
Minimum Volume Bounding Box Decomposition for
Shape Approximation in Robot Grasping

Kai Huebner, Steffen Ruthotto and Danica Kragic

Abstract— Thinking about intelligent robots involves con-
sideration of how such systems can be enabled to perceive,
interpret and act in arbitrary and dynamic environments.
While sensor perception and model interpretation focus on the
robot’s internal representation of the world rather passively,
robot grasping capabilities are needed to actively execute tasks,
modify scenarios and thereby reach versatile goals. These
capabilities should also include the generation of stable grasps
to safely handle even objects unknown to the robot. We believe
that the key to this ability is not to select a good grasp depending
on the identification of an object (e.g. as a cup), but on its shape
(e.g. as a composition of shape primitives). In this paper, we
envelop given 3D data points into primitive box shapes by a
fit-and-split algorithm that is based on an efficient Minimum
Volume Bounding Box implementation. Though box shapes are
not able to approximate arbitrary data in a precise manner, they
give efficient clues for planning grasps on arbitrary objects. We
present the algorithm and experiments using the 3D grasping
simulator GraspIt! [1].

I. INTRODUCTION

In the service robot domain, researchers and programmers
provide each robot with manifold tasks to do in order to
aid and support, e.g. clearing a table or fill a dishwasher
after lunch. The knowledge about such aims might be either
hard-coded or learned in a more intelligent manner, e.g. by a
person teaching the robot how to clear a table. Such scenarios
are known as Learning- or Programming-by-Demonstration
applications. However, whether in an office, in health care
or in a domestic scenario, a robot has to finally operate
independently to satisfy various claims. Thus, the handling
of objects is a central issue of many service robot systems.
Robot grasping capabilites are therefore essential to actively
execute tasks, modify scenarios and thereby reach versatile
goals in an autonomous manner.

For grasping, numerous approaches and concepts have
been developed over the last decades. Designing grasping
systems and planning grasps is difficult due to the large
search space resulting from all possible hand configurations,
grasp types, and object properties that occur in regular
environments. Early work on contact-level grasp synthesis
focused mainly on finding a fixed number of contact lo-
cations without regarding hand geometry [2]. Considering
specifically object manipulation tasks, the work on automatic
grasp synthesis and planning is of significant relevance [3],
[4], [5]. The main issue here is the automatic generation
of stable grasps assuming that the model of the hand is

All authors are or were with the KTH – Royal Institute of Technology,
Stockholm, Sweden, as members of the Computer Vision & Active Per-
ception Lab., www home page: http://www.csc.kth.se/cvap,
e-mail addresses: {khubner, ruthotto, danik}@kth.se.

known and that certain assumptions about the object (e.g.
shape, pose) can be made. Taking into account both the hand
kinematics as well as some a-priori knowledge about the
feasible grasps has been acknowledged as a more flexible
and natural approach towards automatic grasp planning [4].
It is obvious that knowledge about the object shape, as also
the task on hand, is quite meaningful for grasp planning [6].

This is important for our scenario, in which we aim at
providing a robot actuator system with a set of primitive
actions, like pick-up, push or erect an arbitrary object on a
table. For performing such basic actions, an object has to
be modeled from 3D sensory input, e.g. from range or dense
stereo data. However, we state the question up to which detail
this is necessary in terms of grasping.

II. MOTIVATION

Modeling range data is a crucial, but also difficult task
for robot manipulation. The source data offered by range
sensors or dense stereo camera systems is a more or less
distorted and scattered cloud of 3D points of the scenario. A
higher-level representation of these points as a set of shape
primitives (e.g. planes, spheres or cylinders) obviously gives
more valuable clues for object recognition and grasping by
compressing information to their core. Most approaches that
consider this problem are likewise bottom-up, starting from
point-clouds and synthesizing object shapes by using su-
perquadrics (SQs). Superquadrics are parametrizable models
that offer a large variety of different shapes. Considering the
problem of 3D volume approximation, only superellipsoids
are used out of the group of SQs, as only these represent
closed shapes. There is a multitude of state-of-the-art ap-
proaches based on parametrized superellipsoids for modeling
3D range data with shape primitives [7], [8], [9], [10].

Assuming that an arbitrary point cloud has to be ap-
proximated, one SQ is not enough for most objects, e.g. a
screw or an office chair (see Fig. 1). The more complex
the shape is, the more SQs have to be used to conveniently
represent its different parts. However, good generality is not
possible with few parameters for such cases [7]. Besides
the advantages of immense parametrization capabilities with
at least 11 parameters, intensive research on SQs has also
yielded disadvantages in two common strategies for shape
approximation. The first strategy is region-growing, starting
with a set of hypotheses, the seeds, and let these adapt to
the point set. However, this approach has not proved to be
effective [8] and suffers from the refinement problem of
the seeds [10]. The second strategy uses a split-and-merge

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 1628

technique. Splitting up a shape and merging parts again is
more adapted to unorganized and irregular data [8].

Independent of the strategy used, the models and seeds,
respectively, have to be fitted to the 3D data. This is usually
done by least square minimization of an inside-outside fitting
function, as there is no analytical method to compute the
distance between a point and a superquadric [9]. Thus, SQs
are though a good trade-off between flexibility and compu-
tational simplicity, but sensitive to noise and outliers that
will cause imperfect approximations. This is an important
issue, as our work is oriented towards the use of dense stereo
accompanied by highly distorted and incomplete data.

We observed that modeling 3D data by shape primitives
is a valuable step for object representation [11]. Sets of such
primitives can be used to describe instances of the same
object classes, e.g. cups or tables. However, it is not our
aim to focus on such high-level classifications or identifi-
cation of objects, but on grasping. We moreover approach
a deeper understanding of objects by interaction instead of
observation for that purpose, e.g., if there is an object that
can be picked up, pushed and filled, it can be used as a
cup. Processing an enormous number of data points takes
time, both in approaches that use the raw points for grasp
hypotheses and in those that approximate as good as possible
by shape primitives. In this context, a question remains:
how rudimentary can a model of a thing be in order to be
handled successfully and efficiently? While comparable work
is placed mostly at extrema of this scale, e.g. by using pairs
of primitive feature points [12] or a-priori known models for
each object [11], we are interested in looking into which
primitive shape representations might be sufficient for the
task of grasping arbitrary, unseen objects.

We believe that a mid-level solution is a promising trade-
off between good approximation and efficiency for this pur-
pose. Complex shapes are difficult to process, while the sim-
ple produce worse approximation. However, we can access
valuable methods to handle approximation inaccuracies for
grasping like haptic feedback, visual servoing and advanced
grasp controllers for online correction of grasps. We prefer
general fast online techniques instead of pre-learned offline
examples, thus the algorithm’s efficiency is the more impor-
tant issue. Unknown objects are hardly parametrizable but
need real-time application for robot grasping. A computation
in terms of minutes for a superquadric approximation is
therefore not feasible.

We adopt these motivations to propose an algorithm based
on boxes as a mid-level representation. In our approach,
we combine different incentives on simplicity of boxes,
efficiency of hierarchies and fit-and-split algorithms:

1) We aim for simplicity stating the question if humans
approach an apple for grasping with their hand in
another way as they approach a cup, or a pen in another
way as a fork? While there are surely differences in
fine grasping and task dependencies, differences in
approaching these objects seem quite marginal.

2) Computational efficiency of hierarchies was pointed
out in several other approaches that compose models

with use of superquadric primitives [7], [9], [13].
3) While seed growing as a bottom-up strategy has several

drawbacks, and a split-and-merge strategy both needs
top-down (split) and bottom-up (merge), fit-and-split
algorithms are purely top-down and thereby iteratively
implementable in a one-way hierarchical manner.

Following our primary incentive, we chose boxes as a very
simple and roughly approximating representation.

III. ALGORITHM

A. Computing Bounding Boxes

The algorithm of minimum volume bounding box compu-
tation proposed by Barequet and Har-Peled [14] will form
the base for our approach. Given a set of n 3D points, the
implementation of the algorithm computes their Minimum
Volume Bounding Box (MVBB) in O(n log n + n/ε3) time,
where ε is a factor of approximation. The algorithm is
quite efficient and parametrizable by several optimizations.
Performing the computation on an arbitrary point cloud, a
tight-fitting, oriented MVBB enclosing the data points is
produced (see the example in Fig. 1).

B. Decomposition of MVBBs

Based on this algorithm, we aim at iteratively splitting
the box and the data points, respectively, such that new
point sets yield better box approximations of the shape.
Iterative splitting of a root box corresponds to the build-up
of a hierarchy of boxes. Gottschalk et al . [15] present the
OBBTree (Oriented Bounding Box Tree) for this purpose,
where the goal is efficiently collision detection between
polygonal objects. The realization of the splitting step is
quite straightforward: each box is cut at the mean point
of the vertices, perpendicular to the longest axis. This is
done iteratively, until a box is not dividable any more.
Similar work on division of polygonal structures for grasping
has been proposed by others [16], [17]. In our case, these
strategies are suboptimal or less applicable. Splitting into
many small boxes is against our aim of approximating a
shape with as few boxes as possible. Additionally, though
the MVBB algorithm is efficient, a fitting step after each
splitting consumes valuable computation time. Finally, in our
application both the splitting at the mean point is not optimal
and we can not access polygonal structures, but point clouds
only. Thus, another heuristic to find a “good” split is needed.

Fig. 1. Left: Examples of range data approximated by sets of superquadrics
[8]. Right: The Stanford bunny model and the root MVBB of its vertices.

1629

?

�
�

��*
H

H
HHY

A

B

C

c a

b
(a) (b) (c)

Fig. 2. (a) A mean cut of the bunny model. (b) We restrict to box parallel
cutting planes. (c) A good cut parallel to the root MVBB plane B.

Therefore, we will have to define what a “good” split is.
Fig. 2(a) shows a mean cut, which obviously is not good
for our task. It does not improve the approximation with
boxes of both new halfs, but is also not intuitive in terms
of dividing the bunny in semantic parts, e.g. head and body.
Even with planar cuts, finding the best intuitive one would
correspond to an extensive search and comparison of a lot of
planes, differing in position and orientation. Therefore, we
decide to test only the planes parallel to the parent MVBB,
like Fig. 2(b) and (c) show. As a measure of a good split, we
can consult the relation of the box volume before and after
the splitting: a split of the parent box is the better, the less
volume the two resulting child MVBBs will include. This is
intuitively plausible, as shape approximation is better with
highly tight-fitting boxes.

C. Computing the Best Split

As motivated, we just test planes parallel to the three box
surfaces for the best splitting plane. Each MVBB has six
sides, whereof opposing pairs are parallel and symmetric.
Inbetween each of these pairs, we can shift a cutting plane.
Fig. 2(b) depicts this restriction on a splitting parallel to A,
shifted by a distance a, and B by b and C by c, respectively.
A computation of new MVBBs for each value of the split
parameters a, b and c would take a lot of computational
effort. Therefore, we estimate the best cut by first projecting
the data on 2D grids which correspond to the surfaces A,
B and C. The bunny sample data projections onto the three
surface grids of the root MVBB are shown in Fig. 3, reducing
the problem of splitting a 3D box by a surface-parallel plane
to splitting a 2D box by an edge-parallel line. For the sake of
efficiency, it is thereby abstracted from the real 3D volume
of the shape. The figure shows that there are six valid split
directions left, two for each of the surfaces A, B and C.

As mentioned above, we define the best split as the one
that minimizes the summed volume of the two partitions.
Thus, we now test each discretized grid split along the six
axes, using the split parameters. We define a split measure
θ(F , f , i) with F ∈ {A,B,C} being the projection plane
to split, f being one of the two axes that span F , and i
as the grid value on this axis that defines the current split.
Consequently, we have six possible split measures

θ1(A, c, i1), i1 ∈ N<cmax , θ2(A, b, i2), i2 ∈ N<bmax ,

θ3(C, a, i3), i3 ∈ N<amax , θ4(C, b, i4), i4 ∈ N<bmax ,

θ5(B, a, i5), i5 ∈ N<amax , θ6(B, c, i6), i6 ∈ N<cmax (1)

Fig. 3. Bunny sample projections onto the three faces of the root box (Fig.
1) according to the face-parallel cutting scheme in Fig. 2(b).

to compare. Their minimum gives reason to the best split.
The minimization of each θ(F , f , i) is implemented as
follows. For each i that cuts F perpendicular to f in two
rectangular shapes, we compute the two resulting minimum
grid areas by lower and upper bounds. The i that yields the
minimum value is the best cut of F along f . θ(F , f , i)
is computed as the fraction between the whole projection
rectangular and the sum of the two best cut rectangles.
Though this is a very approximative method, it is quite
fast, as rectangle volume and bounds are easy to generate.
The best bunny cuts for which rectangular volume and the
corresponding values θ1...6 are minimal are shown in Fig. 4.

D. Building a Fit-and-Split Hierarchy

According to the best split θ∗, which would be θ1 or
θ2 in this exemplary case, the original point cloud can be
divided into two subsets of the data points. These can be
used as inputs to the MVBB algorithm to produce two child
MVBBs of the root MVBB. In this way, the complete fit-and-
split method can iteratively be performed. It is important to
note that by MVBB re-computation, the MVBBs will greatly
differ in orientation and scale from the box cuts in Fig. 4.

Additionally, the previous step of cutting along one of the
six directions is just equal to computing an approximative
gain value, for the purpose of efficiency. As an iteration
breaking criterion, we now subsequently test the real MVBB
volume gain Θ∗ of the resulting best split measure θ∗.
Therefore, we compute the gain in volume defining

Θ∗ =
V (C1) + V (C2) + V (A\P)

V (P) + V (A\P)
, (2)

where A is the complete set of boxes in the current hierarchy,
P is the current (parent) box, C1, C2 are the two child boxes
produced by the split, and V being a volume function.

We decide further process on two constraints. First, if the
gain is too low, a split is not valuable. For this purpose,
we include a threshold value t. The precision of the whole
approximation can be parametrized by simply preventing a
split if Θ∗ exceeds t. Second, we do not preserve boxes in
the hierarchy that include a very low number of points. By
this process, noise in the point data can be handled.

It might also be important in this context that in Fig. 4, θ6

would intuitively be a probably valuable next cut below the
bunny’s ear. However, the best split computation presented
(Section III-C) will not find this cut. Finding this cut is not
that simple, especially when distorted, sparse and insecure

1630

�

�

6

?

-

?

A A

B B

C C

c

c

a

a

b b

O O

/

M

/

.

θ1(A, c, i1) = 0.84 θ2(A, b, i2) = 0.84 θ3(B, c, i3) = 0.92 θ4(B, a, i4) = 0.92 θ5(C, a, i5) = 0.93 θ6(C, b, i6) = 0.94

Fig. 4. Best cuts along the six box directions and cut positions i marked by triangles. The corresponding volume values θ(F , f , i) are presented below.

data is provided. An add-on for the solution of this problem
would therefore be more complex and time-consuming. The
bunny is a very ideal model, as it is artificial, complete, and
data points are very dense. As it is our aim to evaluate our
algorithm also on real sensory data, we can not assume such
ideal conditions and do not handle such situations presently.

IV. EXPERIMENTS

A. MVBB Splitting Evaluation

In the following, we present some experiments for the
proposed fit-and-split algorithm. For all experiments, we
fix the two original MVBB approximation parameters (see
[14]). The grid parameter defines orientations that induce
bounding box approximation in an exhaustive way, so we
keep it small at 3. We decide to sample sets of 200 points,
so even very large point clouds are reduced and efficiently
handled. We found that these settings provide a good trade-
off between quality and efficiency of each split for our
application. The main parameter that we are going to change
in the experiments is the gain threshold t.

We evaluate the behaviour of the algorithm on several
types of input data by taking both ideal point clouds emerg-
ing from complete and unnoisy simulative vertice models
(4 models) and real laser scan excerpts (5 scans) as input
data. The latter is therefore incomplete and noisy, but at least
regular due to the scan sampling. One sample is produced
from a stereo vision system that offers three-dimensional
points by disparity, including incomplete, noisy and irregular
data. Fig. 5 shows these samples divided with different
gain thresholds t ∈ {0.90, 0.94, 0.98}. The corresponding
overview on point sets, computation time and number of
boxes for the groups is given in Tab. I.

B. MVBB Grasping Evaluation

The best way to find a good grasp is said to be grasp
candidate simulation [4], [9]. Miller et al . have simulated
pre-models and shape primitives using their public grasp
simulation environment GraspIt! [4]. So we also base our
evaluation on model-based grasping in GraspIt!.

The first iteration, performed as proposed in Section III-
D, yields the root node of the box tree. The root box has
six faces, each of which we use for four grasp hypotheses
parallel to its spanning edges. For symmetric grippers these
could be reduced to two grasp hypotheses, but as we will use

an asymmetric 5-finger hand model [18] in our simulation,
we take these four. After the grasps on the root box have
been performed, we apply the decomposition algorithm to
produce MVBB approximations with gain parameters 0.90,
0.94 and 0.98 for the pure model data, Fig. 5(a)-(c), only. All
faces are then collected from a final approximation, before
occluded and ungraspable ones are removed. The applied
grasping method is simple here: each initial position is set
to a constant distance from the face’s center aligned to its
normal, i.e. the approach vector is the negative face normal.
The hand is set to an intuitively good pose to have a large
opening angle towards the object. We let the hand approach
along the normal until a contact is detected. After contact,
the hand retreats a small distance before we call GraspIt!’s
auto-grasp function which uniformly closes the fingers of
the hand. When all fingers are in contact with the object, we
evaluate the two standard grasp quality measures that come
with GraspIt!: ε, a worst-case epsilon measure for force-
closure grasps, and V , an average case volume measure [1].

To compare the grasps that we get from this sequence,
we compute a random “spherical” grasp evaluation for each
model. Initial hand positions are placed on a sphere, with the
approach vector oriented towards the object’s center of mass
and two spherical coordinates and a hand orientation angle
configuring the hand’s pose (discretized by steps of 10 deg).

We find that geometrical detection of blocked faces re-
duces the number of graspable faces drastically. Each spher-
ical evaluation includes 22104 grasps. Referring to the grasp
quality comparison between spherical and box evaluation for
our models (Fig. 6), a1 resulted from a test of only f=6 valid
face grasps from the t =0.94 decomposition. Same pairs for

TABLE I
STATISTICS OF THE EXPERIMENTS PRESENTED IN FIG. 5.

Model #points #boxes—sec
(t=0.90)

#boxes—sec
(t=0.94)

#boxes—sec
(t=0.98)

Mug 1725 2—4 3—7 5—11
Duck 1824 3—7 5—9 9—14
Homer 5103 4—10 5—13 7—16
Bunny 35947 2—5 4—11 11—30
Stapler 313 2—2 2—2 2—2
Puncher 449 3—3 3—3 4—3
Can 1266 2—4 5—8 9—10
Phone 1461 3—5 4—5 9—12
Laptop 4199 3—7 4—8 6—15
Can2 9039 2—7 7—20 16—46

1631

(a) Mug (model): MVBBs (2,3,5) produced with t=0.90, 0.94, 0.98. (b) Duck (model): MVBBs (3,5,9) produced with t=0.90, 0.94, 0.98.

(c) Homer (model): MVBBs (4,5,7) produced with t=0.90, 0.94, 0.98.

(d) Bunny (model): MVBBs (2,4,11) produced with t=0.90, 0.94, 0.98.

(e) Stapler (scan): MVBBs (2,2,2) produced with t=0.90, 0.94, 0.98.

(f) Puncher (scan): MVBBs (3,4,4) produced with t=0.90, 0.94, 0.98. (g) Notebook (scan): MVBBs (3,4,6) produced with t=0.90, 0.94, 0.98.

(h) Phone (scan): MVBBs (3,3,9) produced with t=0.90, 0.94, 0.98. (i) Can (scan): MVBBs (2,5,9) produced with t=0.90, 0.94, 0.98.

(j) Can2 (stereo): MVBBs (2,7,16) produced with t=0.90, 0.94, 0.98.

Fig. 5. Examples of box decomposition using different gain thresholds t=0.90, 0.94, 0.98, where numbers in brackets correspond to numbers of boxes.
(a)-(d) are complete, dense and unnoisy 3D models. (e)-(i) result from incomplete, dense and less noisy, but manually pre-segmented range scans. (j) is
produced by an incomplete, sparse and noisy, automatically pre-segmented stereo disparity point cloud.

the other depicted samples are: b1=(16,Root), b2=(32,0.94),
c1=(48,0.98) and c2=(22,0.90). Concluding, the box decom-
position effectively produces very few hypotheses which
still feature good grasp quality. Note that only force-closure
grasps (ε > 0) are drawn in Fig. 6.

V. DISCUSSION AND CONCLUSION

In our approach, we combined motivations known from
the shape approximation and grasping literature. We prune
the search space of possible approximations by rating and
decomposing bounding boxes. Related work uses more com-
plex superquadrics as approximation elements and confirm
that grasp planning on finer components is likely to find
better grasps than returning the first stable grasp [9]. This

intuitively corresponds to the “grasping-by-parts” strategy.
This strategy also underlies the presented approach of MVBB
decomposition. In this paper, we proposed MVBBs as an
efficient and valuable box decomposition on a fit-and-split
strategy. As the presented approach is hierarchical, it is also
possible to use dependencies between boxes and granularities
of different hierarchical levels for shape approximation.
Thus, the processing of shape approximation can be con-
trolled and run parallel to the execution of a grasp.

The trade-off of our approach is higher efficiency and
simplicity for the price of precise shape approximation.
However, we claim that exact approximation may not be
necessary for grasping tasks. A wider evaluation of this claim
will be one of our next steps. Our approach is therefore

1632

grounded on box representation and decomposition with an
efficient splitting criterion. The resulting box representation
offers fast computational techniques for common problems,
e.g. collision detection, neighborhood relations, etc., valuable
for efficient further analysis. This analysis will become
important for a next step towards grasping objects. Managing
valid grasps will not only be dependent on the box faces, but
also on the whole constellation of boxes.

Another issue in this context will be task dependency.
A grasp might depend on different types of tasks, e.g. to
pick up a cup and place it somewhere else might yield a
different grasping action as to pick it up to show it or hand
it over to someone. Such grasp semantics might be mapped
to boxes in the set, e.g. “grasp the biggest box for a good
grasp to stably move the object”, “grasp the smallest box for
a good grasp to show a most unoccluded object to a viewer
/ a camera” or “grasp the outermost box for a good grasp
to hand over to another human / another robot”, where the
latter are said to be quite valuable for applications that are
based upon interacting with objects before the exploration
and recognition stage. Future work will focus on how the
presented box representation provides a good and easy-to-
use interface to such applications.

VI. ACKNOWLEDGMENTS
This work was supported by EU through the project

PACO-PLUS, IST-FP6-IP-027657. The authors would like to
thank Michael Wünstel (Universität Bremen) for providing
the raw partial scan data and images used for Fig. 5(e)-(i).

REFERENCES

[1] A. T. Miller and P. K. Allen, “Graspit! A Versatile Simulator for
Robotic Grasping,” Robotics & Automation Magazine, IEEE, vol. 11,
no. 4, pp. 110–122, 2004.

[2] Y. H. Liu, M. Lam, and D. Ding, “A Complete and Efficient Algorithm
for Searching 3-D Form-Closure Grasps in Discrete Domain,” IEEE
Transactions on Robotics, vol. 20, no. 5, pp. 805–816, 2004.

[3] K. Shimoga, “Robot Grasp Synthesis Algorithms: A Survey,” Int.
Journal of Robotic Research, vol. 15, no. 3, pp. 230–266, 1996.

[4] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, “Automatic
Grasp Planning Using Shape Primitives,” in IEEE Int. Conf. on
Robotics and Automation, 2003, pp. 1824–1829.

[5] A. Morales, E. Chinellato, A. H. Fagg, and A. P. del Pobil, “Using
Experience for Assessing Grasp Reliability,” Int. Journal of Humanoid
Robotics, vol. 1, no. 4, pp. 671–691, 2004.

[6] C. Borst, M. Fischer, and G. Hirzinger, “Grasp Planning: How to
Choose a Suitable Task Wrench Space,” in Proceedings of the IEEE
Int. Conf. on Robotics and Automation, 2004, pp. 319–325.

[7] G. Biegelbauer and M. Vincze, “Efficient 3D Object Detection by
Fitting Superquadrics to Range Image Data for Robot’s Object Ma-
nipulation,” IEEE Int. Conf. on Robotics and Automation, 2007.

[8] L. Chevalier, F. Jaillet, and A. Baskurt, “Segmentation and Su-
perquadric Modeling of 3D Objects,” Journal of WSCG, 2003.

[9] C. Goldfeder, P. K. Allen, C. Lackner, and R. Pelossof, “Grasp
Planning Via Decomposition Trees,” in IEEE Int. Conf. on Robotics
and Automation, 2007.

[10] D. Katsoulas, “Reliable Recovery of Piled Box-like Objects via
Parabolically Deformable Superquadrics,” in Proceedings of the 9th
IEEE Int. Conf. on Computer Vision, vol. 2, 2003, pp. 931–938.

[11] J. Tegin, S. Ekvall, D. Kragic, B. Iliev, and J. Wikander, “Experience
based Learning and Control of Robotic Grasping,” in Workshop:
Towards Cognitive Humanoid Robots, 2006.

[12] D. Aarno, J. Sommerfeld, D. Kragic, N. Pugeault, S. Kalkan,
F. Wörgötter, D. Kraft, and N. Krüger, “Early Reactive Grasping
with Second Order 3D Feature Relations,” in ICRA Workshop: From
Features to Actions, 2007, pp. 319–325.

a1

H
H

H
H

H
H

H
HHY

as

�
�

��

ε

V

b2

XXXXXXy

b1

@
@

@@I

bs

?

ε

V

c2

@
@

@
@@I

c1

6

cs

-

ε

V

Fig. 6. Grasp quality spaces (ε,V) for models from Fig. 5(a)-(c). Note the
depicted samples as a contrast of box grasps and random (spherical) grasps.
Legend: sample of the spherical grasp; best ε-sample of the spherical
grasp; sample of the box grasp; selected best sample of the box grasp.

[13] H. Zha, T. Hoshide, and T. Hasegawa, “A Recursive Fitting-and-
Splitting Algorithm for 3-D Object Modeling Using Superquadrics,”
in 14th Int. Conf. on Pattern Recognition, vol. 1, 1998, pp. 658–662.

[14] G. Barequet and S. Har-Peled, “Efficiently Approximating the
Minimum-Volume Bounding Box of a Point Set in Three Dimensions,”
Journal of Algorithms, vol. 38, pp. 91–109, 2001.

[15] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: A Hierarchi-
cal Structure for Rapid Interference Detection,” Computer Graphics,
vol. 30, no. Annual Conf. Series, pp. 171–180, 1996.

[16] J.-M. Lien and N. M. Amato, “Approximate Convex Decomposition
of Polyhedra,” Texas A&M University, Tech. Rep. TR06-002, 2006.

[17] E. L. Damian, “Grasp Planning for Object Manipulation by an
Autonomous Robot,” Ph.D. dissertation, Laboratoire d’Analyse et
d’Architecture des Syst̀emes du CNRS, 2006.

[18] A. Morales, P. Azad, T. Asfour, D. Kraft, S. Knoop, R. Dillmann,
A. Kargov, C. Pylatiuk, and S. Schulz, “An Anthropomorphic Grasping
Approach for an Assistant Humanoid Robot,” in Int. Symposium on
Robotics (ISR), 2006.

1633

