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Abstract— The object level control of a dexterous robot
hand provides an intuitive high-level interface to solve fine
manipulation tasks. In the past, many algorithms were proposed
based on a weighted pseudoinverse of the grasp map. In a
different approach Stramigioli introduces a virtual object -
called “Intrinsically Passive Controller (IPC)”. This controller
distributes the generalized object forces using coupling springs
whose weighting have an intuitive physical meaning. Even
though this controller has been known for several years we
will present the first experimental results for a four-fingered
hand. Furthermore, the term virtual grasp map is introduced
and a method to parameterize the stiffness parameters in order
to obtain an effective object level stiffness and a damping design
is proposed. An implementation of the IPC is tested on the DLR
Hand II and its performance is analyzed by manipulating soft
and stiff objects.

I. INTRODUCTION

Advanced manipulation skills gained recently more and

more attention. In the past, the capabilities of humanoid

robots concentrated on walking. Lately, there has been a large

interest in equipping them with advanced manipulation skills.

Such robots with dexterous arms and hands are very flexible

and can perform many different tasks like manipulation of

various objects (e.g. large and heavy or small and fragile)

or can gesticulate. A dexterous robot hand possesses usually

many DOF1 for which controllers with joint or Cartesian

command interface are used. Object level control is em-

ployed if the task is to fine manipulate an object. It has in

general the advantages that it is easy to define grasp forces, to

compensate for robot and object inertia, to specify external

forces acting on the object and to avoid unnecessary high

internal forces [1]. A general overview of the control of

dexterous hands can be found in [2].

Object impedance is realized by a stiffness which is

defined by the reaction of the object frame Hr to an

externally applied generalized force wext. In contrast to joint

or Cartesian2 level impedance control the direct kinematics

Hr cannot be determined easily. The object pose estimation

by cameras is still a tough problem due to the occlusion

by the manipulator. Other methods to determine the current

object frame, are the simulation of the object dynamics, the

integration of the Cartesian fingertip velocity over time or

the use of virtual objects. The use of virtual objects has been

presented by several authors [3], [4]. The concepts of grasp

1DOF - degree of freedom.
2Considering serial kinematics, e. g. with respect to a single fingertip or

to the wrist of a robot arm.
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Fig. 1. DLR Hand II superimposed by the virtual springs defined by the
potential functions in equation (10) and the virtual object.

force realization can be divided into impedance control [3],

[5]–[7] and force control [1], [8], [9]. The main disadvantage

of force control is the requirement of contact. A force

control strategy is only meaningful during contact, hence

it is not suited to handle the change between contact and

non-contact [3]. The impedance controller has the advantage

that stability is given independently of the contact state since

it will converge to an equilibrium state that is the desired

position in case of free motion and that is a stable equilibrium

position in case of interaction with a passive environment.

As a consequence, only impedance-based approaches are

treated in the following. This fact facilitates the stability

analysis and the usability of the controller. In previous

works we described a passivity-based object level impedance

controller for a multifingered hand [10] which we used in

[6] to develop a two-handed impedance behavior for DLR’s

humanoid manipulator Justin [11]. The goal of this work is to

analyze the Intrinsically Passive Controller (IPC) proposed

by Stramigioli [3] and to evaluate the performance of an

implementation of this controller through experiments, which

were run for the first time on a four-fingered hand, the

DLR Hand II [12] (Fig. 1). Therefore, the term of a virtual

grasp matrix will be defined and its necessary properties will

be given. Furthermore, we propose a damping design as a

function of the inertia of the virtual and the real object, the

stiffness parameters, and the grasp matrices.
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II. SYSTEM MODEL AND ASSUMPTIONS

The considered dynamical model for an object and a

manipulator with M degrees of freedom has the form of

a rigid multi-body-system and is written as [13]

Mro(xr)ẍr + Cro(xr, ẋr)ẋr + gro(xr) = wext + wg (1)

Mh(q)q̈ + Ch(q, q̇)q̇ + gh(q) = τ + τ ext, (2)

where q = [qf1
, . . . , qfN

] ∈ R
M is the vector of gen-

eralized positions for N fingers in the hand. The vector

τ ∈ R
M contains the corresponding generalized actuator

forces3, which are considered as the control inputs. The

vector xr ∈ R
6 is the local representation of the object frame

Hr ∈ SE(3). The matrices Mh(q) ∈ R
M×M , Mro(xr) ∈

R
6×6 are the symmetric and positive definite inertia matrices,

Ch(q, q̇)q̇ ∈ R
M , Cro(xr, ẋr)ẋr ∈ R

6 contain the cen-

trifugal and Coriolis components, and g(q) ∈ R
M , g(xro) ∈

R
6 are the vectors of generalized gravity forces each for

the hand (index h) and the object (index ro), respectively.

Finally, wext ∈ R
6 contains external generalized forces

acting on the object. The vector wg ∈ R
6 describes the

effects of the fingertip forces applied to the object at the

contact points. The vector τ ext represents the generalized

external forces acting on a finger including the contact forces.

In order to focus the presentation on the multi-body part

of the dynamics, other physical effects like link and joint

flexibility as well as joint friction are neglected. In fact, in

the experiment in Section IV an underlying torque controller

is employed which compensates the joint friction partially.

In this paper the following definitions are used to facilitate

the notation. A frame Hx = [Rx, px] ∈ SE(3) consists

of a rotation Rx ∈ SO(3) and a translation px ∈ R
3. A

frame Hx can be described by a local parametrization xx ∈
R

6. The vector wx = (fT
x mT

x )T contains the generalized

forces acting at the coordinate system Hx with fx, mx ∈ R
3

represented in the body frame [13].

In the following, fine manipulation with a multifingered

hand is treated. Therefore, it is assumed that the N fingertips

of each hand are in contact with the object. For point contacts

with friction (PCWF), the held object can be manipulated in

3D-space if N ≥ 3 and if each finger has a configuration

space of dimension ≥ 3. We assume furthermore that

1) The internal forces provided by the controller are

chosen to be sufficient such that the friction constraints

are fulfilled for all contact points (no sliding).

2) In order to allow 6D object motion the contacts be-

tween the object and the hand are restricted to the

fingertips (no palm contact).

3) The relative contact points between the fingertips and

the object do not change (neglecting rolling effects).

The ith Cartesian fingertip position pfi
(qfi

) ∈ RR3 and

its orientation relative to the inertial frame Rfi
(qfi

) can be

calculated as a function of the generalized positions qfi
. We

can define the hand Jacobian Jh(q) =
∂pf (q)

∂qT that maps

3Depending on the type of joint (rotational or prismatic) this generalized

force is either a torque or a force.

Hr(xr)

Hf,1

Hf,2

Hf,3

H0

f f,1

f f,2

f f,3

wg

Fig. 2. Visualization of the grasp map Gr .

the joint velocities to the Cartesian fingertip velocities. The

forces fc,i, ff,i, the velocities ṗc,i, ṗf,i and the variations

of position δpc,i , δpf,i(q) at the N fingertips are used in

stacked notation (c.f. Fig. 4). To indicate stacked notation

the index is removed (e. g. f c =
(

f
T
c,1 · · ·f

T
c,N

)T

). Note,

that these variables are expressed in the inertial frame.

The grasp map Gr is used to determine the effect of the

stacked contact forces at the fingertips ff ∈ R
3N on the

object wrench wg (see Fig. 2).

Gr = [AdT

H
−1
r,f1

B · · ·AdT

H
−1
r,fN

B]RT
f ,

Rf = blockdiag{Rf1 , . . . ,RfN
} (3)

B = [I3×3 03×3]
T

,

where B ∈ R
6×3 is the wrench basis which is used to model

the point contact with friction [13]. The matrix Hr,fi
is the

configuration of the ith contact frame relative to the object

frame. The additional rotation RT
fi

transforms the forces and

velocities at the fingertips represented in the inertial system

into the ith contact frame. The grasp map relates forces and

velocities on Cartesian fingertip level with the ones on object

level:

wg = Grf f , GT
r ẋr = ṗf , GT

r δxr = δpf . (4)

With the introduced variables the well known grasp con-

straint4 can be formulated as

Jh(q)q̇ = GT
r (q, xr)ẋr. (5)

Applying the Lagrange-d’Alembert [13] equations to the

composite hand object system (1), (2) the equations of

motion can be represented in fingertip coordinates as

Mr(x̄)p̈f + Cr(x̄, ˙̄x)ṗf + gr(x̄) = f f + f ext, (6)

with x̄ = (qT , xT
r )T and

Mr = (GT
r M−1

ro Gr)
−1 + J−T

h MhJ−1
h

Cr = G+Mro
r CroG

+Mro
T

r − (GT
r M−1

ro Gr)
−1ĠrG

+Mro
T

r

+ J−T
h

(

ChJ−1
h + MhJ̇

−1

h

)

gr = G+Mro

r gro + J−T
h gh

f f = J−T
h τ .

4In contrast to [13], the hand Jacobian is defined w. r. t. the inertial frame
explaining the independence of xr .
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This equation describes the hand object dynamics w.r.t. the

Cartesian motion of the fingertips pf ∈ R
3N and forms

the basis of the damping design. The vector fext ∈ R
3N

represents the external forces acting on the fingertips and the

matrix G+Mro

r is the dynamically consistent pseudoinverse

[14] of the grasp map. In the following the dependence on

q will be suppressed for improved readability.

III. CONTROL STRATEGIES

The control of a multifingered hand requires on the one

hand the control of the pose of the grasped object to

be manipulated and equally important the control of the

grasping force. Firstly, basic structures for such control laws

are discussed. Secondly, the concept and the equations of

the IPC are given and a virtual grasp map is defined. A

parametrization of the stiffness and a damping design are

proposed.

A. Combination of Springs for Object Level Control

Within the class of impedance based systems two types

can be distinguished (compare Fig. 3): The parallel case in

which the impedances related to generalized manipulation

forces wvo (object spring) and related to internal forces fc

(coupling springs) are decoupled. This decoupling requires

a mapping of the manipulation forces to the joint torques.

Examples are the virtual linkage [7] or the object level

impedance control in [6], [10]. A difficult question with

this type of controllers is how to distribute the object level

force to the fingertips. Often weighted pseudoinverses are

used to solve this problem however the physical meaning of

the weighting is small. Secondly, the serial case represented

e. g. by the IPC [3] in which the object level force acts on

a virtual object inertia. This virtual object is furthermore

connected with the fingertips via springs, which generate

torques in the joints if elongated. In this case the impedances

are not decoupled but the force distribution is intuitively

given by the choice of the coupling springs. Certainly, the

coupling springs in both cases must have different properties:

In the parallel case 1D springs are needed which parameter-

ize the internal forces. In the serial case, it is intuitive to

adjust the dimensionality of the spring to the contact model

at the fingertip. For a PCWF for instance, only forces can

be applied to the object. Hence, a translational spring in

three dimensions is appropriate. In [10] a control law for

the parallel case was proposed and evaluated. Therefore, the

next sections will discuss the implementation of a control

law with serial structure.

B. IPC with Isotropic Coupling Springs

In Fig. 4 the structure of the IPC is depicted. The key

element of the IPC is the introduction of a virtual object

Hv(xv) which is originally connected via spatial coupling

springs with the fingertips. It is also connected via another

spatial spring (hand configuration spring) with the virtual

equilibrium position of the hand Hv,d [3]. It is important to

note that the coupling springs do not connect with the center

of the virtual object but for each coupling spring i a rest

fc,1 ∈ R
2fc,2 ∈ R

2

fint ∈ R
1

wvo ∈ R
3wvo ∈ R

3

Ho

Ho

HinertialHinertial

Serial Connection Parallel Connection

Fig. 3. Difference between serial and parallel interconnection of the object
level impedances for a planar example. The arrows indicate which forces
are mapped directly to the joint torques.
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Fig. 4. Virtual object and virtual grasp map for four fingers in contact.

length H−1
v Hci

is defined. In fact, these transformations

can be interpreted as virtual contact points. Table I gives an

overview of the used frames. The simulation of the virtual

Hv Virtual object frame
Hr Real object frame

Hv,d Desired equilibrium frame of the virtual object
Hfi

Fingertip frame of finger i
Hci

Frame at the ith virtual contact

TABLE I

DEFINITION OF COORDINATE SYSTEMS.

object dynamics can be formulated in the same way as in

equation (1)

Mv(xv)ẍv + Cv(xv, ẋv)ẋv = wv, (7)

where the new variables are defined accordingly to equation

(1) and the vector wv are the generalized forces applied

to the virtual object and represents the control input to the

virtual object. In contrast to [3], the coupling springs are

chosen to transmit only forces. This choice is motivated by

the fact that at the contacts between the robot fingers and

the real object only forces can be applied but no torques in

case of PCWF. The frames of the virtual fingers Hci
, i =

1, . . . , N and the virtual object Hv form a grasp that can

be described by a virtual grasp map Gv that is constructed

accordingly to equation (3) replacing the indices r, f with
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v, c. The properties described in equation (4) are also valid

for the virtual grasp map for the corresponding indices.

The stacked vector f c and the generalized forces wvo

are the forces generated by the coupling and the hand

configuration spring, respectively. Using equation (4) the

effect of the coupling forces at the virtual and the real object

can be written as wvc = Gvfc and ff = −fc. The control

inputs wv = wvc + wvo of the virtual object (7) and of

the real hand object system ff (6) can be related to the

introduced spring forces
(

wv

ff

)

=

(
wvc + wvo

ff

)

= GD

(
f c

wvo

)

, (8)

GD =

[
Gv I6×6

−I3N×6 03N×6

]

.

The new control inputs are wvo, f c, which are obtained by

the compliance control law
(

fc

wvo

)

= −
∂Vs

∂(pT
c , xT

v )T
−

(
fcd

wvod

)

, (9)

with fcd, wvod being the damping terms parallel to the

coupling and the hand configuration springs. The hand

configuration and the coupling springs can be defined by

the superposition of their potential functions

Vs = Vo(xv, xv,d, Ko) + Vc(pf , pc, Kc). (10)

Energy functions for the spatial spring connecting the virtual

object with the virtual equilibrium frame Hv,d, which are

explained in detail in [15] and [5] are used

Vo(xv, xv,d, Ko) =
1

2
(xv − xv,d)

T Ko(xv − xv,d)
︸ ︷︷ ︸

wvo,k

, (11)

with Ko the symmetric and positive definite (p. d.) object

stiffness matrix and the object spring generalized force

wvo,k. The potential function of the coupling springs

Vc(pf , pc, Kc) =
1

2
(pc − pf )T Kc(pc − pf )

︸ ︷︷ ︸

fk

(12)

is parameterized by pc and the p. d. and symmetric coupling

stiffness matrix Kc = blockdiag{kc1I3×3, . . . , kcN
I3×3}.

The vector fk contains the stacked coupling spring forces

of all fingers. Since only isotropic springs can be purely

translational [3], they were chosen for the coupling springs.

Inserting the potential function (10) into the compliance

control law (9), and using equation (4) δpc = GT
v δxv we

obtain
(

fc

wvo

)

= −K̄GT
D

(
xv

pf

)

−

(
fcd

wvod

)

− wdo

K̄ =

[
Kc 0

0 Ko

]

wdo =

(
0

Koxv,d

)

.(13)

It is important to note that the applied mapping of equation

(4) is only locally valid and hence the derived control law.

Now, we can combine the equations of motion of the virtual

object (7) and the composite real object robot hand system

(6) and insert the control inputs fc, wvo using equations (13)

and (8). The closed loop dynamics with the corresponding

state vector x = [xT
v pT

f ]T can be then written as

Mẍ + CG + GD

(
fcd

wvod

)

+ Kx = w, (14)

M =

[
Mv 0

0 M r

]

CG =

(
Cv

Cr + gr

)

K = GDK̄GT
D w =

(
Koxv,d

f ext

)

.

In order to apply the control law (13) to the robot, the

coupling forces have to be mapped into the joint space using

the transposed hand Jacobian

τ = JT
h (q)f f . (15)

C. Requirements on the virtual grasp map Gv

In [3] and [4], the coupling springs between the virtual

object and the robot end-effectors were designed as spatial

springs that transmit forces as well as torques. This is analog

to a rigid grasp, where one end-effector is sufficient to form

a stable grasp. The steady-state solution of the equations of

motion of the virtual object in equation (14) together with

wext = 0 gives

wvo = −Gvf c. (16)

From this equation it is obvious that the virtual grasp map

Gv has to have full row rank. An important property of a

grasp is force closure: If and only if Gv(FC) = R
6 with

FC = FC1 × · · · × FCN ⊂ R
3N a grasp is force closure.

D. Choice of Stiffness Parameters

The IPC realizes a serial connection of the object and the

coupling springs from Hv,d to Hr assuming that the object

is rigidly connected to the real fingertips. From an application

point of view it is desirable to be able to define the effective

stiffness Keff ∈ R
6×6 for the real object, i. e. the change

in pose due to an external wrench

Keffxr = wext. (17)

The steady-state of the closed-loop dynamics (14) in the

coordinates of the real and the virtual object xvr = [xT
v xT

r ]T

is given by

GEK̄GT
Exvr = w̄ (18)

with GE =

[
Gv I

−Gr 0

]

and w̄ =

[
δxv,d

wext

]

while neglecting the gravity term and using equation (4). A

reasonable method to achieve an effective stiffness is to set

Kc, Gr, Gv depending on the task and to solve for Ko.

Equation (18) can be also written as
[

K1 K12

KT
12 K2

](
xv

xr

)

= w̄. (19)

Solving this equation for xr and xv we can easily identify

the matrix Keff .

Keff = K2 − KT
12K

−1
1 K12. (20)
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Finally, using this equation together with equation (18) the

stiffness for the hand configuration spring is obtained

Ko = K12(K2 − Keff )−1KT
12 − GvKcG

T
v . (21)

Notice, that the effective stiffness of Kc represents an upper

bound to the achievable effective stiffness Keff .

E. Damping Design

Obviously, K, M ∈ R
(6+3N)×(6+3N) are symmetric.

With these matrices, the neglect of the Coriolis and the grav-

ity terms, setting xv,d = 0, and a quasi-static consideration

the closed loop dynamical equations (14) can be written as

Mẍ + Dẋ + Kx = 0, (22)

where the damping term

GD

(
fcd

wvod

)

= Dẋ (23)

is replaced. This brings equation (22) in the form of a clas-

sical mass-spring-damper system. Because of the symmetry

of K and the symmetric and p. d. matrix M the damping

design using double-diagonalization [16] can be then applied.

From the matrix pair (K, M) we obtain a damping matrix

D. The term ξ represents the damping coefficient and param-

eterizes the damping term. The desired damping forces have

to equal the damping terms which are injected by equation

(13). Hence, equation (23) has to be solved for (fT
cd, w

T
vod)

T .

The inverse of the matrix GD ∈ R
(6+3N)×(6+3N) is there-

fore needed. If the virtual and the real grasp matrix realize

stable grasps GD has full rank, and we obtain
(

fcd

wvod

)

= G−1
D Dẋ. (24)

Since ẋr cannot be measured directly, the Moore-Penrose

pseudoinverse of the transposed virtual grasp map5 is used

to calculate the velocity of the real object from the velocities

of the fingertips

ẋr = GT+
r ṗf . (25)

Furthermore, in the real-time implementation it is easier to

integrate equation (25) over time to obtain xr, respectively

Hr(xr), instead of simulating the real object dynamics.

IV. EXPERIMENTS

The proposed implementation of the IPC including the

damping design has been integrated on the DLR Hand II

[12]. In Fig. 1 the hand is superimposed by the virtual object

and the springs attached to it. The hand has four fingers with

3 DOF each, resulting in overall 12 DOF. In addition to the

position sensors the link-side torques are measured as well.

The control law runs on a QNX target on a Pentium IV with

3 GHz with a controller sample time of 1 ms. The desired

control torque from equation (15) is used as set point for a

low-level torque controller which is based on the joint torque

5In this case the left pseudoinverse is used that is independent of its
weighting.

Fig. 5. The DLR Hand II grasping a toy ball (left) and a box (right).

measurement, and offline estimated static and viscous motor

friction parameters.

The control law is evaluated in two experiments (compare

Fig. 5): A) Object rotation and translation of a soft toy

ball with a diameter of 0.11 m and a weight of 0.1 kg. B)

Object translation of a stiff box with dimensions 0.14 m ×
0.14 m×0.1 m and a weight of 0.2 kg. For the experiments

the controller parametrization is given in Table II. The

used parameters lead to the effective translational stiffness

Keff,t = diag{705, 705, 705} N/m for both experiments

and Keff,r = diag{2.5, 2.9, 4.7} Nm/rad for the ball and

Keff,r = diag{1.6, 2.0, 3.3} Nm/rad for the box experi-

ment. Note that assumption 3) in section II introduces a small

kinematic error since the fingertips have a round shape.

Kt[N/m] Kr[Nm/rad] Kc[N/m]
diag{1000, 1000, 1000} diag{20, 20, 20} 600I3N×3N

mv[kg] Iv [kgm2] ξ
0.1 0.003I3×3 1

TABLE II

CONTROLLER PARAMETERS.

A. Manipulation of a soft Object: Toy Ball

The grasped ball is translated along the y−axis by com-

manding a step of 0.04 m. The step response of the object

spring force fvo,k is presented in Fig. 6. The response

converges after 250 ms well damped to a steady-state.

The remaining error is less than 5 N which stems from

joint friction6. In Fig. 7 we observe changes of the object

spring torque mvo,k in the magnitude of 0.2 Nm during the

translation indicating that the coupling between rotation and

translation is small. In Fig. 8 the coupling forces of finger

2 fk,2 have an offset which represents internal forces and

the transient behavior is well damped as well. The difference

between virtual object and real object position ∆p = pv−pr

is printed in Fig. 9 showing the transient behavior of the

relative motion of the objects. Initially, the difference is small

which then grows to a maximum of 0.008 m corresponding

to 20 % of the step size. At the moment of maximum error

the virtual object reached the desired value and the real

6The friction compensation in the torque controller is chosen rather
conservative to ensure stability.
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object is basically pulled then only by the coupling springs

to its steady-state. In another experiment the grasped ball is
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Fig. 6. Object spring force fvo,k during the translation along y−axis of
0.04 m (Ball).
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Fig. 7. Object spring torque mvo,k during the translation along y−axis
of 0.04 m (Ball).
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Fig. 8. Coupling spring force fk,2 during the translation along y−axis
of 0.04 m (Ball).

rotated around the z−axis by commanding a step of 0.6 rad.

The step response of the object spring torque mvo,k shows in

Fig. 10 a well damped convergence. Fig. 11 indicates small

coupling with the translational motions. Fig. 12 depicts the

coupling forces of finger 2. Since these forces are depicted

in the inertial frame the internal forces converge to different

steady-state values.

B. Manipulation of a stiff Object: Box

In this experiment the controller was tested to manipulate

a stiff box which has virtually no intrinsic damping.

The grasped box is translated along the y−axis by com-

manding a step 0.04 m. The step response of the object spring
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Fig. 9. Difference between virtual object and real object position pv −pr

during the translation along y−axis of 0.04 m (Ball).
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Fig. 10. Object spring torque mvo,k during the rotation around y−axis
of 0.6 rad (Ball).
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Fig. 11. Object spring force fvo,k during the rotation around y−axis of
0.6 rad (Ball).
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Fig. 12. Coupling spring force fk,2 during the rotation around y−axis of
0.6 rad (Ball).

force fvo,k is presented in Fig. 13. The response converges

after 250 ms well damped to a steady-state. In Fig. 14 a small
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coupling between the translational and the rotational motion

can be observed. In Fig. 15 the coupling forces of finger

2 fk,2 are converging to a steady-state. Note that since the

box has no intrinsic damping it is very important to inject

damping w.r.t. the internal motions by means of the controller

(compare equation (24)).
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Fig. 13. Object spring force fvo,k during the translation along y−axis of
0.04 m (Box).
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Fig. 14. Object spring torque mvo,k during the translation along y−axis
of 0.04 m (Box).
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Fig. 15. Coupling spring force fk,2 during the translation along y−axis
of 0.04 m (Box).

V. CONCLUSIONS

An implementation of the IPC originally presented by

Stramigioli [3] was analyzed. Instead of spatial coupling

springs, isotropic coupling springs that transmit only force

components were employed. The difference between dex-

terous hand control laws realizing a parallel [10] and a

serial interconnection of hand configuration and coupling

springs was discussed. In this paper the focus was on the

implementation and evaluation of a serial structure. The

term virtual grasp map was introduced and the necessary

conditions of its force closure were stated. A method to

parameterize the stiffness parameters in order to obtain an

effective object level stiffness and a damping design was

proposed. The controller was implemented on the DLR

Hand II and its performance was analyzed through step

commands manipulating soft and stiff objects. The controller

produced well-damped responses w.r.t. object motion but also

w.r.t. to internal motions. Future work will be to compare the

performance and practicability of the serial with the parallel

connection of springs through experiments.
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