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Abstract— We examine the usefulness of passive compliance
in a manipulator that learns contact motion. Based on the notice
that humans outperforms robots with the contact motion, we
follow two aspects of human manipulation: passive compliance
and learning. As imitation of human’s arm and learning, we
use a robot arm with passive compliant joints and it learns
a policy for peg in hole by the proposed gradient descending
method. We present that the passive compliance provides with
quick and stable learning as well as a slow control sampling
time.

I. INTRODUCTION

The Peg in Hole problem has been extensively researched

because it represents a contact task of manipulation that

requires both position and force control.

Most of the approaches assume a manipulator of seri-

ally connected rigid links, therefore, they highly depend

on excellent resolution of a force/torque sensor that is

normally very expensive and quite noisy, a precise model

of a dynamic system, and a very fast control sampling

time that is generally smaller than 1msec. Even if all these

conditions are fulfilled, only a little unexpected uncertainty

would be able to make the system very unstable and cause

a failure. Peg-in-hole seems to require extremely careful

consideration to perform well even with a good manipulator

hardware. However, consider that human babies play with

LEGO blocks. A two-year-old baby can easily assemble

the blocks even with his tiny arm and limited capacity for

manipulation. For older kids, assembling LEGOs is trivial.

What makes the difference? We examine of the two aspects

of human manipulation: passive compliance and learning.

While a robot manipulator pursues high speed and precision

relying on high stiffness and good sensory measurements,

a human depends on one’s experience and passive nature of

muscles. We let a robot to imitate these abilities in this paper.

The goal of this research is to incorporate passive compli-

ance and reinforcement learning for the peg-in-hole problem

as the representative of the contact motion, and to show

the importance of the passive compliance in learning of the

contact motion. We show it enables a faster learning rate,

robustness to noise and a slow control sampling time.

This paper is organized as following. Section II talks

about the various approaches to the peg-in-hole. Section III

examines the differences between a robot manipulator and

a human arm, and let a robot imitate a human. Section IV

constructs the control scheme by reinforcement learning, and

shows the results. We describes usefulness of the passive

compliance in Section V. Section VI conclude research and

address some future works.

II. RELATED WORK

There have been numerous research on the peg-in-hole

problem. Our approach is new in that we imitate both

hardware and software of human manipulation with a passive

compliant arm and reinforcement learning.

The milestone paper on the control strategy was given by

Lozano Perez, Mason and Taylor [1]. They described how

to synthesize compliant motion strategies from geometric

constraints including uncertainty. Many researchers solved

the problem by hybrid of position and force control. By

various methods, they reduce uncertainty in position and

force [2]–[5].

Several works have been done on learning of peg-in-hole.

Hovland, Sikka and McCarragher [6] proposed skill learn-

ing by human-demonstration. They implemented a hidden

markov model to find out the relations among the motions.

Ogawara and etc. [7] also suggested to learn a skill from

visually learning a human demonstration. Lee and Kim [8]

used reinforcement learning on 2D peg-in-hole simulation to

develop an expert system. Gullapalli, Barto and Grupen [9]

set up an associative reinforcement learning system based

on the neural network. They let a 6-DOF manipulator learn

to insert a peg by relationship between position and force

sensing values, and output velocities.

Research have also been done on exploiting passive com-

pliance in peg-in-hole, and they focus on special devices

to help a robot with insertion. Southern and Lyons [10]

analyzed the usefulness of a passive accommodation device

in robotic insertion processes. Haskiya W., Maycock K. and

Knight J. [11] developed a hardware frame attached to a peg,

in order to ensure good insertion.

Past research on a passively compliant robot also considers

safety. Zinn and etc [12] developed DM2 with a passive

spring in a joint to ensure safety and good force control

behavior. They used two actuators per a joint for a manip-

ulator to have a flat force-control bandwidth over the entire

range. Morita and Sugano [13] proposed MIA which has 7

passive compliant joints with variable stiffness springs and

dampers. They used this arm to develop safety strategies. Yun

and etc. [14] proposed a safe robot arm based on a torsional

spring, a variable viscosity damper and soft skin.
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Fig. 1. a rotational passive compliant robot joint with a torsional spring
and a damper

III. HOW TO IMITATE HUMAN’S CONTACT MOTION?

In this paper, a robot manipulator has passive compliance

by adding torsional springs and dampers to joints, and learns

like a human by reinforcement learning.

While robot manipulators have a precise and quick move-

ment in free space and clearly ourperform a human, contact

motion of a human outperforms that of a robot even though

a robot manipulator generally has a much faster sampling

time and preciser sensors. Humans do not decide and re-

evaluate motion thousands of times per second. As for peg-

in-hole, tons of research proves that a human is much better

at this kind of contact motions, because no human has trouble

in this simple job. We believe this difference comes from

two aspects of human manipulation: passive compliance and

learning.

A. Passive compliance

The nature of muscles gives a human passive compliance

in one’s arm. Instead of reacting quickly at contact by accu-

rate force sensing and high powered actuators, the muscles

make an arm adapt to the external shape(hole in case of peg-

in-hole) or force so that it may have high stability and a slow

sampling time. Research on a series elastic actuator [15] have

shown that passive compliance can greatly enhance stability

of force control.

A torsional spring serially connected to an actuator pro-

vides our manipulator with passive compliance as shown

in Fig 1. A damper is also added in order to reduce high

frequency vibration and to dissipate some energy. Values of

the spring constants and the damping ratios will be shown

in Section IV-A, which are selected for a manipulator to

have less than 10mm deflection by gravity when it is fully

stretched horizontally. Note that springs can be deflected

not only by gravity but also by dynamics of a manipulator.

Therefore, this amount of the deflection appears huge in a

view of traditional approaches in which extreme precision

and high speed are the virtues of manipulation. However,

we will show that a flexible arm can be better at the contact

motion even with this deflection.

B. Learning

Learning is another big challenging issue for a robot.

Whereas most robots make a decision only based on the

peg

hole

Torsional

spring

Fig. 2. A system is composed of a 3-DOF manipulator with passive
compliant joints and the environment including a hole

current states, accumulated experience shapes manipulation

skills of a human. We use reinforcement learning, because

it resembles a way a human learns. A simple structure of

reinforcement learning is developed to prove our hypothesis.

Details are shown in Section IV-B.

IV. PEG-IN-HOLE BY REINFORCEMENT LEARNING

We solve a 2D peg-in-hole problem by the passive com-

pliant joints and reinforcement learning. A square peg and

a hole are implemented in the environment where contact

model is a virtual spring, and a 3DOF manipulator is

modeled with passive compliance. A robot learns its control

policy by a policy gradient method [16].

A. System description

A system diagram including a manipulator and the en-

vironment is shown in Fig 2. Dynamic equations of a

3DOF manipulator with passive joints are obtained and

implemented in MATLAB. More specifically, we assume:

• Each link has its point mass at the end tip.

• A peg and a hole are square.

• Contact between a peg and a hole is elastically modeled.

• No friction at contact

• No gravity

Considered parameters in the dynamic equations are fol-

lowing:

• state x = [θ1,θ2,θ3,ϕ1,ϕ2,ϕ3, ] , where θ is a joint angle

and ϕ is a spring displacement

• J,M: inertia of actuators and mass of links

• L: length of links

• K,b: spring constant and damping of the passive joints

Lengths and Inertia are given by considering the size of an

adult human. The parameter values used in the simulation

are shown in Table I.

Every possible case of the contact and corresponding force

vectors are shown in Fig 3, and it shows contact happens at

only four points: The left and right lower-corners of a peg,

and the left and right upper-corners of a hole, if a peg is

rectangle and so is a hole.

Simulation runs by a 4th order of Runge-Kunta with a

1kHz sampling time.
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parameters 1st joint 2nd joint 3rd joint

Point mass(kg) 0.5 0.5 0.1
link length(m) 0.3 0.3 0.05

inertia of actuators(kgm2 ) 0.1 0.1 0.01
stiffness(Nm/rad) 50 20 5

damping constant(Nm/rad2 ) 1.0 1.0 0.2

TABLE I

PARAMETERS OF A MANIPULATOR

(a)

(b)

(c)

Fig. 3. Possible contacts and corresponding force vectors at (a)lower left
corner of a peg (b)lower right corner of a peg (c)upper corners of a hole

B. Algorithm for updating a policy by reinforcement learning

In order to find the optimal control policy, we implement

a gradient descending method [16] with a slow control

sampling time.

To exploit reinforcement learning techniques for discrete

space, we use the tiling method [16], [17] in which the state

space is divided into grids that have parameters of the policy.

In general we make the grids for every state. However, our

system has 6 states of joint angles and velocities, and cover-

ing the whole workspace requires a huge size of dimensions.

To reduce them, we propose two methods. Firstly, we assume

that a manipulator always starts from the estimated starting

position which is nearby the hole so that we focus only

around that position. We narrow down the space for the tiles
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Fig. 4. Proposed tiling: (a) tiles for x, y and θ around the estimated starting
position (b) overlayed x and y grids on the workspace of the manipulator

to 150mm×150mm×60◦ in Cartesian space. Each state has

11 bins which cover −75 ∼ +75mm, −30 ∼ +120mm and

−30◦ ∼ +30◦ for x, y and θ from the hole. The bins in 3-

dimensional space and x,y grids are shown in Fig 4.

Each bin has three parameters: wx, wy and wθ denoting

two forces and one torque. Control inputs for the joints are

given by projecting them on Jacobian of the manipulator.

τ = JT





wx

wy

wθ





Since the system has a continuous domain of the states,

parameters of a policy at a arbitrary point is interpolated by 8

neighborhood grid points. This is trilinear interpolation that

interpolates a point within a 3D box [18], and convergence

of the reinforcement learning parameters is proven with this

method [19].

Given the space of the grids, the policy update algorithm

works as in Algorithm 1. Firstly, gaussian noises are added

to control inputs from the policy.

u = w+ Z

Z ∽ N (~0,~σ2)

where w is a policy and u is a control input. This perturbation

occurs every control sampling time - 0.01 sec in our simu-

lation. Note that the sampling is very slow considering the
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contact motion, since it is known that manipulation for the

contact motion requires over 1kHz sampling rate to ensure

stability.

Algorithm 1 Policy gradient learning algorithm for peg in

hole

1: for Each trial do

2: Starts randomly deviated from the estimated starting

position

3: Obtain E(w) by simulation without noise

4: for Each control sampling time do

5: Add a gaussian noise Z to control input

6: end for

7: Obtain E(w+ Z)
8: Update the policy by the difference between the value

functions

9: end for

The policy is updated by the gradient descending method:

∆w = −η(E(w+ Z)−E(w))eN

where η is a matrix of learning rates, E(·) is a value function

defined as the sum of the cost function:

E(w) =
N

∑
n=1

g(x,u)

and eN is an eligibility vector, updated by:

ek+1 = ek +
Z

σ2

The unperturbated value function is obtained by simulation

without noise. We select the cost function as the sum of the

position and the force error.

g(x,u) = C1‖x− xD‖
2

when

|k1ϕ1|+ |k2ϕ2|+ |k3ϕ3| < Γ

otherwise,

g(x,u) = C1‖x− xD‖
2 +C2(|k1ϕ1|+ |k2ϕ2|+ |k3ϕ3|)

where xD is hole position, k1 ∼ k3 are spring constants, Γ is

a threshold for the force error, and C1 and C2 are constants.

Note that we do not use explicit force but measured torques

by the spring displacements.

C. Learned motion and performance

We assume a completely deterministic system with no

noise. We consider noise in Section V-B. A policy is updated

300 times with 2sec duration. We use a 40mm width peg

and a 50mm hole for training. The manipulator starts from

around the randomly estimated starting position.

The learning curve is shown in Fig 5. After 300 trials, the

robot can successfully insert the peg with 100% success. We

see a trial as a success when the bottom of the peg approaches

within 5mm of the hole bottom. Learned parameters of the

policy at θ = 0 are visualized in Fig 6. These patterns can be
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Fig. 5. Learning curve of reinforcement Peg-in-hole learning
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Fig. 6. Learned parameters at θ = 0: (a)wx (b)wy (c)wθ
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(a)

(b)

Fig. 7. Learned patterns (a)a peg comes from the right side (b) from the
left side

understood intuitively: wx pushes a manipulator to the goal

position, wy always pulls it down to the goal and wθ rotates

it to the vertically straight.

The robot has learned two patterns according to which

side it approaches from: it rotates a peg clockwise a little

when it comes from the right side of the hole, while it let a

peg just slide on the surface when approaching from the left

side. The patterns are shown in Fig 7

V. DOES PASSIVE COMPLIANCE REALLY HELP?

The proposed algorithm has made a robot learn peg in hole

in the environment with no noise. However, it is not clear that

how much of this success came from the passive compliance.

Now we want to see whether passiveness really helps a robot

with the contact motion. We compare simulation results from

various stiffness ranges of torsional springs, and also address

that the passive compliance gives high robustness to noise.

A. Performance degradation with stiffer springs

Simulations are implemented in a way that they have the

same condition except for the spring constants. Manipulators

with 2×, 3×, 4×, 8×, and 100× stiffness learn peg-in-hole

with 300 trials, and the learning curves are shown in Fig 8.

With the learned policies, they try peg-in-hole 50 times, and

success ratios are noted in Table II.

The result describes that we have a slower learning rate

as the stiffness increases. With almost rigid links (100×
stiffness), the learning curve does not even converge. This

does not directly mean a robot with rigid links cannot learn

peg-in-hole by the proposed learning structure. However, at

least we can say that we need to be more careful and a

learning rate can be slower when we use a stiffer manipulator.

With the proper stiffness of the passive compliant joint, a

robot appears like being able to learn the contact motion

more aggressively and efficiently.

In addition, the same policy works for 0.5mm gap between

a peg and a hole even though we trained a manipulator

with 10mm gap. Not surprisingly, this comes from a good

adaptability of the passivity.
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Fig. 8. Learning curves of manipulators with various spring constants

Stiffness Success ratio

original 100%
2× 90%
3× 50%
4× 0%
8× 0%

TABLE II

SUCCESS RATIOS OF THE MANIPULATORS WITH THE VARIOUS SPRING

CONSTANTS

B. Robustness to noise

We have trained our manipulator in the noise-free envi-

ronment. However, difficulties of the contact motion emerges

from uncertainty. We may not know the exact relative posi-

tion of a hole from a coordinate of a robot, or a robot may

not perfectly follow the control command even if we know

the right position. Furthermore, signal from a force sensor is

quite noisy.

In order to incorporate the uncertainty and to find out a

role of the passive compliance in this case, we add gaussian

noises to all the encoders so that a robot has force errors

as well as position errors. Note that it senses forces by the

angular displacements of the torsional springs. The noises

are given:

ξ ∽ N (~0, ~σn
2)

where three kinds of σn are chosen as following:

σn = {0.01,0.02,0.04}

The maximum value of the nosies is bounded by 2σn.

By experiments, we figured out that the smallest size of

the noise σn = 0.01 causes maximum ±17mm and ±3.5◦

error of a peg position and ±1.5Nm force error. Considering

the width of the peg(40mm) in the simulations, this noise

is large. Note that the previous research on reinforcement

learning deal with much smaller noise [8], [9]. The larger

noises will yield more errors in a proportional way.

Three simulations of reinforcement learning are imple-

mented according to each size of ξ with 1×, 2×, 3× and
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Conditions/Stiffness 1× 2× 3× 4×
σn = 0.01 100% 95% 0% 0%
σn = 0.02 100% 70% - -
σn = 0.04 82% 14% - -

TABLE III

SUCCESS RATIOS WITH NOISES

Stiffness Success ratio

original 100%
2x 58%
3x 46%

TABLE IV

SUCCESS RATIOS WITH 0.1SEC CONTROL SAMPLING TIME

4× stiffness. Each simulation has 300 trials, and the learned

policies are evaluated in 50 tests. The success ratios are

shown in Table III.

The result describes that the robots with low stiffness

still have high chances of success with noise. The robot

with the default stiffness shows almost perfect performance

regardless of the size of noise. The second robot also

shows robust success ratios though it decrease rapidly as

noise increases. The other two robots’ performance drops

to nothing even with the smallest noise. The result implies

passive compliance also provides with more robustness to

noise.

C. Slower control sampling time

Now we see whether we can have a slower control

sampling time. Given manipulators with the original, 2x,

and 3x stiffness, the same simulations have been done with

10Hz control sampling. Results are noted in Table IV. The

original stiffness still produces perfect successes even with

ten times slower sampling time, and performances of the

others are slightly degraded. Considering that a sampling

time is critical for stability and force control performance,

the passive compliance gives a large margin for a controller

to learn peg in hole.

VI. CONCLUSION

We show that imitating human’s manipulation in hardware

and software, with a compliant manipulator and reinforce-

ment learning, brings a convenient way of solving a 2D peg-

in-hole problem. We design a manipulator with a torsional

spring and a damper in every joint, in order to passively

adapt a peg to the environment. The gradient descending

method is implemented for learning. To reduce dimensions,

we assume a small area of peg-in-hole motion and a slow

movement. The cost function reflects both of the position

and force error. We see 300 trials allows the perfect peg-

in-hole motion. By comparison among various stiffness and

noises, we show that the passive compliance greatly helps

with the contact motion and it yields more stability and a

slower sampling time. We think that is what a human does.

In future, we want to include a more noble model of the

contact. Also more efficient and realistic estimation of the

value function is required to use the proposed method in the

real world. Dynamic insertion is another challenging issue.
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