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Abstract – This paper describes the development of a novel 
vision-based modeling and grasping system for three-
dimensional (3D) objects whose shape and location are 
unknown a priori. Our approach integrates online computer 
vision-based 3D object modeling with online 3D grasp planning 
and execution. A single wrist-mounted video camera is moved 
around the stationary object to obtain images from multiple 
viewpoints. Object silhouettes are extracted from these images 
and used to form a 3D solid model of the object. To refine the 
model, the object’s top surface is modeled by scanning with a 
wrist-mounted line laser while recording images. The laser line 
in each image is used to form a 3D surface model that is 
combined with the silhouette result. The grasp planning 
algorithm is designed for the parallel-jaw grippers that are 
commonly used in industry. The algorithm analyses the solid 
model, generates a robust force closure grasp, and outputs the 
required gripper position and orientation for grasping the 
object. The robot then automatically picks up the object. 
Experiments are performed with two real-world 3D objects, a 
metal bracket and a hex nut. The shape, position and 
orientation of the objects are not known by the system a priori. 
The time required to compute an object model and plan a grasp 
was less than 4 s for each object. The experimental results 
demonstrate that the automated grasping system can obtain 
suitable models and generate successful grasps, even when the 
objects are not lying parallel to the supporting table. 
 

I. INTRODUCTION 
Typically, for robotic grasping to be successful the shape 

and location of the object must be known in advance. This 
lack of adaptability has two main disadvantages. First, 
expensive fixtures or other devices must be used to position 
and orient the object prior to grasping. Second, the robot is 
limited to objects whose shape is already known. A vision-
guided grasping system that could adjust to the position, 
orientation and shape of the object would provide the needed 
adaptability. Such a system would be useful in both 
manufacturing and service applications of robots. Robots 
equipped with vision systems capable of grasping objects 
whose planar shape and location are unknown have existed 
for many years (e.g. [1]). However, the automated grasping 
of three-dimensional (3D) objects whose shape and location 
are unknown a priori remains a challenging and unsolved 
problem, and is the subject of this paper. Its solution 
necessitates online object modeling, grasp planning and 

grasp execution. Note that this is distinct from the problem 
of recognizing the object from a predefined set or database 
of known objects and then grasping it. Stansfield [2] 
presented a system for grasping 3D objects with unknown 
geometry using a Salisbury robotic hand. Each object was 
first placed on a motorized table. The object was then rotated 
and translated under a laser scanner to generate a set of 3D 
points. These were combined to form a 3D model. The 
model formed the input to an expert system that planned the 
grasp. Experimental results were presented for several 
objects.  A system using a parallel-jaw gripper and machine 
vision intended for picking an object from the top of a pile 
was described by Taylor, Blake and Cox [3]. They used a 
wrist-mounted camera to first scan the pile for the highest 
object. They described a method for planning a grasp for this 
object based on images from several viewpoints. However, 
the only experimental grasping results they included were 
for a single object (a potato) located on a table. The system 
presented by Trobina and Leonardis [4] used two range 
sensors to model groups of objects. The models, consisting 
of planar patches, were used to plan grasps for a parallel-jaw 
gripper. The tallest object was picked up and removed first, 
a new 3D model constructed, and the process repeated until 
all objects had been removed. Only one experimental result 
for a set of household objects (milk carton, coffee cup, etc.) 
was included. Namiki et al. [5] presented a system for high 
speed grasping using visual and force feedback with a 1 ms 
sampling rate. Their system was able to grasp a moving 
object in about 0.5 s, but the robotic hand they used had to 
be pre-shaped according to the expected shape of the object. 
Only rectangular block and spherical shapes were 
considered. The object motion was also limited to a plane 
and the final position of the object within the hand could not 
be determined. A system combining a grasping simulator 
with a real-time visual tracking system was described by 
Kragic, Miller and Allen in [6]. The tracking system could 
accurately estimate the 3D pose of the object while the 
simulator was used to generate a suitable grasp. However, 
both the tracking system and grasping simulator required a 
predefined CAD model of the object in order to function. A 
humanoid robot equipped with a stereoscopic light stripe 
scanner and a prosthetic hand was presented by Taylor and 
Kleeman [7]. Their robot could reliably track objects 
through clutter by employing color, texture and edge 
information. It successfully located and picked up a yellow 
box, given only the information that the object was yellow 
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and had a box shape.  Jang et al. [8] described a novel 
approach to accessibility analysis for grasping and 
manipulation tasks.  The workspace was modeled using a 
stereo camera and objects to be grasped were recognized 
using their plane features and pre-existing object models.  
Obstacles were modeled by multi-resolution octrees.  Their 
vision system required the environment to be strongly 
textured to obtain the 3D information.  Collision-free grasps 
were planned for a parallel-jaw gripper using a novel 
visibility-based approach.  The grasping of a drink container 
inside a refrigerator was used as a demonstration.  Sanz et al. 
[9] presented a vision-based object handling system for 
industrial applications.  A 2D model of each unknown object 
was generated from a single overhead image.  The minor 
axis of a fitted ellipse was used to plan the grasp for a 
parallel-jaw gripper.  Their system was limited to the case 
where the gripper jaws were parallel to the world Z axis (i.e. 
the jaws are perpendicular to the table).  Results were 
included for small tools (e.g. pliers) and for food items (e.g. 
lettuce).  Another vision-guided robotic arm was developed 
by Kragic and Björkman [10].  They integrated monocular 
and binocular visual cues from five cameras to provide 
robust 3D object information.  Their model-free approach 
was applicable to well-textured, unknown objects.  A three-
fingered hand equipped with tactile sensors was used to 
perform the grasp in an interactive manner.  

This paper describes the development of a novel vision-
guided grasping system for grasping 3D objects whose shape 
and location are unknown a priori. The system employs 
online 3D object modeling, grasp planning and grasp 
execution. A robotic arm equipped with a single wrist-
mounted video camera, a wrist mounted line laser, and a 
parallel-jaw gripper is used. The method for generating a 3D 
object model online is described first. Next, the grasp 
planning algorithm is presented. Following a description of 
the experimental setup, the results of automated grasping 
experiments performed with two real-world objects are 
discussed, and conclusions are drawn. 

II. ONLINE 3D OBJECT MODELING USING COMPUTER 
VISION 

A. Introduction 
The 3D object model will be obtained using both 

silhouette and structured-light based methods. Silhouette-
based methods (also known as the “method of occluding 
contours”) were first introduced by Martin and Aggarwal 
[11]. With these methods, a single calibrated camera and 
silhouettes of the object (i.e. binary classifications of the 
image into object and background) from several viewpoints 
are used to generate the object model. They have the 
advantages of: simplicity, speed, being guaranteed to 
produce a closed surface, and robustness. They have the 
disadvantage that at best they can only model the “visual 
hull” of the object. The volume derived from the visual hull 
is less than or equal to the volume of the convex hull of the 

object and greater than or equal to the true shape of the 
object. In structured-light methods, a light pattern of known 
geometry is projected onto the object and an image is 
acquired with a calibrated camera. The deformation of the 
light pattern on the surface of the object allows one to 
determine the object’s shape. These methods have the 
advantage of being able to simply and quickly model 3D 
shape from single 2D images. They have the disadvantage of 
only being able to model sections of the object where the 
light pattern reaches. 

B. System Calibration 
In order to be grasped, the object must be located within 

the field of view on a worktable. The system must also be 
calibrated once before it may be used. The calibration 
procedure produces mappings between the three coordinate 
systems defined in Fig. 1 using a calibration pattern and 
Tsai’s method [12].  A similar calibration procedure is used 
to produce a mapping between the 2D image sensor and the 
vertical plane that will be illuminated by the wrist-mounted 
line laser.     

C. Centering Object within Camera Field of View 
As the object may be located anywhere on the table, the 

first task is to locate the object’s position in order to center 
the camera overtop. This ensures that when images are 
captured, the object is entirely visible in the image and not 
cut off. The steps for locating the object are as follows: 
1) Move the camera above the world origin, with D ≈ 

450mm and 0θ β≈ ≈  (ref. Fig. 1). 
2) Capture the image from the camera.  
3) Detect the edges of the object in the image using a mean 

filter followed by a Sobel filter and thresholding. 
4) Compute the mean values of the X and Y edge 

coordinates in world coordinates, and move the camera 
above this location. 

 

Fig. 1.  Definitions of the robot, mobile and world coordinate systems 
(Note: YW and YW′ are parallel). 
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D. 2D Image Acquisition and Silhouette Generation 
     The first step in generating a model online is to acquire 
and process 2D images from several viewpoints. In general, 
acquiring more images produces a more accurate model at 
the cost of longer execution time. We found that nine 
viewpoints were an effective compromise. The first 
viewpoint places the camera above the mobile coordinate 
system origin, with D ≈ 300mm and 0θ β≈ ≈ . For the 
remaining viewpoints the camera is moved incrementally 
around a circle with θ ≈ -110°, -80°, -50°, -20°, 10°, 40°, 
70° and 100°. The steps of the 2D image acquisition and 
processing are as follows: 
1) Move the camera to the first viewpoint and pause the 

motion. 
2) Capture the image from the camera.  
3) Detect the edges in the image using a mean filter 

followed by a Sobel filter and thresholding. 
4) Obtain the contour of the object using the boundary-

following algorithm from [13]. 
5) Fill in the object contour to complete the silhouette for 

the current viewpoint. 
6) If at the last viewpoint then stop, otherwise move to the 

next viewpoint and continue with step 2. 
Note that in steps 3-5, edge detection, boundary-following 

and pixel filling are used to separate the image pixels 
belonging to the object from those belonging to the 
background. This is reliable since significant pixel intensity 
changes normally exist near the edges of the object and the 
background. 

E. Generation of the 3D Silhouette Model 
With silhouette-based modeling the information from 

several image silhouettes is combined to form a solid model 
of the object. For the case of a single silhouette, the object 
must lie within the polyhedral cone formed by the silhouette 
and the camera focal point. The process of intersecting a 
series of these cones forms a model that is progressively 
closer to the real object. An example for an ellipsoid object 
and four viewpoints is given in Fig. 2. A key issue is how to 
represent the volume elements of the model. In this paper we 
extend the beam-based approach presented in [14]. The 
beam-based approach has the advantage of a simpler and 

easier to compute intersection test compared with the more 
common octree method. The steps of the 3D modeling 
algorithm are as follows: 
1) The object is first represented by two stacks of square 

cross-section beams. The first stack is aligned with the 
XW axis (see Fig. 3), while the second is aligned with the 
YW axis. 

2) For each object silhouette, starting with the first beam: 
a. Transform the world coordinates of the beam 

endpoints into the current mobile coordinate 
system. 

b. Project the beam endpoints onto the image plane 
of the camera. 

c. If either of the projected endpoints lies outside the 
silhouette then shorten the beam incrementally 
and repeat (a) and (b) until both projected 
endpoints lie on the silhouette or the beam length 
equals zero. 

d. Apply steps (a) to (c) for the remaining beams. 
An example of a beam being shortened using a single 

silhouette is given in Fig. 4. The silhouette modeling 
procedure introduced here has the limitation of not 
accurately modeling the top surface of objects. Since the 
images are acquired from elevated positions, the object’s top 
surface is contained within the silhouette. This results in 
excess, cone-shaped volumes present on the top surfaces of 
the models. To correct this, a structured-light model is used 
to accurately model the top surface, as discussed in section 
F. 

 Camera 
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Fig. 2.  Modeling example (top view is shown). 
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Fig. 3.  Example of a stack of X axis aligned beams used in the 
volume representation. 

Beam 
endpoint 

Beam

XW 

ZW 

YW 

WY

,W MZ Z

WX MX

MY

Fig. 4.  Shortening of a beam using an image silhouette. 

Beam

Image Plane  

294



F. Structured-Light Image Acquisition and Model 
Generation 
Structured-light modeling utilizes a projected pattern of 

light, in this case a red line laser that is mounted on the robot 
end effector. In order for the entire surface to be modeled, 
the robot arm is used to scan the laser across the object while 
the camera acquires images. The robot wrist is reoriented 
such that a vertical plane of laser light is cast on to the object 
subject, utilizing the vertical plane calibration to relate the 
image co-ordinates to world coordinates. The end effector 
speed and the camera frame rate are known, allowing 
determination of the laser plane separation between each 
image. The steps of the structured-light image acquisition 
and model generation are as follows:  
1) The object’s XW coordinate boundary is determined 

from the silhouette model, and the laser begins at this 
point oriented parallel to the YW axis.  

2) The robot then scans a set distance along the XW 
direction while the camera acquires images.  

3) The red laser line is extracted from the images using 
thresholding, and the portions of the line that contact the 
table are eliminated.  

4) For each image, the vertical calibration data is used to 
relate the laser line’s image coordinates to YW and ZW 
coordinates. 

5) The world XW coordinate of each image’s laser plane is 
found from the computed laser plane separation between 
consecutive images. 

The structured-light model of the object’s surface is stored 
as a set of points. 

G. Combination of Silhouette and Structured Light 
Models 
The silhouette model contains excess volume that will be 

removed using the structured-light representation of the 
object’s top surface. The approach is to use the structured-
light surface representation like a cookie cutter, to cut the 
desired shape out of the silhouette model. The procedure to 
combine the two models is as follows: 
1) Project both models into the YW - ZW plane. 
2) Starting with the first silhouette model beam, if either 

endpoint lies above (ie. greater ZW position) the 
corresponding structured-light model point, shorten the 
beam incrementally until both projected endpoints agree 
with the structured-light model or the beam length 
becomes zero. 

3) Apply step 2 to the remaining beams. 
4) Project both models into the world X-Z plane and repeat 

steps 2 and 3. 
Note that repeating the cutting process in additional 

planes produces greater detail at the cost of longer execution 
time. We found using two planes to be sufficient.  

III. ONLINE GRASP PLANNING 

A. Finding Potential Grasping Surfaces 
A parallel-jaw gripper with flat jaws can be used to grasp 

many objects, including those without flat surfaces. 
However, it is best suited to objects with approximately flat 
parallel surfaces. Our grasp planning algorithm is currently 
limited to this case. The solid model consisting of the beam 
endpoints forms the input to the first planning phase. This 
phase involves finding nearly flat surface patches that could 
be used for grasping. The algorithm steps are as follows: 
1) Form triangular facets from the surface points. 
2) Calculate the outwardly pointing normal vectors for the 

set of facets. 
3) Calculate the distances to the origin of the planes 

containing each facet. 
4) Form a subset containing the first facet. 
5) Determine the angle between the normal for this facet 

and the normal for another facet from the set.  
6) If the angle is less than a flatness tolerance, then 

calculate the distance between this facet and the first 
facet (using the values from step 2). If this distance is 
less than a distance tolerance then add this facet to the 
subset. 

7) Repeat steps 5 and 6 until no more facets satisfy the 
conditions of step 6. 

8) The subset of facets forms a nearly flat surface patch. 
Assign a distinct label to the members of this subset. 

9) Starting with the first unlabeled facet, repeat steps 4-8. 
10) Repeat step 9 until all facets are labeled. 

B. Planning a High Quality Force Closure Grasp 
In the second planning phase, the objective is to find the 

pair of nearly flat surface patches where the gripper jaws 
should squeeze the object to produce a high quality grasp. 
An ideal grasp should be insensitive (or robust) to position 
and orientation errors prior to grasping, and to forces and 
moments applied to the object after it has been grasped. A 
low sensitivity to the coefficient of friction is also desirable. 
Consider the contact between one gripper jaw and the object. 
Jaw contact with a nearly flat surface patch with a large area 
will be better able to resist applied moments, and less 
sensitive to position errors, than contact with a smaller 
patch. However, requiring that both grasping surface patches 
have a large area does not guarantee a robust grasp. An 
example is illustrated in Fig. 5. Cross-sections of a prismatic 
object and the gripper jaws are shown. NF is the normal 
force and µ is the coefficient of friction. The object will slip 
from its initial orientation in Fig. 5a to the orientation shown 
in Fig. 5b if the moment created by the normal forces is 
greater than the moment due to the friction forces. If this 
condition is not true the object will keep its initial 
orientation (in 5a). This grasp is therefore not robust to 
orientation errors, applied moments or the coefficient of 
friction. In Fig. 6 a robust grasp is shown for the same 
object. With this grasp, if the object is tilted (due to an 
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applied moment or an initial orientation error) the normal 
forces will tend to return it to the orientation shown. The 
difference between the grasps of Figs. 5 and 6 lies in the 
“common projected area” of their grasping surface patches. 
With the Fig. 5 grasp, the patches have no area in common 
when projected onto each other, whereas the common 
projected area for the Fig. 6 grasp is as indicated in the 
figure. 

Although we would prefer that the contact between the 
jaw and object surfaces to be a plane-plane frictional contact 
(that could be modeled by three frictional point contacts) this 
cannot be guaranteed in practice. Since the gripper jaws will 
be covered by a layer of rubber, in the worst case of a single 
point of contact between the jaw and object the contact can 
be modeled as a soft finger contact.  Then a grasp of the type 
shown in Fig. 6 will be (in the worst case) a two opposing 
soft-finger grasp that Nguyen [15] has proven to be a 3D 
force closure grasp. 

Another important issue is robustness to robot positioning 
error in the tool Z (or approach) direction. To avoid 
collisions with the worktable or other features of the object, 
the gripper jaws should not be placed too low on the 
grasping surface patches. At the other extreme, the object 
could be dropped if the jaws are placed too high. Placing the 
tips of the jaws close to the middle of the patches will make 
the grasp robust to large errors in robot tool Z positioning.  

The preceding observations led to the following algorithm 
for the second phase of the grasp planning: 
1) Calculate the areas of the patches in the set obtained in 

the first planning phase. 

2) Delete all patches whose area is less than a threshold. 
3) Calculate a normal vector for each remaining patch by 

averaging the normals of the facets belonging to it. 
4) Select a patch from the set. 
5) Determine the angles between the normal for this patch 

and the normals of the other patches in the set. 
6) Record all pairs of patches from step 5 that are within 

the parallelism tolerance. 
7) Repeat steps 4-6 for the other members of the set. 
8) Calculate the common projected area for each of the 

pairs of patches recorded in step 6. 
9) Select the pair of patches with the largest common 

projected area to be the desired grasping surface patches 
(DGSP). 

10) Compute the centroids of the DGSP. Compute the 
midpoint of the line segment joining the two centroids. 

11) Compute the transformation required to make the jaw 
surfaces parallel to the DGSP, and the jaw tip center 
(defined in Fig. 7a) coincident with the midpoint from 
step 10. An example is shown in Fig. 7b. This 
transformation will be in world coordinates. 

12) Transform the result from step 11 into robot 
coordinates, and calculate the commanded robot 
locations for approaching, grasping and picking up the 
object. 
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Fig. 5.  Example of a non-robust grasp. 
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Fig. 6.  Robust grasp for the object shown in Fig. 5. 
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Fig. 7.  (a) Definition of the jaw tip center. (b) Jaw placement example 
for an asymmetric object. 
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IV. AUTOMATED GRASPING EXPERIMENTS 

A. Experimental Setup and Procedure 
The hardware used for the experiments consists of a 

1.8GHz P4 PC; and a CRS F3 robot equipped with a 
Robohand RPL-4 parallel-jaw gripper, a Point Grey 
Research Dragonfly2 video camera with 8.5mm lens, a 5 
mW red line laser, and a LED-based light (see Fig. 8). The 
motion commands are transmitted from the PC to the robot 
controller via an RS-232 serial connection. The video 
camera is mounted parallel to the gripper. The object to be 
grasped is placed on a black pad to improve the reliability of 
the edge detection. Two objects were tested: a metal bracket 
and a hex nut (see Fig. 9). The volume representation used 
for the online modeling consisted of a 120 mm cube made 
up of 7,200 pillars with end dimensions of 2 × 2 mm2. Note 
that a larger volume representation could be used if 
warranted by object size. In the experiments the test objects 
were placed at various positions and orientations on the 
table.  

B. Results and Discussion 
Typical experimental results are given in Figs. 10-11 and 

Table 1. To demonstrate that the system works when the 
grasping surfaces are not vertical, the nut was deliberately 
tilted out of the plane of the worktable by placing it on top of 
a screw (see Fig.11a), and a tilted orientation was used for 
the bracket (see Fig.11d). The online generated model of the 
bracket (Fig. 10) demonstrates that the system can model it 
effectively for the grasping application. It also shows that 
our modeling method does not properly model holes, as the 
silhouettes are created using the object’s outer contour. This 
limitation is irrelevant for our application since the object 
will be grasped by its outer sides. Sequences of photographs 
depicting the successful grasping and picking up of the nut 
and bracket are shown in Figs.11a-11c and 11d-11f, 
respectively. The duration required for each experiment was 
about 48 s. The movements of the robot consumed most of 
this time. This duration could be reduced significantly in 
future by optimizing these movements. The execution times 
for the silhouette model generation, structured-light model 
generation, model combination, and grasp planning are listed 
in Table 1. The model of the nut consisted of 995 surface 
points, while the bracket model included 3044 surface 
points. The modeling and grasp planning execution times 
reflect the complexity of the object shape. 
 

TABLE 1   
EXECUTION TIMES 

 
Execution Time (s) 

Object Silhouette 
Model 

Generation 

Structured-
Light 
Model 

Generation 

Model 
Combination 

Grasp 
Planning Total 

Hex 
nut 1.37 0.17 0.59 0.05 2.18 

Bracket 2.29 0.25 1.04 0.16 3.74 

Fig. 10.  Clockwise from top left: object, structured-light model, 
silhouette model, and combined model. 

Fig. 9.  Objects used for the tests. 
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V. CONCLUSIONS 
In this paper a novel approach for grasping unknown 3D 

objects was presented. Our approach combines online 
silhouette and structured-light 3D object modeling with 
online grasp planning and execution. Compared to previous 
work, the silhouette and structured-light based modeling 
combination has the advantages of simplicity and 
robustness. It only requires the use of a single wrist-mounted 
video camera and a line laser. Unlike previous systems, 
neither the object nor the environment needs to be strongly 
textured. The silhouettes and laser points are obtained using 
simple and reliable image processing techniques. After a 
onetime calibration, an object model may be generated from 
these silhouettes and laser points. The modeling method 
does not properly model a hole through an object. However, 
this limitation is irrelevant for the grasping application. The 
grasp planner generates robust force closure grasps. The 
experimental results demonstrate that the automated 
grasping system works with real-world objects whose 3D 
shape and location are unknown by the system a priori. The 
objects were deliberately tilted (i.e. their sides were not 
perpendicular to the table) to make the task more 
challenging.  The time required to compute an object model 
and plan a grasp was less than 4 s for each object.  
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Fig. 11.  Photographs from two grasping experiments. 
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