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Abstract— This paper shows through faithfully deriving Paf-
fian forms of 3-D rolling contact constraints that 3-D pinching
can be stabilized by using a pair of robot fingers with a
hemispherical soft tip and minimum degrees of freedom under
the gravity effect. The proposed control input is based on
fingers-thumb opposition without using object information or
external sensing. Stability analysis of the closed-loop dynamics
is presented by using a Lyapunov method. Finally, for the sake
of confirmation of effectiveness of the proposed control signals,
numerical simulations are carried out.

I. INTRODUCTION

Since human can walk on only two legs, they can use
hands for other effective purposes unlike other living crea-
tures. Hands have evolved to make tools, create gestures,
and write pictures and characters for bequeathing ancient
wisdom and art. Especially, the primatologist Napier [1]
accentuates the importance of fingers-thumb opposition in
the progress of humanity. However, there is a dearth of
robotics researchers who are interested in control functions
of multi-fngered hands based on the opposability.

Robot hands mimicking the human hands attract many
robotics researches [2] [3] [4]. However, most researchers are
interested in kinematics and planning of motions establishing
force/torque closure for secure grasp in a static sense with
frictionless contacts. On the other hand, rolling geometry
between two objects is investigated in detail [5] [6]. However,
all the researches have remained in a kinematic or semi-
dynamic meaning. In fact, any explicit 3-D dynamics model
of fingers-object interaction, in which effects of rolling
constraints should be incorporated as wrench vectors, has
been missing.

Very recently in 2000s, however, it was shown by Arimoto
et al. that pinching of a 2-D rigid object was stabilized by
using a pair of robot fingers with hemispherical ends in
a dynamic sense [7] [8]. In the research, it is shown that
tangential forces are induced by rolling constraints embedded
in the overall dynamics and the redundancy of the overall
fingers-object system for a desired task is overcome naturally
without use of the pseudo inverse of a Jacobian or any
artificial cost function. In the year of 2006, a problem of
modeling of 3-D object grasping was tackled by Arimoto
et al. [9] and a mathematical model was derived as a set of
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motion of the fingers-object system under Pfaffian constraints
of rolling contacts and another nonholonomic constraint due
to the assumption of the cease of spinning motion around the
opposing axis. In that case, the object dynamics is expressed
by a five-variables model with six wrench vectors [9]. In this
paper, we derive overall fingers-object dynamics as a full-
variables model under the assumption that spinning around
the opposition axis is possible but it accompanies viscous
friction exerting on the rotational motion of the object
around the x-axis in the frame coordinates. A pair of robot
fingers has hemispherical tips made by soft material and the
minimum degrees of freedom (DOF) for desired tasks. Then,
we propose a simple control signal based on the opposability
without using object information or external sensing as
seen when human grasp an object. Finally, we show that
any closed-loop solution converges to an equilibrium pose
establishing force/torque balance as time tends to infinity.

II. DYNAMICS
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Fig. 1. Two robot fingers pinching an object with parallel flat surfaces
under the gravity effect

Consider motion of a rigid object with parallel flat sur-
faces, which is grasped by a pair of robot fingers with 1
DOF and 2 DOFs as shown in Fig.1. The left finger (finger
i = 1) is planar with one joint whose rotational axis is
in z-direction denoted by angle q11. The root joint with
center O′ of the right finger is a saddle joint having two
rotational axes in x-direction denoted by angle q20 and z-
direction denoted by angle q21. When the distance from the
straight line −−−→

O1O2(opposition axis) connecting two contact
points denoted by xi = (xi, yi, zi)T between finger-ends
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Fig. 2. rX , rY , and rZ are mutually orthogonal vectors express rotational
motion of 3-D object

and object surfaces to the vertical axis through the object
mass center in the direction of gravity becomes large, there
arises a spinning rotation of the object around that opposition
axis. In the previous paper [10], a problem of modeling
of pinching is considered in the situation that this spinning
motion has ceased after the center of mass of the object came
sufficiently close to a point just beneath the opposing axis
and there will no more arise such spinning rotation due to
dry friction and micro-deformations near the contact points
between the finger-ends and object surfaces. Instead of this
assumption, we assume that spinning around the opposition
axis is possible to arise but viscosity is exerted on rotational
motion of the object around x-axis, that is, about ωx, where
ω = (ωx, ωy, ωz)T denotes the vector of rigid body rotation
in terms of frame coordinates O-xyz (see Figure 1). At the
same time, we introduce, the cartesian coordinates Oc.m.-
XY Z fixed at the object frame and denote three orthogonal
unit vectors at the object frame in each corresponding
direction X , Y , and Z by rX = (rXx, rXy, rXz)T, rY =
(rY x, rY y, rY z)T, and rZ = (rZx, rZy , rZz)T as shown in
Fig. 2. Note that rX , rY , and rZ are fixed at the object
but rotate in terms of the frame coordinates, and therefore
components rXx, rXy , and rXzof vector rX are denoted
in the frame coordinates O − xyz. The same applies to rY
and rZ . Next, denote the cartesian coordinates of the object
mass center Oc.m. by x = (x, y, z)T based on the frame
coordinates O-xyz and note that three mutually orthogonal
unit vectors fixed at the object may rotate dependently on
the angular velocity vector ω of body rotation. Then, it is
well known that the 3 × 3 rotation matrix

R(t) = (rX , rY , rZ) (1)

belongs to SO(3) and is subject to the first-order differential
equation

d
dt
R(t) = R(t)Ω(t) (2)

where

Ω(t) =


 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0


 (3)

Next, denote the position of the center of each hemispher-
ical finger-end by x0i = (x0i, y0i, z0i)T. Then, it is possible
to notice that (see Figure 2)

xi = x0i − (−1)i(ri − ∆xi)rX (4)
x = x0i − (−1)i(ri − ∆xi + li)rX − YirY − ZirZ (5)

Since each contact point Oi can be expressed by the co-
ordinates ((−1)ili, Yi, Zi) based on the object frame Oc.m.-
XY Z , taking an inner product between Equation (5) and rY
gives rise to

Yi = (x0i − x)TrY , i = 1, 2 (6)

Similarly, it follows that

Zi = (x0i − x)TrZ , i = 1, 2 (7)

A rolling constraint between one finger-end and its contacted
object surface can be expressed by equality of two contact
point velocities expressed on either of finger-end spheres and
on its corresponding tangent plane (that is coincident with
one of object flat surfaces) as follows [9]:{

(r1 − ∆x1) {ωz − rZz q̇10} = Ẏ1

(r1 − ∆x1) {−ωy + rY z q̇10} = Ż1
(8)




(r2 − ∆x2) {−ωz+(rZz cos q20−rZy sin q20)q̇21
+rZxq̇20}= Ẏ2

(r2 − ∆x2) {ωy−(rY z cos q20−rY y sin q20)q̇21
−rY xq̇20}= Ż2

(9)

where q10 = 0. The rolling constraint conditions expressed
through Equations (8) and (9) are non-holonomic but linear
and homogeneous with respect to velocity variables. Hence,
Equations (8) and (9) can be treated as Pfaffian constraints
[2] [11] that can be expressed with accompaning Lagrange’s
multipliers {λY 1, λZ1} for Equation (8) and {λY 2, λZ2} for
Equation (9) in such forms as

λY i

{
Y T

qiq̇i+Y T
xiẋ+Yϕiϕ̇+Yψiψ̇+Yθiθ̇

}
=0

λZi

{
ZT

qiq̇i+ZT
xiẋ+Zϕiϕ̇+Zψiψ̇+Zθiθ̇

}
=0

i = 1, 2

(10)

where


Y qi = ∂Yi

∂qi
− (ri − ∆xi)

{
(−1)i(rZz cos qi0

−rZy sin qi0)ei +rZxe0i}
Y xi = ∂Yi

∂x , Yϕi = ∂Yi

∂ϕ , Yψi = ∂Yi

∂ψ

Yθi = ∂Yi

∂θ + (−1)i(ri − ∆xi), i = 1, 2

(11)

and


Zqi = ∂Zi

∂q
i
− (ri − ∆xi)

{
(−1)i(rY z cos qi0

−rY y sin qi0)ei +rY xe0i}
Zxi = ∂Zi

∂x , Zϕi = ∂Zi

∂ϕ ,

Zψi = ∂Zi

∂ψ − (−1)i(ri − ∆xi), Zθi = ∂Zi

∂θ , i=1, 2

(12)
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TABLE I
PARTIAL DERIVATIVES OF CONSTRAINTS IN (ϕ, ψ, θ).

∂P∆x1
∂ϕ

= ∂P∆x2
∂ϕ

= 0

∂Yi
∂ϕ

= (x0i − x)T ∂rY
∂ϕ

= (x0i − x)TrZ = Zi
∂Yi
∂ψ

= (x0i − x)T ∂rY
∂ψ

= 0

∂Yi
∂θ

= (x0i − x)T ∂rY
∂θ

= −(x0i − x)TrX = −(−1)i(ri + li)
∂Zi
∂ϕ

= (x0i − x)T ∂rZ
∂ϕ

= (x0i − x)TrY = −Yi
∂Zi
∂ψ

= (x0i − x)T ∂rZ
∂ψ

= −(x0i − x)TrX = (−1)i(ri + li)

∂Zi
∂θ

= (x0i − x)T ∂rZ
∂θ

= 0

Yϕi = ∂Yi
∂ϕ

= Zi, Zϕi = ∂Zi
∂ϕ

= −Yi
Yψi = ∂Yi

∂ψ
= 0, Zψi = ∂Zi

∂ψ
− (−1)iri = (−1)ili

Yθi = ∂Yi
∂θ

+ (−1)iri = −(−1)ili, Zθi = 0

and q1 = q11, q2 = (q20, q21)T, ϕ̇ = ωx, ψ̇ = ωy , θ̇ = ωz ,
e1 = 1, e2 = (0, 1)T, e01 = 0, and e02 = (1, 0)T. To
simplify notations, we rewrite Equation (10) into{

λY iY
T
i (dX/dt) = 0

λZiZ
T
i (dX/dt) = 0

, i = 1, 2 (13)

where X = (qT
1 , q

T
2 ,x

T, ϕ, φ, θ)T,


Y 1 =
(
Y T

q1, 02,Y
T
x1, Yϕ1, Yφ1, Yθ1

)T

Y 2 =
(
0,Y T

q2,Y
T
x2, Yϕ2, Yφ2, Yθ2

)T (14)

and 


Z1 =
(
ZT

q1, 02,Z
T
x1, Zϕ1, Zφ1, Zθ1

)T

Z2 =
(
0,ZT

q2,Z
T
x2, Zϕ2, Zφ2, Zθ2

)T (15)

The reproducing force due to finger-tip deformation can be
described as

fi(∆xi,∆ẋi) = f̄i(∆xi) + ξi(∆xi)∆ẋi (16)

where

f̄i(∆xi) = ki∆x2
i , i = 1, 2 (17)

with stiffness parameter ki > 0[N/m2] and ξi(∆xi)[Ns/m]
is a positive scalar function of ∆xi.

The Lagrangian for the overall fingers-object system can
be expressed by the scalar quantity L = K − P , where K
denotes the total kinetic energy expressed as

K =
1
2

∑
i=1,2

q̇T
i Hi(qi)q̇i +

1
2
M

(
ẋ2 + ẏ2 + ż2

)

+
1
2
ωTH0ω (18)

and P denotes the total potential energy expressed as

P = P1(q1) + P2(q2) −Mgy +
∑
i=1,2

P∆xi (19)

where Hi(qi) stands for the inertia matrix for finger i, M the
mass of the object, Pi(qi) the potential energy of finger i, g

the gravity constant, and P∆xi(=
∫ ∆xi

0 f̄i(ξ)dξ) the potential
energy of reproducing force for finger i, and H0 is given in
the following:

H0 = R(t)HRT(t) (20)

where H stands for the constant inertia matrix of the object
that must be evaluated on the basis of fixed body coordinates
Oc.m.-XY Z , that is,

H =


 IXX IXY IXZ

IY X IY Y IY Z
IZX IZY IZZ


 (21)

Thus, owing to the variational principle applied to the form

−
∫ t1

t0

δLdt =
∫ t1

t0

∑
i=1,2

{
uT
i δqi

−
(
λY iY

T
i + λZiZ

T
i

)
δX

}
dt

−
∫ t1

t0

{
cϕωxδϕ+

∑
i=1,2

ξi(∆xi)∆ẋi
∂∆xi
∂XT

δX

}
dt (22)

we obtain a set of Lagrange’s equations of motion of the
overall system:

Hi(qi)q̈i +
{

1
2
Ḣi(qi) + Si(qi, q̇i)

}
q̇i

−(−1)ifiJT
0i(qi)rX − λY iY qi − λZiZqi

+gi(qi) = ui i = 1, 2 (23)

M ẍ − (f1 − f2)rX + (λY 1 + λY 2)rY

+(λZ1 + λZ2)rZ −Mg


 0

1
0


 = 0 (24)

H0ω̇+
(

1
2
Ḣ0 + S

)
ω+cϕ


 ωx

0
0


+ f1


 0

−Z1

Y1




+f2


 0

Z2

−Y2


− λY 1


 Z1

0
l1


− λY 2


 Z2

0
−l2




−λZ1


 −Y1

−l1
0


 − λZ2


 −Y2

l2
0


 = 0 (25)

where calculation of partial differentiations of Yi, Zi in ϕ,
ψ, θ is presented in Table 1. Further, it is possible to see
from P∆xi(i = 1, 2) and Equations (6) and (7) that




∂(P∆x1+P∆x2)
∂qi

= −(−1)ifiJT
i (qi)rX , i = 1, 2

∂(P∆x1+P∆x2)
∂x = − (f1 − f2) rX

∂(P∆x1+P∆x2)
∂ϕ = 0, ∂(P∆x1+P∆x2)

∂ψ = −f1Z1 + f2Z2
∂(P∆x1+P∆x2)

∂θ = f1Y1 − f2Y2

(26)

{
Y xi = ∂Yi/∂x = −rY
Zxi = ∂Zi/∂x = −rZ

(27)
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Fig. 3. Normal forces arising from deformation of the finger ends and
tangential forces from rolling constraints at contact points O1 and O2

From taking inner products between q̇i and Equation (23),
ẋ and Equation (24), and ω and Equation (25), we obtain
the relation∑
i=1,2

q̇T
i ui =

d
dt

(K + P ) + cϕϕ̇
2 +

∑
i=1,2

ξi(∆xi)∆ẋ2
i (28)

Finally, it is intersting to note that six vectors associated
with f1, f2, λY 1, λY 2, λZ1, and λZ2 from the fourth
term to the ninth term in the right hand side of Equation
(25) constitute, together with corresponding six vectors of
Equation (24), a set of wrench vectors exerted on the 3-
dimension rigid object (see Fig.3). The last term of the left
hand side of Equation (24) is regarded as an external force
vector caused by the gravity.

III. CONTROL SIGNALS

We consider the stability of control of “blind grasping”
under the gravity effect. The control signal is defined as
follows:

ui = −Ciq̇i + (−1)i
fd

r1 + r2
JT

0i (x01 − x02)

−M̂g

2
∂y0i
∂qi

− riN̂iei − riN̂0ie0i, i=1, 2 (29)

where

M̂ = M̂(0) +
∫ t

0

gγ−1
M

2

∑
i=1,2

(
∂y0i
∂qi

)T

qidτ

= M̂(0) +
gγ−1
M

2
(y01(t) + y02(t)

−y01(0) − y02(0)) (30)

N̂i = γ−1
Ni

∫ t

0

(
rie

T
i q̇i

)
dτ

= r−1
Nirie

T
i (qi(t) − qi(0)) , (i = 1, 2) (31)

N̂01 = 0 (32)

N̂02 = γ−1
N02

∫ t

0

(riq̇20) dτ

= γ−1
N02r2 (q20(t) − q20(0)) (33)

and γM , γNi(i = 1, 2), and γN02 are positive constants.
In this form, nothing differes from that of control signal
proposed in the rigid contact case [9]. second term of
the right hand side of eq.(29) is a signal based upon the
opposable force between O01 and O02 (not between O1 and
O2, because positions of O1 and O2 can not be measured).
third term stands for compensation for the object mass based
upon its estimator. The fourth and fifth terms are introduced
for saving excess movements of finger joints from the initial
pose. Next define

f0 = fd

(
1 +

l1 + l2 − ∆x1 − ∆x2

r1 + r2

)
(34)

Differently from the case of rigid finger-ends [8], f0 is not
a constant but dependent on the magnitude of ∆x1 + ∆x2.
Nevertheless, it is possible to find ∆xdi(i = 1, 2) for a given
fd > 0 so that they satisfy

f̄i(∆xdi) =
(

1 +
l1 + l2 − ∆xd1 − ∆xd2

r1 + r2

)
fd, i = 1, 2 (35)

because f̄i(∆xi) is of the form of f̄i(∆x) = ki∆x2(eq.(17)).
Substituting this control signals (eq.(29)) into Equation (23)
yields

Hi(qi)q̈i +
{

1
2
Ḣi(qi) + Si(qi, q̇i) + Ci

}
q̇i

−(−1)iJT
0i(qi)∆firX − ∆λY iY qi − ∆λZiZqi

+
∆Mg

2

(
∂y0i
∂qi

)
+ri∆Niei+ri∆N0ie0i+g(qi)=0

i = 1, 2 (36)

where

∆f̄i = f̄i − f0 − (−1)i
Mg

2
rXy (37)

∆λY i = λY i + (−1)i
fd

r1 + r2
(Y1 − Y2) − Mg

2
rY y (38)

∆λZi = λZi + (−1)i
fd

r1 + r2
(Z1 − Z2) − Mg

2
rZy(39)

{
∆M = M̂ −M, ∆Ni = N̂i −Ni, i = 1, 2
∆N0i = N̂0i −N0i

(40)

Ni =
fd

r1 + r2

(ri − ∆xi)
ri

{
(Y1 − Y2)rZ(qi0)

−(Z1 − Z2)rY (qi0)
}

−(−1)i
(ri − ∆xi)

ri

Mg

2

{
rY yrZ(qi0)

−rZyrY (qi0)
}
, i = 1, 2 (41)

N01 = 0 (42)

N02 =
fd

r1 + r2

(r2 − ∆x2)
r2

{
(Y1 − Y2)rZx

−(Z1 − Z2)rY x

}
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− (r2 − ∆x2)
r2

Mg

2

{
rY yrZx

−rZyrY x
}

(43)

{
rZ(qi0) = rZz cos qi0 − rZy sin qi0
rY (qi0) = rY z cos qi0 − rY y sin qi0

, i = 1, 2 (44)

In derivation of this form, we used the relation

f0rX +
fd

r1 + r2
(x01 − x02) =

fd(Y1 − Y2)
r1 + r2

rY +
fd(Z1 − Z2)
r1 + r2

rZ (45)

which immediately follows from Equations (4), (5), (6),
and (7). To the accompaniment of closed-loop expression of
fingers’ dynamics, we rewrite Equations (24) and (25) into
the followings:

M ẍ − (∆f1 − ∆f2)rX + (∆λY 1 + ∆λY 2)rY
+(∆λZ1 + ∆λZ2)rZ = 0 (46)

H0ω̇ +
(

1
2
Ḣ0 + S

)
ω + cϕ


 ωx

0
0


+ ∆f1


 0

−Z1

Y1




+∆f2


 0

Z2

−Y2


− ∆λY 1


 Z1

0
l1


 − ∆λY 2


 Z2

0
−l2




−∆λZ1


 −Y1

−l1
0


− ∆λZ2


 −Y2

l2
0


−


 SX
SY
SZ


=0 (47)

where

SX =
Mg

2
{(Z1 + Z2)rY y − (Y1 + Y2)rZy} (48)

SY =
fd

r1 + r2
(r1 − ∆x1 + r2 − ∆x2)(Z1 − Z2)

−Mg

2
{rXy(Z1 + Z2) + rZy(l1 − l2)} (49)

SZ = − fd
r1 + r2

(r1 − ∆x1 + r2 − ∆x2)(Y1 − Y2)

+
Mg

2
{rXy(Y1 + Y2) + rY y(l1 − l2)} (50)

Since Equation (43) implies

‖x01 − x02‖ = l2w + (Y1 − Y2)2 + (Z1 − Z2)2 (51)

where lw = l1 + l2 +r1 +r2− (∆x1 +∆x2), it follows from
Equations (28) and (29) that

d
dt
E = −cϕϕ̇2 −

∑
i=1,2

q̇T
i Ciq̇i −

∑
i=1,2

ξi(∆xi)∆ẋ2
i (52)

where

E = K + ∆P +W (53)

and K is defined as in Equation (18), and ∆P and W are
defined as follows:

∆P =
∑
i=1,2

∫ δxi

0

{
f̄i(∆xdi + ξ) − f̄i(∆xdi)

}
dξ (54)

W =
fd

2(r1 + r2)
{
(Y1 − Y2)2 + (Z1 − Z2)2

}
+Mgỹ

+
γM
2

∆M2 +
∑
i=1,2

γNi
2
N̂2
i +

γN02

2
N̂2

02 (55)

where δxi = ∆xi −∆xdi and ỹ = (y01 + y02)/2− y. From
eq.(5), it follows that

y01 + y02
2

− y = −1
2
{(r1 − r2) + (l1 − l2)

−(∆x1 − ∆x2)} rXy +
Y1 + Y2

2
rY y +

Z1 + Z2

2
rZy (56)

The overall fingers-object system depicted in Fig. 1 has
superficially the 9 DOFs since the pair of fingers has 3
joints and the object does 3 independent translational vari-
ables (x, y, z) and 3 independent angular velocity variables
(ωx, ωy, ωz). On the other hand, it is subject to four rolling
contact constraints as shown in Equations (8) and (9). These
four constraints are nonholonomic, but they are Pfaffian, that
is, they are linear and homogeneous in velocity variables
(components of Ẋ = (q̇T

1 , q̇
T
2 , ẋ

T, ωx, ωy, ωz)T). Hence, in
the sense of infinitesimal displacements δX , these Pfaffian
constraints can be written as

Y T
i δX = 0, ZT

i δX = 0, i = 1, 2 (57)

where Y 1 = (Y T
q1, 02,Y

T
x1, Yϕ1, Yψ1, Yθ1)T, Y 2 =

(0,Y T
q2,Y

T
x2, Yϕ2, Yψ2, Yθ2)T, and Z1 and Z2 signify sim-

ilar meanings as treated in derivation of the variational form
described by Eq.(22). Hence, the total DOF of the fingers-
object system is five. However, one of the five DOFs as the
spinning motion of the object is uncontrollable, but this rota-
tional motion is dampened by viscouse force Cϕ(ωx, 0, 0)T.
That is, it is possible to expect that ωx(= ϕ̇) converges
asymptotically to zero as t→ ∞. Thus, ∆P plusW becomes
positive definite with respect to independent four position
variables Y1−Y2, Z1−Z2, δx1, and δx2 corresponding to the
remaining four DOFs. This implies that the scalar function
defined by Equation (53) can be regarded as a Lyapunov
function and it satisfies a Lyapunov relation of Equation (52).

In this case, it is possible to prove that the closed-
loop dynamics of Equations (36), (46), and (47) converge
asymptotically to the equilibrium state satisfying

Ẍ(t) → 0, Ẋ(t) → 0,X(t) → Xd (58)

as t → ∞, where Xd minimizes the artificial potential
defined in eq.(53).

IV. NUMERICAL SIMULATION RESULTS AND INITIAL
VALUES

We carry out computer simulation in order to confirm
the theoretical prediction that the control signal of eq.(29)
leads to asymptotic convergence of the trajectory X(t) to

1619



TABLE II
PARAMETERS OF CONTROL SIGNALS.

fd internal force 1.000 [N]
c1 = c2 damping coefficient 0.001 [Nms]
c20 damping coefficient 0.006 [Nms]
γM regressor gain 0.050 [m2/kgs2]
γNi(i = 1, 2) regressor gain 5.000 × 10−4 [s2/kg]
γN02 regressor gain 5.000 × 10−4 [s2/kg]

M̂(0) initial estimate value 0.020 [kg]

N̂i(0)(i = 1, 2) initial estimate value 0.000 [N]

N̂02(0) initial estimate value 0.000 [N]
Y1(0) − Y2(0) initial value −2.200 × 10−3 [m]
Z1(0) − Z2(0) initial value −3.491 × 10−4 [m]

TABLE III
PHYSICAL PARAMETERS OF THE FINGERS AND OBJECT.

l11 = l21 length 0.040 [m]
m11 weight 0.043 [kg]
l20 length 0.000 [m]
m20 weight 0.000 [kg]
m21 weight 0.060 [kg]
IXX11 inertia moment 5.375 × 10−7[kgm2]
IY Y 11 = IZZ11 inertia moment 6.002 × 10−6[kgm2]
IXX21 inertia moment 7.500 × 10−7[kgm2]
IY Y 21 = IZZ21 inertia moment 8.375 × 10−6[kgm2]
IXX = IZZ inertia moment(object) 1.133 × 10−5[kgm2]
IY Y inertia moment(object) 6.000 × 10−6[kgm2]
r0 link radius 0.005 [m]
ri(i = 1, 2) radius 0.010 [m]
L base length 0.063 [m]
M object weight 0.040 [kg]
li(i = 1, 2) object width 0.015 [m]
h object height 0.050 [m]
ki(i = 1, 2) stiffness 3.000 × 105[N/m2]
c∆i(i = 1, 2) viscosity 1000.0[Ns/m2]
cϕ viscosity 0.001 [Nms]

the equilibrium state Xd that minimizes ∆P +W as defined
in eqs.(54) and (55). Physical parameters of the fingers-
object system model are given in Table III. Parameters of
control gains are given in Table II. It is confirmed that key
physical variables of the fingers-object system converge to
some constant values as shown in Figs.4 and 5. We can
see through Figs.4 and 5 that spinning motion occurs but
eventually it stops after 2 seconds, that is, ω → 0 as t→ ∞.
On the other hand, it is confirmed that it continues to occur
if we set the damping parameter cϕ zero. In the present
simulaiton, the numerical order of the object width l1 + l2 is
similar to that of the radii r1, r2 of the robot fingers. Then,

(a) Initial pose (b) After 6 seconds
Fig. 4. Motions of pinching a 3-D object under the gravity effect
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Fig. 5. Transient responses of physical variables

it can be shown theoretically that the overall fingers-object
system is stabilized.On the other hand, viscosity coefficients
cψ, cθ around the y-axis, the z-axis in the frame coordinates
respectively must have adequate positive constant values
respectively under the circumstances that a thin object like a
business card is grasped. From these results, the visco-elastic
characteristics of the fingertip material play an important
role in stabilization of the overall fingers-object system.
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Furthermore, we suggest that human can easily grasp an
object by adjusting the visco-elastic force between a fingertip
and an object surface.

V. CONCLUSION

It is shown that a 3-D pinching is realized by using a pair
of robot fingers with hemispherical soft tips and minimum
DOF under the gravity effect. The overall fingers-object
dynamics is derived as a full-variables model under the
assumption that spinning around the opposition axis accom-
panies viscous friction exerted on the rotational motion of the
object around the x-axis in the frame coordinates. It is shown
that any solution of the closed-loop dynamics converges
to an equilibrium point establishing force/torque balance.
Finally, it is shown that the visco-elastic characteristics of
the fingertip material play an important role in stabilization
of the overall system.
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