations of symmetry the highest points
on the spherical curve correspond to ϕ = π/2 + kπ, k ∈ Z,
in the parameterization (45), and the admissibility condition
can be defined as 1 − cosuo(π/2) cos vo(π/2) < hc/R. If,
for a given n, it is not satisfied the number of steps in solving
the system h(a, b) = 0, η(a, b) = ψdes/n must be increased.

Consider, for the illustration, a simulation example where
ψdes = π, i.e. the hemisphere needs to be completely
reoriented. As before, set R = 0.2m and hc/R = 1/2.
If there is no constraint on the admissible contact area it
is possible to complete the maneuver in one step (with
hc/R ≈ 1.1628). To satisfy the constraint hc/R = 1/2
we sequentially increase n and find the minimal number of
movement steps n = 4 (see Figure 13). For this number of
steps we obtain a/R ≈ 0.6511, b/R ≈ 0.6593 from solving
the system h(a, b) = 0, η(a, b) = ψdes/n. The simulation

4It follows from the implicit equation of the Cassini curve that when
b = a it is transformed to the lemniscate of Bernulli, and when b < a it
splits into two ovals [20]. These cases are not relevant to our purpose.
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results for the evolution of the contact point on the contact
plane and on the hemisphere are shown in Figure 14.
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Fig. 14. Trajectory of the contact point on the plane (top left) and on
the sphere (top right), and the evolution of the contact angle (bottom).The
admissible area on the hemisphere is encircled. The 1st half-step is shown
in red, while the 2nd in blue color.

VI. CONCLUSIONS

The motion planning for a rolling system with limited
contact area has been discussed in this paper. Under the
constraints imposed on the size of the contact area, the con-
struction of motion for this task can be regarded as a hybrid
problem of parallel parking in a finite number of movement
steps. A motion planning algorithm, realizing the movement
steps by tracing smooth figure eights on the hemisphere,
has been proposed. To generate asymmetric figure eights,
a generalization of the Viviani curve is proposed. An excep-
tional case of the algorithm, corresponding to the spinning
maneuver, is constructed with the use of the Cassini curve.
The convergence of the algorithm has been analyzed, and the

computational feasibility has been verified under simulation.
The algorithm can be useful when generating C∞ trajectories
is required. However, compare to the conventional (triangles
or circle-based) algorithms, it comes with the price of heavier
(but still feasible) computations. These considerations should
be taken into account when designing motion planner for
specific applications.
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