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Abstract— This paper presents an efficient algorithm to com-
pute independent contact regions on the surface of complex 3D
objects such that a finger contact anywhere inside each of these
regions assures a force-closure grasp despite the exact contact
position. Independent contact regions provide robustness in
front of finger positioning errors during an object grasping,
and give relevant information for finger repositioning during
the object manipulation. The object is described with a mesh
of surface points, so the procedure is applicable to objects of
any arbitrary shape. The proposed approach uses information
from the wrench space, and generates the independent regions
by growing them around the contact points of a given starting
grasp. A two-phase approach is also provided to find a locally
optimum force-closure grasp that serves as starting grasp,
considering as grasp quality measure the largest perturbation
wrench that the grasp can resist with independence of the
perturbation direction. The approach has been implemented
and several examples are provided to illustrate its performance.

Index Terms— Frictional grasp, independent contact regions.

I. INTRODUCTION

Grasp synthesis for real world complex objects that assure

the immobility of the object despite the influence of external

disturbances has been a topic of great interest in grasping and

manipulation of objects. These grasps satisfy the properties

of form or force-closure [1]. In a form-closure grasp the

position of the contacts ensure the object immobility; this

property is mostly used in the fixture design for object

inspection or to do some action on it, basically when the

task requires a grasp that does not rely on friction. When the

forces applied by the fingers ensure the object immobility,

the object is in a force-closure grasp; this is commonly used

in grasp and manipulation of objects with frictional contacts.

The synthesis of force-closure grasps has been tackled

mainly for precision grasps (i.e. grasps formed by a set of

particular finger contact points on the object surface) in 2D

polygonal [2] or non-polygonal objects [3], 3D polyhedral

objects [4], objects with smooth curved surfaces [5] or 3D

discretized objects [6].

In a real world execution, the actual and the theoretical

grasp may differ due to finger positioning errors; to provide
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robustness in front of these errors, the computation of

independent contact regions (ICRs) on the object boundary

was introduced [7]. Each finger can be positioned on an ICR

assuring a force-closure (FC) grasp, with independence of

the exact position of each finger. The determination of ICRs

has been solved for 2D polygonal [8] and non-polygonal

objects [9], and for 3D polyhedral objects [4] [10]. The

ICRs have also been used to determine contact regions on

3D objects based on initial examples, although the results

depend on the chosen example [11].

A previous work of the authors [12] presented an algorith-

mic approach to compute ICRs for frictionless contacts on

3D discrete objects; this paper extends the previous approach

to determine independent contact regions on a 3D discrete

object using any number n of frictional contacts (provided

that n ≥ 3). The proposed algorithm generates the ICRs by

growing them from a starting FC grasp. In order to use a

good starting FC grasp, a procedure to obtain a locally opti-

mum one is also proposed. The optimization procedure is an

oriented search that looks for the grasp that resists the largest

perturbation wrench, with independence of the perturbation

direction [13]. Then, the obtained ICRs assure a FC grasp

with a controlled minimum quality. The approach does not

take into account the kinematical constraints imposed by the

mechanical hand or gripper.

The rest of the paper is organized as follows. Section II

provides the required background on frictional grasps, in-

cluding the force-closure test and the quality measure used

in the paper. Section III presents the approach to compute a

starting FC grasp, and the algorithm to compute the indepen-

dent contact regions. Section IV shows the application of the

approach on different objects. Finally, Section V summarizes

the work and discusses some future applications.

II. PRELIMINARIES

A. Assumptions

The following assumptions are considered to compute the

independent contact regions for a frictional grasp on an

arbitrary 3D object:

• The object surface is represented with a large set Ω of

points, described by position vectors pi measured with

respect to a reference system located in the object’s cen-

ter of mass. Each point has an associated unitary normal

direction n̂i pointing toward the interior of the object.
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• The number of points in Ω is large enough to accurately

represent the surface of the object; each point is con-

nected with some neighboring points forming a mesh.

Coulomb’s friction model is used in this work, stating

that there is no slipping at the contact point if f t
i ≤ µfn

i ,

with fn
i and f t

i being the tangential and normal components

of the applied force, respectively, and µ being the friction

coefficient. In the three-dimensional physical space this is

a nonlinear model, defining a friction cone that includes

all the possible grasp forces. To simplify the model, the

cone is linearized with a m-side polyhedral convex cone

(the more sides the better the approximation, but the greater

the computational cost to deal with the linearized cone). The

grasping force at the contact point is given by

f i =

m
∑

j=1

αijsij , αij ≥ 0 (1)

with sij representing the normalized vector of the j-th edge

of the convex cone. The wrench produced by the force f i is

ω̃i =
m

∑

j=1

αijωij , ωij =

(

sij

pi × sij

)

(2)

where ωij are called the primitive contact wrenches. There-

fore, each contact point in the physical space has m asso-

ciated points in the wrench space, one for each edge sij

of the convex cone. Let ωi be the “normal contact wrench”

for the force f i, i.e. the primitive contact wrench in case

of a frictionless contact point, where the grasp forces can

only be applied in the direction normal to the object surface.

The relation between the normal contact wrench ωi and the

primitive contact wrenches ωij for the linearized friction

cone in a particular contact point is:

ωi =
1

m

m
∑

j=1

ωij (3)

For a given grasp G = {p1, . . . ,pn} the wrenches applied

through the contact points on the object are grouped in a

wrench set W = {ω11, . . . ,ω1m, . . . ,ωn1, . . . ,ωnm}. Each

physical point pi in Ω has a corresponding normal contact

wrench ωi in the wrench space; when it is clear, both of them

will be used to indicate a fixture constraint (in general, the

same wrench can be produced at different contact points).

B. Force-closure condition

A necessary and sufficient condition for the existence of

a FC grasp is that the origin of the wrench space lies strictly

inside the convex hull (CH) of the primitive wrench set [14].

This condition is employed in this work using the following

lemma.

Lemma 1: Let G be a grasp with a set W of contact

wrenches, I the set of strictly interior points of CH(W ),
and H a supporting hyperplane of CH(W ) (i.e. a hyperplane

containing one of the facets of CH(W )). The origin O of

the wrench space satisfies O ∈ I if and only if any P ∈ I
and O lie in the same half-space for every H of CH(W ).

O

C1

C2
H1

H2

ω1

ω2

ω3

Fig. 1. Synthesis of a FC grasp. The convex hull for the grasp set
F = {ω1, ω2, ω3} ∪ {0} (in continuous lines) defines the supporting
hyperplanes H1 and H2 that contain the origin. The convex set C1 contains
primitive wrenches corresponding to 3 points (depicted as white squares),
thus the algorithm provides 3 FC grasps, one of them illustrated with the
convex hull in discontinuous lines.

From Lemma 1, checking whether a given point P ∈ I
and the origin O lie in the same half-space defined by each

supporting hyperplane H is enough to prove whether O
lies inside CH(W ), i.e. to prove the FC property for the

grasp G. P is chosen as the centroid of the primitive contact

wrenches, which is always an interior point of CH(W );
therefore, the FC test checks whether the centroid P and

the origin O lie on the same side for all the supporting

hyperplanes of CH(W ).

C. Grasp quality measure

Several grasp quality measures have been proposed in

the literature [15]; this work uses as a quality measure the

largest perturbation wrench that the grasp can resist, with

independence of the perturbation direction [13]; this is one of

the most popular grasp quality measures. Geometrically, this

quality is the radius of the largest ball centered at the ori-

gin O of the wrench space and fully contained in CH(W ),
i.e. it is the distance from O to the closest facet of CH(W ).

III. COMPUTATION OF INDEPENDENT CONTACT REGIONS

A. Starting grasp for the ICR computation

The synthesis of a starting FC to be used for the search

of the ICRs is performed using two algorithms, the first one

generates an initial grasp with uncontrolled quality and the

second one uses it to generate a grasp with locally optimum

quality for the ICRs search. The initial FC grasp is obtained

using an algorithm presented in a previous work [16]. This

algorithm randomly choses n − 1 points from Ω, and the

convex hull CH(W ) of the primitive wrenches of the

selected points plus the origin O is computed, as illustrated

in Fig. 1 for a hypothetical 2D wrench space (the actual

wrench space is 6-dimensional). Two regions, C1 and C2,

are defined by the intersection of the half-spaces determined

by the supporting hyperplanes of CH(W ) that contain the

origin. If there is at least one primitive wrench lying in C1,

then the corresponding grasp point is added to the set F 1,

the conditions of the Lemma 1 are fulfilled and a FC grasp

is provided. If C1 is empty, the algorithm iteratively replaces
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Fig. 2. Optimization procedure. The set C of wrenches that improve the
actual quality (depicted as white squares in the gray area S) is defined by
the hyperplanes H′

1
and H′

2
= HQ. The grasp for the next iteration cycle,

F k = {ω1, ω2, ω3, ωr} is also shown.

one of the points in F 1 and performs another search of

points in the new C1, until it contains at least one primitive

wrench, i.e. until it finds at least one FC grasp. Further

details and discussion on the completeness and advantages

of the algorithm are provided in [16].

Algorithm 1: Search of an initial FC grasp

1) Generate a random set F k = {ω1, . . . ,ωn−1}, k = 1
2) Build W k = {ω11, . . . ,ω1m, . . . ,ωn−1 1, . . . ,ωn−1 m}

∪ {O}
3) Compute CH(W k)
4) Find C1 =

{

ωi | ωi ∨ ωi1 ∨ . . . ∨ ωim ∈
⋂

H+

l

}

and

C2 =
{

ωj | ωj ∧ ωj1 ∧ . . . ∧ ωjm ∈
⋂

H−

l

}

5) If C1 6= ∅ then return G = {ω1, . . . ,ωc}, with a

randomly chosen ωc ∈ C1

Else

Pick up a ωl /∈ C1 ∪ C2

Form F k+1 by replacing a ωi ∈ F k such that

dL2
(ωi, ωl) be a minimum. Proceed to Step 2

Endif

From the initial FC grasp a locally optimum one is

obtained to be used as the starting grasp of the ICR search

algorithm; it is done by looking for the grasp that resists

the largest perturbation wrench with independence of its

direction (Section II-C), using the following procedure:

Algorithm 2: Search of a locally optimum grasp

1) Find an initial FC grasp Gk = {ω1, . . . ,ωn}, k = 1,

with the corresponding wrench set W
2) Compute CH(W ) and determine HQ such that the

distance D to the origin is a minimum. The current grasp

quality is Qk = DQ

3) Build T = {ω̃j , | ‖ω̃1‖ ≤ . . . ≤ ‖ω̃j‖}, j = 1 . . . J
(J ≤ n) such that at least one ω̃jm lie on HQ

4) Initialize j = 1. For the hyperplanes Hl of CH(W )
containing at least one primitive wrench of ω̃j , build the

hyperplanes H ′

l containing all the primitive wrenches not

belonging to ω̃j and lying to a distance Qk from the

origin O
5) Let S =

⋂

H ′

l

+
, with H ′

l

+
the half-space such that

O /∈ H ′

l
+

. Find C = {ωi | ωi ∨ ωi1 ∨ . . . ∨ ωim ∈ S}

O

Q

HQ S1S2

S3

S4

ω1

ω2

ω3

ω4

Fig. 3. Search of the independent contact regions. The search zones Si

for each grasp point are depicted in gray, and the neighbor points within
each ICR are depicted as white squares.

6) If C = ∅ and j 6= J
Let j = j + 1. Proceed to Step 4

Elseif C = ∅ and j = J
A local maximum has been reached; return Gk

Elseif C 6= ∅
Replace ω̃j with a random ωr ∈ C. Let k = k +1. Go

to Step 2
Endif

Fig. 2 illustrates the procedure in a hypothetical 2D

wrench space. Step 3 looks for the grasp points that con-

tribute with at least one primitive wrench to the facet FQ

defining the current grasp quality, and sorts them according

to its norm. Step 4 builds the hyperplanes required to find the

points that improve the actual grasp quality; the parameters

of H ′

l are computed from a set of linear equations (all the

primitive wrenches not belonging to the actual ω̃j must lie

on H ′

l ) and one non linear equation (distance of H ′

l to the

origin equal to Qk). The set of equations admit 2 solutions;

the hyperplane required is that one leaving O and ω̃j in

different half-spaces. Step 5 looks for the points that have

at least one primitive wrench lying in S; one of these points

will be a new grasp point. The procedure is followed until

finding a local maximum, which implies that there are no

more points that improve the actual quality Qk.

Note that Steps 3 to 6 do not involve an explicit FC test;

the procedure is based on pure geometric reasoning that

avoids such test, thus reducing the computational complexity

when compared to previous works [16]. The total number

of iterations required to reach the local maximum depends

directly on the number of local maximums in the wrench

space, i.e. it is directly related with the object to be grasped.

B. Computation of the independent contact regions

The computation of the independent contact regions

(ICRs) ensuring a minimum grasp quality Q is based on

an arbitrary starting grasp fulfilling the FC property. In this

work a locally optimum grasp, obtained with the procedure

described above, is used as the starting grasp.

For a given FC grasp, the grasp quality Q is fixed by

the facet FQ of the convex hull closest to the origin. Let

Fk denote a facet of CH(W ) which contains at least

one primitive wrench for a particular grasp point pi. The
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proposed approach builds several hyperplanes H ′′

k parallel to

each facet Fk, but lying at a distance D = Q of the origin

of the wrench space (i.e. they are tangent to the hypersphere

of radius r = Q), as illustrated in Fig. 3 for a hypothetical

2D wrench space. These hyperplanes define Si, the search

zone containing the ICR for the grasp point pi; Si is the

intersection of the half-spaces H ′′

k

+
which do not contain

the origin O. The ICR is determined by the set of neighbor

points of pi such that at least one of its primitive wrenches

falls into the corresponding search zone Si. The steps in the

algorithm are:

Algorithm 3: Search of the independent contact regions

1) Find a locally optimum FC grasp, G = {ω1, . . . ,ωn}
2) Fix the minimum acceptable quality Q
3) Build the hyperplanes H ′′

k such that DH′′

k
= Q

4) Let Si =
⋂

H ′′

k

+
with H ′′

k

+
the half-space such that

O /∈ H ′′

k
+

(i.e. ωi ∨ ωi1 ∨ . . . ∨ ωim ∈ Si)

5) Initialize Ii = {ωi}. Label the points in each Ii as open

6) Check the neighbor points ωp of every open point

ωj ∈ Ii

If ωp ∨ ωp1 ∨ . . . ∨ ωpm ∈ Si

Ii = Ii ∪ {ωp}; label ωp as open

Endif

Label ωj as closed

7) If there are open points in Ii, go to Step 6. Otherwise,

the algorithm returns the set of points Ii, i.e. the ICR for

the contact point pi. Steps 3 to 7 are repeated for the

rest of the contact points, i = 1, . . . , n.

Note that algorithm 3 is computationally very simple. In

Step 3, the hyperplanes H ′′

k are computed for the corre-

sponding facets Fk of CH(W ). Let Hk be the hyperplane

containing the facet Fk, described as

ek · x = e0k (4)

The hyperplane H ′′

k parallel to Hk but lying to a distance

D = Q from the origin is

ek · x = e′0k, with e′0k = Q ‖ek‖ (5)

Therefore, only the computation of the scalar value e′
0k is

required to build each hyperplane H ′′

k . Step 4 only identifies

for every hyperplane the closed half-space H ′′

k
+

that does

not contain the origin, and forms the search zones Si; note

that the selection of any arbitrary point from each Si always

generates a FC grasp. Step 6 is the more complex step in

the algorithm; every checked point involves its classification

with respect to the number of hyperplanes Hk that contain

at least one primitive wrench for the contact point pi.

The procedure can also be applied to generate ICRs with

contact points that produce a lower grasp quality Qr = αQ,

with 0 < α < 1 and Q the quality of the starting grasp. This

is achieved considering a hypershpere of radius Qr instead

of Q in the procedure described above. When α → 0, the

ICRs contain FC grasps without a lower limit on the grasp

quality. In fact α = 0 is a forbidden value, as it does not

assure that any CH(W ) will strictly contain the origin O.

a) b)

Fig. 4. Objects used to illustrate the approach: a) Parallelepiped discretized
with a mesh of 3422 triangles, b) Workpiece discretized with a mesh of
3946 triangles.

The number of points in every ICR may be different for

each pi, depending on factors such as the level of detail in

the representation of the object surface and the smoothness

of the surface, i.e. the rate of change in the normal vectors

around the contact location. Finally, considering the ICRs

for each finger, several grasps can be formed when each

finger is placed in a different position inside its ICR; the

geometrical procedure assures that all these grasps satisfy

O ∈ CH(W ) and have a quality Q > Qr. However, the

obtained ICRs depend on the starting grasp; the search of

the optimal ICRs is not addressed in this paper, but it is an

interesting issue to explore in the future.

IV. APPLICATIONS

The algorithms presented above have been implemented

in Matlab on a Pentium IV 3.2 GHz computer, and the

performance is illustrated using the two objects shown in

Fig. 4, whose boundary is described by a triangular mesh.

The contact points pi are the centroids of the triangles in the

mesh, and the corresponding surface normal directions are

the directions normal to the triangles. Two points are consid-

ered neighbors if its corresponding triangles share an edge.

The first object is a parallelepiped described with a

mesh of 3422 triangles; the frictional grasps are computed

considering 4 fingers and a friction coefficient of µ = 0.2,

and the friction cones have been linearized with an 8-side

polyhedral convex cone. Fig. 5 shows an instance of the

results obtained with the proposed approach. Algorithm 1

provides the first FC grasp (Fig. 5a) in 2.2 seconds and 0

iterations, plus other 5 possible FC grasps (corresponding

to the points whose primitive wrenches fall in the set C1).

Algorithm 2 optimizes this grasp to get the locally optimum

FC grasp (Fig. 5b) in 110 seconds and 25 iterations. Fig. 6

plots the evolution of the grasp quality in the optimization

phase; the quality always increases monotonically until it

finds the locally optimum grasp. The local optimum depends

on the initial grasp; in this example, the initial grasp quality

is 0.015, and the locally optimum grasp quality is 0.185; the

improvement factor, i.e. the ratio between the quality of the

optimized grasp and the initial FC grasp is 12.3.

Algorithm 3 provides the corresponding independent con-

tact regions (Fig. 5c) in 70 seconds, using as minimum

quality Qr = 0.139 (α = 0.75). The points within the ICRs

may be combined to obtain 45000 different grasps; Fig. 7
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a) b) c)

Fig. 5. Computation of ICRs on a parallelepiped: a) Initial FC grasp, Q = 0.015 (Algorithm 1), b) Locally optimum FC grasp, Q = 0.185 (Algorithm 2),
c) Independent contact regions for each finger, Qr = 0.139 (Algorithm 3).
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Fig. 6. Performance in the optimization phase (Algorithm 2) for the
parallelepiped: increase in the grasp quality.
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Fig. 7. Grasp quality distribution for all the possible grasps within the
ICRs on the parallelepiped for Qr = 0.139 (α = 0.75).

shows the quality distribution for all these possible grasps.

Obviously, for lower minimum grasp qualities the size

of each ICR grows; Fig. 8 shows the ICRs for other two

different minimum grasp qualities given by α = 0.5 and

α = 10−5 ≈ 0 (in the last case without a limit in the lower

grasp quality). Finally, Fig. 9 shows a comparison between

the ICRs generated for the same minimum quality, but

computed from the initial and the locally optimum FC grasp;

despite that the ICRs assure the same minimum quality for

every possible grasp inside them, the size of the ICRs is

larger for the second case, thus justifying the use of the

optimization in the proposed approach.

The second object is a workpiece proposed in [5], dis-

cretized with 3946 triangles (Fig. 4b); the approach is

initially applied for n = 4 fingers, µ = 0.2, and frictional

cones linearized with m = 8 sides. Fig. 10 shows the

results for an ICR search on the workpiece. Algorithm 1

provides the first FC grasp with no iterations in 2.3 seconds,

and it is optimized with Algorithm 2 after 29 iterations

in 114 seconds. The grasp qualities are 0.035 and 0.174

for the initial and locally optimum FC grasps, respectively,

a) b)

Fig. 8. Independent contact regions on the parallelepiped with different
minimum quality: a) Qr = 0.093 (α = 0.5), b) Qr ≈ 0 (α = 10−5).

a) b)

Fig. 9. Independent contact regions on the parallelepiped with the same
minimum quality, Qr = 0.005, but computed from: a) the initial grasp,
b) the locally optimum grasp.

with an improvement factor of 5. Algorithm 3 provides the

corresponding ICRs, with Qr = 0.131 (α = 0.75), in 66

seconds. The points within the ICRs allow 320 different

grasps; Fig. 11 shows the quality distribution for all these

possible grasps. Fig. 12 shows the ICRs for two additional

quality ratios: α = 0.5 and α = 10−5.

Fig. 13 shows the obtained ICRs for the same optimum

FC grasp in Fig. 10b, but using a different version of

Algorithm 3 which considers all the wrenches inside the

search zone Si to be part of the ICR for each finger, i.e. it

does not consider neighbors in the search of the ICRs, and

the ICRs may be composed of non contiguous contact points.

In the example of Fig. 13 one finger has an ICR composed

by two disjoint zones (compare with Fig. 12b), because the

wrenches of the points are neighbors in the wrench space,

although physically the points are not neighbors at all on the

object boundary. Finally, Fig. 14 shows another instance of

ICR computation, now for a 5-finger grasp and µ = 0.1.

V. SUMMARY

The computation of independent contact regions for fric-

tional contacts has been tackled with an approach that

includes two parts, the search of a starting grasp (obtained as

the optimization of an initial FC grasp) and the computation
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a) b) c)

Fig. 10. Example on a workpiece: a) Initial FC grasp, Q = 0.035 (Algorithm 1), b) Locally optimum FC grasp, Q = 0.174 (Algorithm 2), c) Independent
contact regions for each finger, Qr = 0.131 (Algorithm 3).
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Fig. 11. Grasp quality distribution for all the possible grasps within the
ICRs on the workpiece for Qr = 0.131 (α = 0.75).

a) b)

Fig. 12. Independent contact regions on the workpiece with different
minimum quality: a) Qr = 0.087 (α = 0.5), b) Qr ≈ 0 (α = 10−5).

of the ICRs for the locally optimum grasp. The algorithms

were implemented and the execution results, as the examples

shown in the paper, illustrate the relevance and efficiency of

the approach.

The presented approach can be applied to search ICRs

starting from any provided FC grasp, and the proposed

algorithm ensures a controlled minimum quality for any

number of fingers (n ≥ 3). Future works include the

determination of ICRs for frictional contacts when k contact

locations are fixed beforehand, and the application of such

algorithm in manipulation tasks (these issues are currently

under development), and the consideration of fingers with a

finite contact area.
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