
 
 

 

  

Abstract— The identification of the dynamic parameters of 
robot is based on the use of the inverse dynamic model which is 
linear with respect to the parameters. This model is sampled 
while the robot is tracking trajectories which excite the system 
dynamics in order to get an over determined linear system. The 
linear least squares solution of this system calculates the 
estimated parameters. The efficiency of this method has been 
proved through the experimental identification of many 
prototype and industrial robots. However, this method needs 
joint torque and position measurements and the estimation of 
the joint velocities and accelerations through the pass band 
filtering of the joint position at high sample rate. The new 
method bypasses the need to measure or estimate joint position, 
velocity and acceleration by using both Direct and Inverse 
Dynamic Identification Models (DIDIM). It needs only torque 
data at a low sample rate. It is based on a closed loop 
simulation which integrates the direct dynamic model. The 
optimal parameters minimize the 2 norm of the error between 
the actual torque and the simulated torque assuming the same 
control law and the same tracking trajectory. This non linear 
least squares problem is dramatically simplified using the 
inverse model to calculate the derivatives of the cost function. 

I. INTRODUCTION 
HE usual identification method based on the inverse 
dynamic identification model (IDIM) and LS technique 
has been successfully applied to identify inertial and 

friction parameters of many prototype and industrial robots 
[1]-[13] among others. Recently, it was also successfully 
applied to identify the inertial parameters of slave and 
master arms developed by the CEA [14][15], inertial 
parameters of a compactor [16] and the parameters of a car 
[18]. In any case, a derivative pass band data filtering is 
required to calculate the joint velocities and accelerations. 

Another method is to minimize a quadratic error between 
an actual output and a simulated output of the system, 
assuming both the actual and simulated systems have the 
same input. It is known as an output error (OE) 
identification method or as the model’s method [18][19]. 
This method was used to identify electrical parameters of a 
synchronous machine [20]-[22] with results very close 
compared with those given by the LS and IDIM method. 

 
 

The optimal values of the parameters are calculated using 
non linear programming algorithms to solve the nonlinear 
least squares problem. Usually, the output is a state model 
output such as the joint position for mechanical systems. 
Difficulties arise due to bad initial conditions which leads to 
multiple and local solutions. 

These methods require both the joint position and the joint 
torque measurements. 

 
The new identification method is based on a closed loop 

simulation using the direct dynamic model (DDM) while the 
optimal parameters minimize the 2 norm of the error 
between the actual torque and the simulated torque assuming 
the same control law and the same tracking trajectory. This 
non linear least squares problem is dramatically simplified 
using the inverse dynamic identification model (IDIM) to 
calculate the gradient vector and the Hessian matrix of the 
cost function. 

 
The paper is organized as follows: section 2 recalls the 

Inverse Dynamic Identification Model (IDIM) and LS usual 
method in robotics; section 3 presents the new Direct and 
Inverse Dynamic Identification Models (DIDIM) method; 
section 4 gives an experimental validation performed on a 2 
DOF planar robot; finally, section 5 concludes the paper. 

II. INVERSE DYNAMIC IDENTIFICATION MODEL METHOD 
The inverse dynamic model of a rigid robot composed of 

n moving links calculates the motor torque vector τ (the 
control input) as a function of the generalized coordinates 
(the state vector and it’s derivative). It can be written as the 
following relation which explicitly depends on the joint 
acceleration: 

) ,( +  )(= qqNqqMτ  (1) 

Where q, q and q  are respectively the (nx1) vectors of 
generalized joint positions, velocities and accelerations, 
M(q) is the (nxn) robot inertia matrix and ) ,( qqN  is the 
(nx1) vector of centrifugal, Coriolis, gravitational and 
friction torques. 
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The choice of the modified Denavit and Hartenberg 
frames attached to each link allows to obtain a dynamic 
model linear in relation to a set of standard dynamic 
parameters χS [2], [12]: 

( ) Sχq,qq,IDτ S=  (2) 

Where ( )q,qq,IDS  is the regressor and χS is the vector of 
the standard parameters which are the coefficients XXj, XYj, 
XZj, YYj, YZj, ZZj of the inertia tensor of link j denoted jJj, 
the mass of the link j called mj, the first moments vector of 
link j around the origin of frame j denoted jMj = [MXj MYj 
MZj]T, the viscous and Coulomb friction coefficients fVj, fCj 
and the actuator inertia called Iaj and the offset of current 
measurement denoted offset. 

The base parameters are the minimum number of 
mechanical parameters from which the dynamic model can 
be calculated. They are obtained from the standard inertial 
parameters by analytical or numerical methods [23]-[21]. 
The minimal inverse dynamic model can be written as: 

( )=τ ID q,q,q χ  (3) 

Where ( )q,qq,ID  is the minimal regressor and χ is is is the 
vector of the base parameters. 

The inverse dynamic model (3) is sampled while the robot 
is tracking a trajectory to get an over-determined linear 
system such that [2]: 

( ) ( ) ρχq,qq,WτY +=  (4) 

With: 
• Y(τ) is the vector of measurements, 
• W is the observation matrix, 
• ρ is the vector of errors. 

 
The L.S. solution χ̂  minimizes the 2-norm of the vector 

of errors ρ.  
W is a (r×b) full rank and well conditioned matrix,  
r=Ne*n, Ne is the number of samples. 

The LS solution χ̂ is given by: 

( ) YWYWWWχ T1T +−
=⎟

⎠
⎞⎜

⎝
⎛=ˆ  (5) 

It is calculated using the QR factorization of W. Standard 
deviations 

iχ̂σ  are estimated using classical and simple 

statistics. The matrix W is supposed to be deterministic, and 
ρ, a zero-mean additive independent noise, with a standard 
deviation such as: 

Cρρ=E(ρΤρ)= 2
ρσ Ir (6) 

where E is the expectation operator and Ir, the r×r identity 
matrix. An unbiased estimation of ρσ  is: 

2
ρσ̂ =||Y-W χ̂ ||2/(r-b) (7) 

The covariance matrix of the estimation error is calculated 
as follows: 

χχC ˆˆ =E[(χ - χ̂ )(χ- χ̂ )T]= 2
ρσ (WTW)-1 (8) 

iiχ̂χ̂
2
iχ̂ Cσ =  is the ith diagonal coefficient of χ̂χ̂C . The 

relative standard deviation 
riχ̂%σ is given by: 

iiχ̂χ̂ χ̂σ100%σ
ri

=  (9) 

However, experimental data are corrupted by noise and 
error modeling and W is not deterministic. This problem can 
be solved by filtering the measurement matrix Y and the 
columns of the observation matrix W as described in [11] 
and [13]. This identification method is illustrated in Fig. 1. 

 

Robot Band pass
filtering

Linear
Least squares

+

-

Γ(t) q(t)

( )χq,q,qIDu ˆˆˆˆ

model dynamic Inverse

= q,q,q ˆˆˆ

ρ(t)

χ

(t)Γ̂

 
Fig. 1: Identification method based on the inverse dynamic model 

 
The use of LS is particularly interesting because no 

integration of the differential equations is required and there 
is no need of initial conditions. However, the calculation of 
the velocities and accelerations are required using well tuned 
band pass filtering of the joint position [11][26]. 

III. DIDIM: DIRECT AND INVERSE DYNAMIC 
IDENTIFICATION MODELS METHOD 

The output error (OE) identification methods consist in 
minimizing a quadratic error between an actual output and a 
simulated output of the system, assuming both the actual and 
simulated systems have the same input. Usually, this output 
is a state model output such as the joint position for 
mechanical systems [20][27][28] (Fig. 2). Hence, an OE 
method needs the integration of the state equation which is 
the direct dynamic model for robots. 

System

Model

+
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y(t)

(t)ŷ
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Fig. 2: OE identification method using non linear programming algorithms 
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Compared to IDIM and LS, these techniques are quite 

time consuming because the state equation of the system and 
its sensitivity functions (the derivative of the output w.r.t the 
parameters) must be integrated on a long time and many 
times at each step of the recursive non linear optimization 
method. More over, difficulties arise with multiple and local 
solutions depending on the initial conditions. 

The new identification method is based on a closed loop 
simulation using the DDM. The optimal parameters 
minimize the 2 norm of the error between the actual and the 
simulated torque. It overcomes the non linear LS problems 
by using the IDIM to calculate the gradient and the hessian 
of the cost function of this non linear LS problem. 

 
The optimal solution χ̂  is given by: 

2
S

χ
)(Argminˆ χyyχ −=  (10) 

It minimizes the cost function: 

2
S )()J( χyyχ −=  (11) 

This is a non linear least squares problem which can be 
solved with the Newton’s method because of its quadratic 
convergence. Hence, it comes: 

( )( ) ( )k
1

k
2

k1k ˆJˆJˆˆ χχχχ ∇∇−=
−

+  (12) 

We introduce the estimation error: 
)(S χyyε −= . 

The gradient vector is given by εεχ T)(2)J( ∇=∇  and with 
the Gauss Newton approximation, the hessian matrix is 
given by εεχ ∇∇≈∇ T2 )(2)J( . 

As the IDM is linear to the parameters, y is chosen as a 
sampling of τ instead of a sampling of q in the OE method, 
i.e. y = Y. The output of the OE method is the control input 
of the simulated system. The cost function is: 

( ) 2
J( ) ( ) ( ) ( )= − S S S Sχ Y W q χ ,q χ ,q χ χ  (13) 

( )( ) ( ) ( )S S S SW q χ ,q χ ,q χ  is the observation matrix built 
with the simulated positions, velocities and accelerations 
respectively denoted SSS q,q,q , that is: 

( )
( )

( )

S1 S1 S1 S1

Sr Sr Sr Sr

( ) ( ) ( )
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S S S S

ID q ,q ,q
W q χ ,q χ ,q χ

ID q ,q ,q
 (14) 

These states are calculated by integrating the DDM: 

( ) ( )( )χq,qNτχqMq 1 ,, ssSss −= −  (15) 

( )χqM ,s  is the inertia matrix and ( )χq,qN ,ss is the vector 
regrouping the Coriolis, the gravity and the friction effects. 
Finally, the criterion to be minimized is:  

εεχWYχ T2
S)J( =−=  (16) 

Now, the derivatives of J(χ) are calculated. The gradient of ε 
equals the sensitivity functions, S∇ = ∇ε Y . It is 
approximated by the following relation: 

( )
S S

( ) ( ) ( ) ⎞⎛ ∂
∇ = − − ≈ −⎟⎜ ∂⎝ ⎠

S S S SW q χ ,q χ ,q χ
ε W χ W

χ
 (17) 

This is possible because of the closed loop simulation which 
assumes that SSS q,q,q closely track the reference trajectory 
for a wide range of χ values.  
This is the point of the DIDIM method where the sensitivity 
functions are the columns of WS which are algebraic 
expressions easily calculated by the IDM. 

Equation (17) is the approximation used in the Gauss 
Newton method. This approximation simplifies considerably 
the calculation of the sensitivity functions. Then, at each 
step, the Gauss Newton method reduces to a linear LS 
problem, that is: 

( ) 2
k+1 k k k

χ
ˆ ˆ ˆ ˆArgmin ( ) ( ) ( )= − S S S Sχ Y W q χ ,q χ ,q χ χ  (18) 

( ) 1T T
k 1 S k k S kˆ ˆ ˆ ˆ( ) ( ) ( )

−

+ = Sχ W χ W χ W χ Y  (19)  

With ( )k k k kˆ ˆ ˆ ˆ( ) ( ) ( ) ( )=S S S S SW q χ ,q χ ,q χ W χ  

This approach is particularly interesting because of the 
following reasons: 
• Only one signal is needed, the actuator torque, 
• The data filtering is the integration of the direct 

dynamic model which is a low pass integral filter 
without any tuning, 

• The expressions of the sensitivity functions are simple, 
• It combines the inverse and the direct dynamic models 

and validates both models for computed torque control 
and for simulation purposes. 

The identification process can be resumed by the 
following algorithm illustrated Fig. 3: 
• The algorithm is initialized with the values identified 

by the IDIM method or with the a priori values, 
• At each step of the recursive algorithm, SSS q,q,q , are 

calculated by simulation of the closed loop robot 
tracking exciting trajectories using the DD model. WS 
is obtained as a sampling of the ID model 

( )SSS q,q,qIDS , 
• χk+1 is the LS solution of (18), 
• The algorithm stops when the relative error decreases 

under a chosen small number tol: tol
k

k1k ≤
−+

ε
εε

. 
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Fig. 3: DIDIM procedure 

 
In the following, this identification process is applied to a 

2 DOF robot. 

IV. EXPERIMENTAL VALIDATION 

A. Presentation of the SCARA robot 
The identification method is carried out on a 2 joint planar 

direct drive prototype robot without gravity effect. The 
description of the geometry of the robot uses the modified 
Denavit and Hartenberg notation [29] and the notations are 
illustrated in Fig. 4. 

The robot is direct driven by 2 DC permanent magnet 
motors supplied by PWM amplifiers. 
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Fig. 4: SCARA robot : frames and joint variables 

 
The dynamic model depends on 8 minimal dynamic 

parameters, considering 4 friction parameters: 
χ = [ZZ1R fv1 fc1 ZZ2 MX2 MY2 fv2 fc2]T. 
Where: ZZ1R = ZZ1 + Ia1. 
More details about the modeling and ID identification can be 
found in [11]. 

The closed loop is a simple PD control law. The sample 
control rate is 200Hz. Torque data are obtained from the 
current reference vir assuming a large bandwidth (1 kHz) of 
the current closed loop such as: 

τj = gtj virj  (16) 

gtj being the transmission gain of the joint j. 
 
The simulation of the robot is carried out with the same 

trajectory generator and the same control law as the actual 
robot. 

B. Experimental identification results 
At first, the algorithm is initialized with the values 

identified through the IDIM LS estimator which will be 
called the optimal solution in the following. In this case, the 
torque data are low pass filtered with a cut off frequency of 
4Hz. 

The results are summarized in Table 1. Only 2 steps are 
enough to obtain a solution close to the optimal one. Hence, 
the DIDIM method does not improve the IDIM LS solution 
in the case of good filtering data. This result agrees with 
those exposed in [21][30][31]. 

Direct validations have been performed (Fig. 5 and Fig. 
6). The predicted torque is very close to the actual one 
(relative error less than 5%). 

 
TABLE 1: IDIM AND DIDIM COMPARISON WITH 4HZ CUT OFF FREQUENCY. 
Parameter ID LS %σXj 

(%) 
DIDIM %σXj 

(%) 
ZZ1R 3.43 Kgm² 0.5 3.45 Kgm² 0.52 
fv1 0.03 Nms/rad 52 0.04 Nms/rad 40 
fs1 0.82 Nm 6 0.82 Nm 3 

ZZ2 0.063 Kgm² 0.5 0.061 Kgm² 0.5  
MX2 0.241 Kgm 0.56 0.248 Kgm 0.52  
MY2 0.014 Kgm 5 0.014 Kgm 3.5  
fv2 0.013Nms/rad 23 0.014Nms/rad 30 
fs2 0.137 Nm 2.3 0.133 Nm 3 

 ||ρ|| = 16 Nm  ||ε|| = 15 Nm  
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Fig. 5: DIDIM direct validation, axis 1. 
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Fig. 6: DIDIM direct validation, axis 2. 

 
Now, the robustness of the algorithm with respect to a bad 
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initialization is analyzed. The initial values of the inertia, 
gravity and friction parameters are divided by 100 from the 
optimal values. 

The results are summarized in Table 2. Only 5 steps are 
enough to reach the optimal solution of Table 1. This 
justifies the approximation made in (17). This result is very 
important because the algorithm is quite robust with respect 
to a bad initialization. So, it comes that the algorithm 
converges quickly and it is not very time consuming. 

The initial values of the inertia components ZZ1R and ZZ2 
can be small but must be large enough to keep the inertia 
matrix M(q) regular for the DDM calculation (15). Their 
initial values can be divided by 1000 from the optimal 
values and the initial values of the gravity and friction 
parameters can be chosen at 0, keeping the algorithm to 
converge in 5 steps. 

 
TABLE 2: DIDIM WITH BAD INITIAL CONDITIONS. 

Parameter Initial values Identified 
values 

%σXj 
(%) 

ZZ1R 3.4*10-2 Kgm² 3.45 Kgm² 0.2 
fv1 10-4 Nms/rad 0.02Nms/rad 15 
fs1 8*10-3 Nm 0.85 Nm 1 

ZZ2 6*10-4 Kgm² 0.061 Kgm² 0.1 
MX2 0.241*10-2 Kgm 0.248 Kgm 0.1 
MY2 10-2 Kgm 0.017 Kgm 2 
fv2 10-2 Nms/rad 0.01Nms/rad 10 
fs2 10-3 Nm 0.132 Nm 0.3 

 
Direct validations have been performed and they are very 

similar to those illustrated in Fig. 5 and Fig. 6. The 
estimated torque follows the noisy measured ones closely. 

 
As a final test, the algorithm is badly initialized and the 

actual torque and the simulated data are under sampled at a 
10Hz frequency. The results are summarized in Table 3. 
 

TABLE 3: DIDIM, BAD INITIAL CONDITIONS AND UNDERSAMPLING AT  
10HZ. 

Parameter Initial values Identified 
values 

%σXj 
(%) 

ZZ1R 3.4*10-2 Kgm² 3.46 Kgm² 0.52 
fv1 10-4 Nms/rad 0.04Nms/rad 30 
fs1 8*10-3 Nm 0.81 Nm 3 

ZZ2 6*10-4 Kgm² 0.062 Kgm² 0.49 
MX2 0.24*10-2 Kgm 0.249 Kgm 0.52 
MY2 10-2 Kgm 0.016 Kgm 4 
fv2 10-2 Nms/rad 0.01Nms/rad 25 
fs2 10-3 Nm 0.13 Nm 3 

 
The optimal values are obtained in 4 steps. So it is 

possible to observe the torque data at a frequency lower than 
the frequency of the control law. This can be very important 
in the case of industrial robots where the under sampling 
cannot be changed in the controller. The minimum 
frequency obtained to observe the torque data without loss 
of convergence is a 4Hz frequency. 

Direct validations have been performed. The results are 

illustrated in Fig. 7 and Fig. 8. The estimated torque follows 
the noisy measured ones closely. 
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Fig. 7: DIDIM direct validation, under sampled data at 10 Hz, axis 1. 
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Fig. 8: DIDIM direct validation, under sampled data at 10 Hz, axis 2. 

V. CONCLUSION 
This paper has presented a new method for the 

identification of the dynamic and friction parameters of 
robots. It bypasses the need to measure or estimate joint 
position, velocity and acceleration by using both Direct and 
Inverse Dynamic Identification Models (DIDIM). It needs 
only torque data at a low sample rate. The optimal 
parameters minimize the 2 norm of the error between the 
actual torque and the closed loop simulated torque assuming 
the same control law and the same tracking trajectory. This 
non linear least squares problem is simplified to an iterative 
linear LS solution using the inverse model to calculate the 
derivatives of the cost function. 

This method has been validated on the experimental 
identification of 2 DOF robot. It has been proved that it is 
not sensitive to bad initial conditions and to data under 
sampling. This is very important because in that case the ID 
method fails because the pass band filter cut off frequency 
which estimates the derivatives of the position is too small. 
This is often the case for industrial robots where the sample 
rate of the measurements is lower than the control sample 
rate.  

This method is also particularly interesting because it 
validates in the same identification procedure both the 
inverse dynamic model which is used for computed torque 
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control and the direct dynamic model which is used for 
simulation. This technique combines the advantages of the 
inverse dynamic and LS identification method and of the 
output error identification method. 

However the actual control law must be known. Indeed, it 
is not possible to take the control torque as the input of an 
open loop simulation because of the instable behavior of the 
robot which is mainly a double integrator system. The open 
loop simulation is very sensitive to state initial conditions 
errors. 

So DIDIM is complementary of the IDIM method, 
depending on the knowledge of the control law and on the 
actual measurements. 

Future work concerns the validation of this technique on a 
6 DOF industrial robot. 
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