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Abstract— The proposed robotic system provides the surgeon
with an augmented sensation of the interaction forces between
the instrument and the organ. Such a system aims at increasing
the surgeon’s dexterity for tasks requiring that only small forces
be applied on the organ (eg. for micro-surgery).
In the proposed setup, the surgeon manipulates a handle
mounted on the instrument. This is a comanipulation system
because the surgeon and the robot simultaneously manipulate
the instrument.
The proposed control scheme allows an augmented force con-
trol: the control law ensures that the instrument applies on the
organ the same forces that the surgeon applies on the handle
but decreased by a scale factor. As a consequence, the forces
sensed by the surgeon are the forces between the instrument
and the organ amplified by a scale factor. This control scheme
is proved stable thanks to a passivity study. Indeed, passivity
analysis is a useful tool for the stability analysis of a robot
interacting with the environment.
Experimental results are presented on a robot dedicated to
minimally invasive surgery.

I. INTRODUCTION

In the context of robotic surgery, the surgeon and the

medical staff have to interact with the robot. Depending on

the surgical task, the degree of cooperation can be really

different. Simple tasks may be realized by the robot, in

an autonomous way, under the surgeon’s supervision. For

example, the surgeon defines the desired positions via an

interface and the robot moves to these positions. However

more complex tasks require the surgeon’s judgment and,

thus, cannot be performed autonomously by the robot. These

tasks require that the robot works in cooperation with the

surgeon. The surgeon’s skills are thus improved as the robot

increases his dexterity. To do so, one of the possibilities

is robot’s force control. For instance, in minimally invasive

surgery, a robotic device could be used in order to display

manipulation forces back to the surgeon. Indeed, since the

instruments are manipulated through a trocar and because of

the friction in the trocar, the surgeon looses the sensation of

the interaction forces between the instrument and the organ

and his dexterity is thus reduced. An other application of

force control that could increase the dexterity of the surgeon

is force scaling. Indeed, for precise manipulation tasks, a

robotic device could provide the surgeon with an augmented
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Paris VI, 75005 Paris, France. He is now with the TIMC-IMAG Laboratory
Computer Assisted Medical Interventions Team IN3S 38706 La Tronche
Cedex France, nabil.zemiti@imag.fr

Gianluca A. d’Agostino was with Università Federico II di Napoli,
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sensation of the interaction forces between the instrument

and the organ.

Comanipulation appears to be a good solution to over-

come these problems. Comanipulation is a direct interaction

between the surgeon and the robot: the instrument is manip-

ulated simultaneously by the surgeon and by the robot. The

main difference between comanipulation and teleoperation is

that no master arm is needed to impose displacements to the

robot. So the complexity and the cost of a comanipulation

system may be lower since it involves only one mechanical

system. Moreover, the use of a comanipulation system may

be more intuitive for the human operator.

Different approaches have been studied concerning the

comanipulation. Some systems are able to impose virtual

constraints to the surgeon’s gesture which restrain the tool

into a delimited area of the task-space and forbid the access

to critical zones.

In [1], the Acrobot system is used to assist the surgeon

during an operation of knee replacement. The main feature

of this system is to impose virtual constraints on the surgeon

when he/she cooperates with the robot. When the task has

been defined with the planning software, the manipulator

is able to move freely the robot to the operations area.

If the surgeon moves the tool outside the defined path,

the robot applies forces on the user to modify the current

trajectory. It has been clinically proven that the preparation

of bones surfaces are more accurate comparing to a classical

operation. Once again, no force control is performed with

this system.

Moreover, some systems can exploit a measure of forces.

Therefore, there is no need to use models of contacts to

obtain the measure of distal forces. It is also possible to

derive constraints which are directly based on the forces

applied by the surgeon on the organs.

In [2], a force controller is used so that the surgeon can

guide the robot. The surgical tool is attached below a force

sensor mounted on the robot’s wrist. The force controller

uses the measured forces to provide the reference to an inner

velocity control loop. When the desired force is null, any

applied force on the instrument causes the robot to move

in the direction of this force. So, the surgeon can guide the

robot by holding the tool.

In the same manner, the Surgicobot system [3] allows

the surgeon and the robot to manipulate the same drilling

instrument for maxillo-facial interventions. The surgeon can

freely move the instrument except in some predefined space

where the robot generates restrictive forces in order to
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prevent the surgeon from moving the instrument too close

to vital nerves.

In [4], [5] and [6] augmented comanipulation approaches

are presented: the surgeon holds a handle mounted on the

robot and the robot manipulates the instrument in a way such

as it exerts on the organ the same force that the surgeon

applies on the handle, but scaled-down. Three different

control laws using an inner position/velocity control loop

are compared in [6]. The best results are obtained with

an adaptive control law involving the estimation of the

environment’s compliance. However, when the contact with

the environment is lost, the estimation becomes problematic.

Another disadvantage of this control law is that it requires

differentiation of the force applied by the surgeon on the

handle which is a noisy signal.

Even if benefits presented in the above references are

important (e.g. gesture’s accuracy or the increase of system’s

safety), none of these systems allow the surgeon to feel an

amplified version of the distal forces acting between the tool

and the organ.

In this paper, we present a control scheme for augmented

comanipulation with force feedback. The main advantages

of this control law is that it does not require any knowledge

of the environment nor differentiation of a noisy signal.

This approach is an extension of previous works [7] realized

in our laboratory.

The first part of this paper is devoted to the proposed

control law for augmented comanipulation. This control

scheme is proven stable thanks to a passivity study in the

second part. Experimental results with a robot dedicated to

minimally invasive surgery are presented in the last part.

II. AUGMENTED COMANIPULATION

A. Principle of the Approach

We present hereafter a robotic device in order to assist

the surgeon for accurate manipulation tasks requiring human

judgment and involving small interaction forces between the

surgical tool and the organ. Therefore, the proposed device

allows an augmented comanipulation. It is a comanipulation

system because the surgical instrument is held simultane-

ously both by the surgeon and by the robot. We call it

augmented because the robot is controlled in such a way

that the surgeon is provided with an amplified sensation of

the interaction forces between the instrument and the organ.

As a consequence, the instrument applies on the organ the

same forces that the surgeon would apply in a transparent

mode but decreased by a scale factor. This device can also

filter the surgeon’s tremor in order to increase the accuracy

of the task. This approach supposes that the reference forces

provided by the surgeon and the interaction forces between

the instrument and the organ may be measured separately.

Therefore a handle equipped with a force sensor (force sensor

2) is mounted on the instrument (see figure 1). The surgeon

manipulates this handle and the force sensor 2 measures

the forces applied by the surgeon on the instrument at

Fig. 1. Setup for augmented comanipulation

point O2. Note that we and ws are respectively the wrench

applied by the instrument on the organ at point O1 and the

wrench applied by the instrument on the surgeon at point O2.

Assuming that the transformation between the frame F1 and

the frame F2 is known, we can compute the wrench −wu

applied by the surgeon on the instrument at point O1 in Fr

linked to the fixed robot base frame: −wu = T12(−ws).

with: T12 =

[
I3 03

−[O2O1]× I3

]

where [O2O1]× denotes the skew symmetric matrix associ-

ated with the vector from O2 to O1 expressed in the basis

of frame Fr.

With these notations, as detailed in subsection II-C, the

aim of the proposed approach is to control the robot such that

wu = − 1
β
we where β ∈]0; 1] i.e. the surgeon feels the forces

applied by the organ on the instrument, −we, amplified by a

scale factor 1
β
≥ 1. The proposed control scheme is presented

in the following subsection.

B. Proposed Control Scheme

The robot dynamics is modeled by the general form:

M(q)q̈ + C(q, q̇)q̇ + Γv q̇ + Gg(q) = τ − τe − τu (1)

where q ∈ Rn denotes the joint positions, M(q) is the

positive definite symmetric inertia matrix, C(q, q̇)q̇ is a

vector grouping the Coriolis and centrifugal joint torques,

Γv q̇ is a vector grouping the dissipative joint torques,

Gg(q) is a vector grouping the gravity joint torques, τ is

the command vector for joint torques. −τe and −τu are

the joint torques corresponding respectively to −we and

−wu i.e. −τe = J
t(q) (−we) and −τu = J

t(q) (−wu)
where J(q) is the Jacobian matrix of the robot at point O1,

expressed in the basis of Fr.

At the lowest level of the controller, a proportional velocity

feedback is used in order to partially linearize the robot

dynamics:

τ = −Bq̇ + Ĝg(q) + Ĉ(q, q̇)q̇ + τc

where B is a symmetric positive definite matrix of feedback

gains, τc is the new command vector for the joint torques,
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Ĝg(q) and Ĉ(q, q̇)q̇ are estimated values of Gg(q) and

C(q, q̇)q̇. Therefore, the model (1) becomes:

M(q)q̈ + Bq̇ = τc − τe − τu (2)

The proposed control scheme is presented on figure 2.

Fig. 2. Augmented Comanipulation force control scheme in joint space.

In this figure the Jacobian matrix J(q) is noted J. This

control scheme introduces notations defined as follow:

• G(s), where s is the Laplace complex variable, is a

low-pass filter that we introduce in order to filter the

surgeon’s tremor. It is chosen as follow:

G(s) =
1

αs + 1
I6 ∈ C (3)

We choose the same cut-off frequency 1
α

> 0 for each

component of the wrench wd. Let’s remark that by

choosing α = 0, we have G(s) = I6 and thus we

do not filter the surgeon’s tremor.

• Cτ (s) is a Proportional-Integral torque compensator at

the joint level such that:

Cτ (s) = Kp +
Ki

s
(4)

where Kp ∈ Rn×n and Ki ∈ Rn×n are symmetric,

positive definite matrices.

• Ẋ is the 6-component vector grouping the coordinates

of the rotational and linear velocity of the instrument

at point O1 with respect to frame Fr, expressed in the

basis of Fr.

In the sequel the following assumption will be used :

Assumption 1: The matrix J(q) is of full rank n
This assumption means that the robot is not in a singular

configuration.

C. Equilibrium

The stability of the control scheme 2 will be proved in

the following section. So, assuming that this control scheme

is stable, as the controller Cτ (s) involves an integral term,

the torque error ετ will be null at the equilibrium. So, at the

equilibrium:

τd − τe = 0 (5)

As the stable low-pass filter G(s) has a steady-state gain

equal to 1, at the equilibrium, τd = J(q)tβ(−wu). Thus (5)

leads to :

J(q)t

(
(−wu) +

1

β
(−we)

)
= 0 (6)

If n = 6 i.e. if we consider a 6 joints robot, the matrix J(q)
is square. Moreover, according to assumption (1), this matrix

is of full rank. Therefore, it can be deduced from equation

(6) that:

wu =
1

β
(−we) (7)

Suppose that we choose β = 1. Then, equation (7) can be

written:

wu = (−we) (8)

It means that the wrench ws sensed by the surgeon at point

O2 is such that its expression at point O1, wu, is equal to

the wrench −we applied by the organ on the instrument

expressed at point O1. Thus the surgeon manipulates the

instrument in a transparent way i.e. the surgeon senses the

wrench ws as if he/she were manipulating a zero mass

instrument without any friction.

Similarly, if β ∈]0; 1[, equation (7) means that the wrench

ws sensed by the surgeon is an amplified version, by the

scale factor 1
β

> 1, of the wrench that he would sense in

a transparent manipulation. Let’s remark that (7) can be

written we = β (−wu). It means that the wrench applied

by the instrument on the organ at point O1 is the wrench

applied by the surgeon at the same point, reduced by the

scale factor β.

If n < 6, J
t(q) ∈ Rn×6 is not square. Thus it cannot

be deduced from (6) that the wrench error εw = (−wu) +
1
β
(−we) is zero. The wrench error εw is not necessarily zero

but belongs to the null space of J
t(q). An equilibrium is

obtained between wu and 1
β
(−we).

III. PASSIVITY

In the proposed approach, the robot interacts with its

environment. The stability of the control loop depends not

only on the robot dynamics but also on the environment

dynamics. However we cannot assume for a known model

for the environment. Therefore, a useful tool for the stability

analysis of the proposed control loop is passivity analysis

since this study does not require any environments model.

Thus, whatever could be the contacts (robot-organ / robot-

surgeon), the passivity analysis ensures that the system

remains stable. This principle is presented in the following

subsection

A. Principle

Let consider an LTI system with an input u, an output

y, such that y = T(s)u with T(s) a real rational transfer

matrix. This system is passive if and only if T(s) is pos-

itive real. In turn, positive realness can be checked by the

following property [8]:

Property 1: Let sk = σk + jωk, k ∈ {1..m}, denote the

m poles of all the elements Tij(s) of T(s), and let jωl,
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l ∈ {1..p}, denote the p ≤ m pure imaginary poles of all

the elements Tij(s) of T(s). The transfer T(s) is Positive

Real if, and only if:

1) ∀k ∈ {1..m}, σk < 0 ;

2) ∀l ∈ {1..p}, jωl is of multiplicity 1, and the associated

residue matrix Kl is hermitian, positive semidefinite

(PSD). The matrix Kl can be computed as:

Kl = lim
s→jωl

(s − jωl)T(s) , if ωl is finite

and: Kl = lim
s→∞

T(s)
s

, if ωl is infinite

Note that a zero of Tij(s) is considered as a pole at

the infinity.

3) T
t(−jω)+T(jω) = T

∗(jω)+T(jω) is PSD, for any

ω ∈ R − {ωl, l ∈ {1..p}}. �

Property 2: Let now consider an LTI system with two

different inputs u1 and u2 provided by two different en-

vironments, and assume that this system is described by:

y = T1(s)u1 +T2(s)u2. This system is passive if and only

if T1(s) is positive real and T2(s) is positive real. �

B. Passivity of the Modified Force Control Scheme

1) Modeling, Linearized Robot Dynamics:

The robot controlled by the control scheme depicted on

figure 2 is a system whose output is Ẋ . This system

has two inputs −wu and −we provided by two different

environments, respectively the surgeon and the organ. So,

in order to study the passivity of this system we first have

to compute the transfer matrix Yu(s) between −wu and Ẋ
and the transfer matrix Ye(s) between −we and Ẋ . This

computation supposes that the system is linear. Therefore, we

linearize the robot dynamics (2) by assuming that the robot

evolves in a neighborhood of a given joint configuration q0

so that we can set M = M(q0) constant. The resulting

linearized model writes:

q̇ = Yr(s)(τc − τu − τe) with Yr(s) = (M s + B)−1

(9)

where s is the Laplace complex variable. Moreover, under

the assumption that the robot evolves in a neighborhood of a

given joint configuration q0, we can set J = J(q0) constant.

Then, we get the following model:

Ẋ = Yu(s) (−wu) + Ye(s) (−we) (10)

where:
{

Yu(s) = JYr(s) [In + β G(s)(Cτ (s) + In)]Jt

Ye(s) = JYr(s) [In + Cτ (s)] Jt

2) Passivity Study:

The system (10) is passive if and only if the matrices Yu(s)
and Ye(s) are positive real. As J is supposed to be of

full rank (Assumption 1), this condition is equivalent to the

positive realness of the matrices Yu,2 and Ye,2 defined as

follow:
{

Yu,2 = Yr(s) [In + β G(s)(Cτ (s) + In)]
Ye,2 = Yr(s) [In + Cτ (s)]

(11)

Equations (11), (9), (4) and (3) lead to :
{

Yu,2 = (M s + B)−1
[
In +

βK′

p

α s+1 + βKi

s (α s+1)

]

Ye,2 = (M s + B)−1
[
In + Kp + Ki

s

] (12)

where K
′

p = Kp + In.

We first derive conditions ensuring the positive realness

of Yu,2(s). The poles of Yu,2(s) are s1 = 0, s2 = − 1
α

and the poles of Yr(s). We defined G(s) such that s2 =
− 1

α
< 0. The poles associated to Yr(s) are the solutions of

det (M s + B) = 0 i.e. the eigenvalues of −M
−1

B. As far

as M and B are symmetric positive definite matrices, the

eigenvalues of −M
−1

B are negative real.

In order to check the second condition of property 1, we

compute the residue K1 associated to pole s1 = 0. We get:

K1 = lim
s→s1

sYu,2 = βB
−1

Ki

As β > 0, we deduce the following condition for the

passivity of the control scheme:

B
−1

Ki ≥ 0 (13)

The third condition of property 1 consists in checking, for

any ω ∈ R−{0}, the positive semidefiniteness of the matrix

H1(jω) defined as follow:

H1(jω) = Yu,2(jω) + Yu,2
t(−jω)

= (jωM + B)−1
[
In +

βK′

p

jα ω+1 + βKi

jω (jα ω+1)

]

+
[
In +

βK′

p

−jα ω+1 + βKi

−jω (−jα ω+1)

]
(−jωM + B)−1

(14)

because K
′

p, Ki, M and B are symmetric.

Positive semidefiniteness of H1(jω) is equivalent to pos-

itive semidefiniteness of H2(jω) defined as follow:

H2(jω) = 1
β
(jωM + B)H1(jω)(−jωM + B)

=
[

1
β
In +

K′

p

jα ω+1 + Ki

jω (jα ω+1)

]
(−jωM + B)

+(jωM + B)
[

1
β
In +

K′

p

−jα ω+1 + Ki

−jω (−jα ω+1)

] (15)

We get:

H2(jω) = R1 − α ω2

α2ω2+1R2 + 1
α2ω2+1R3+

+j ω
α2ω2+1Im1 + j 1

ω(α2ω2+1)Im2

(16)

where:

R1 = (2/β)B
R2 = K

′

pM + MK
′

p

R3 = K
′

pB + BK
′

p − (KiM + MKi) − α(KiB + BKi)
Im1 = MK

′

p − K
′

pM + α(BK
′

p − K
′

pB)−
α(MKi − KiM)

Im2 = KiB− BKi

The hermitian matrix H2(jω) must be PSD to ensure pas-

sivity. Thus its real part has to be PSD and its imaginary part

has to be null (see [7] for details). Therefore, the following

conditions have to be satisfied for any ω ∈ R\{0}:

R1 −
α ω2

α2ω2 + 1
R2 +

1

α2ω2 + 1
R3 ≥ 0 (17)

ω

α2ω2 + 1
Im1 +

1

ω(α2ω2 + 1)
Im2 = 0 (18)
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As lim
ω→0

ω

α2ω2 + 1
= 0 and lim

ω→0

1

ω(α2ω2 + 1)
= ∞, condi-

tion (18) leads to Im2 = 0. Then, we deduce from equation

(18) that Im1 = 0. Thus, condition (18) is equivalent to:
{

Im1 = 0
Im2 = 0

(19)

Equation (17) can be re-written:

α ω2

α2ω2 + 1
(αR1 − R2) +

1

α2ω2 + 1
(R1 + R3) ≥ 0 (20)

As lim
ω→0

α ω2

α2ω2 + 1
= 0 and lim

ω→0

1

α2ω2 + 1
= 1, we deduce

the following necessary condition for (20):

R1 + R3 ≥ 0 (21)

If α 6= 0, lim
ω→∞

α ω2

α2ω2 + 1
=

1

α
and lim

ω→∞

1

α2ω2 + 1
=

0. Thus, for α 6= 0, we deduce the following necessary

condition for (20):

αR1 − R2 ≥ 0 (22)

For any ω, α ω2

α2ω2+1 ≥ 0 and 1
α2ω2+1 ≥ 0. Therefore,

equations (21) and (22) are also sufficient conditions for (20).

Let’s remark that if we chose α = 0 i.e. if we do not filter

the surgeon’s tremor, the equation (20) is equivalent to (21).

To summarize, the matrix Yu,2(s) and thus Yu(s) is positive

real if and only if the following conditions are satisfied:





B
−1

Ki ≥ 0
Im1 = 0
Im2 = 0
R1 + R3 ≥ 0
αR1 − R2 ≥ 0 if α 6= 0

(23)

As far as positive realness of Ye,2(s) is concerned, with

a similar reasoning we deduce that the first and the second

condition of property 1 are satisfied if and only if M
−1

B > 0
and B

−1
Ki ≥ 0. It can be noticed in equations (12) that

the expression of Ye,2(s) is similar to the expression of

Yu,2(s) when β = 1, α = 0 and K
′

p is replaced by Kp.

Therefore, we deduce from equations (19) and (17) that the

third condition ensuring the positive realness of Ye,2(s) is

satisfied if and only if:





MKp − KpM = 0 (a)
KiB− BKi = 0 (b)
B + KpB− KiM ≥ 0 (c)

(24)

The equations (23) and (24) lead to the following conditions

for the passivity of the proposed control scheme:





B
−1

Ki ≥ 0 (a)
MKp − KpM = 0 (b)
α [(BKp − KpB) − (MKi − KiM)] = 0 (c)
KiB − BKi = 0 (d)
( 1

β
In + K

′

p)B− KiM ≥ 0 (e)

B + KpB− KiM ≥ 0 (f)
(α/β)B − K

′

pM ≥ 0 if α 6= 0 (g)
(25)

with K
′

p = Kp + In.

IV. EXPERIMENTS

The aim of these experiments is to show that it is possible

to provide force feedback to the surgeon thanks to the

proposed control scheme. Furthermore, for different values

of the gain β, we will verify that the system remains stable.

Experimental setup will be briefly described and benefits of

augmented comanipulation will be evaluated experimentally.

Note that, in the rest of the paper, the used joint torque

compensator gains and the values of B, α and β were chosen

in such a way that the conditions given in 25 are verified.

A. Experimental Setup

The robot MC2E (French acronym for compact manip-

ulator for endoscopic surgery) is depicted on the Figure 3.

It is a Kinematically Defective Manipulator (KDM) which

means that it has fewer joints than the dimension of the

space in which its end-effector evolves. It is specially suited

for minimally invasive robotic surgery applications [9]. With

n = 4 joints and a spherical structure, this robot provides 4

degrees of freedom (DOFs) at the instrument tip.

Fig. 3. Experimental Setup.

Apart from its compactness, the main feature of this robot

is that it offers a possibility for force measurement in MIS.

Namely, MC2E can measure the distal organ-instrument

interaction with a 6-axis force-torque sensor placed outside

the patient. Thus, it is subject to much less sterilization

constraints. Remarkably, due to the special mounting of the

force sensor, these measurements are not affected by the

disturbance forces and torques arising from the interaction

between the trocar and the instrument.

The new control scheme presented in section II indicates

that the robot interacts with two different environments (the

organ and the surgeon). It needs a second force sensor to

measure forces between the robot and the surgeon. Therefore

to measure forces applied by the surgeon, a second force

sensor has been added on the robot. Due to difficulties to fix

it directly on the handle, it has been deported on the second

axis of MC2E. This particular disposition was the quickest

way to provide force feedback to the manipulator. However,

the same disposition is not adapted to transmit forces along

instrument’s axis. In order to overcome this problem, next
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step will be to modify existing experimental setup to exploit

each of the robot’s DOF.

B. Experimental Results

The figure 4 shows how the gain β has been modified

during the experiment. β = 1 is a particular value for which

Fig. 4. Gain values vs. time.

torques measured on the organ are equal to torques applied

by the manipulator. When setting β = 0.5, torques applied

on the organ should be decreased by a factor 2.

The figure 5 depicts torque measurements. It allows to

compare torques applied on the organ, torques provided to

the controller and torques applied on the manipulator. This

Fig. 5. Torque values vs. time.

result demonstrates that the proposed control scheme allows

a reduction of the torques applied on the organ. At t = 10s,

β is switched from 1.0 to 0.5. One can notify that torques

applied on the organ almost remain the same but torques

applied by the surgeon are amplified. Therefore, to apply the

same efforts on the organ, the surgeon must amplify forces

acting on the robot. This result satisfies equation (7).

The figure 6 shows that the system remains stable for

different values of gains. Furthermore, it demonstrates that

Fig. 6. Torque error vs. time.

good performances can be achieved with the controller which

has been proposed in section II. Error appearing on Figure

6 is mainly due to noise on measurement. However, one

can notice that there are some error peaks on this plot. This

phenomenon is due to the modification of the force feedback

gain during experiments. In practice, if a fixed value of β is

used, these peaks would not appear.

V. CONCLUSIONS

This paper presents a modified version of a force control

scheme. In the context of comanipulation, it is possible to

provide force feedback to the manipulator by modifying

torques reference. In order to obtain such results, a second

force sensor is necessary to distinguish manipulator and

environment forces.

Robots kinematic has been used to deal with torques equi-

librium. In other words, using a gains matrix allows reduction

of forces acting on the environment and amplification of

forces acting on the manipulator. Experiments have been

conducted to show efficiency of the proposed control scheme.

Moreover, a formal proof of passivity has been established.

It ensures stability of the system whatever could be contacts

between the robot and its environment.

In future work, in-vivo experiments will be conduced.

Even if experiments are satisfying with actual experimental

setup, it should be modified to exploit the last 2 DOFS. A

new handle seems to be the easiest way to use existing robot.
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