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Abstract— In order for a mobile robot to accurately interpret
its sensations and predict the effects of its actions, it must
have accurate models of its sensors and actuators. These
models are typically tuned manually, a brittle and laborious
process. Autonomous model learning is a promising alternative
to manual calibration, but previous work has assumed the
presence of an accurate action or sensor model in order to
train the other model. This paper presents an adaptation of the
Expectation-Maximization (EM) algorithm to enable a mobile
robot to learn both its action and sensor model functions,
starting without an accurate version of either. The resulting
algorithm is validated experimentally both on a Sony Aibo
ERS-7 robot and in simulation.

I. INTRODUCTION

As an autonomous robot moves through its environment,

it uses its sensors to gain information about the state of

the world, and it takes actions to influence that state. In

order to be effective, however, the robot must have accurate

models of its sensors and actions, so that it can correctly

interpret its raw observations and predict the changes that

are caused by its actions. This paper considers the situation

of a mobile robot in a fixed, known environment, where the

robot’s pose (location and orientation) is the relevant world

state. In this context, its action model describes the robot’s

relative movements as a function of the action command

being executed. The sensor model is a function from the

robot’s pose to a probabilistic distribution of its observations,

such as from a laser range finder or a camera.

One way to construct a robot’s action and sensor models

is through manual calibration. However, this process can be

laborious, inaccurate, and in particular, brittle, due to the

propensity of the correct models to change over time from

robot wear or environmental changes. This paper presents

a method for a robot to autonomously learn its action and

sensor models, starting without an accurate model for either.

In this way, it contrasts from previous work that relies on

the presence of either an accurate action or sensor model to

learn the other model. Specifically, assuming the presence

of a control policy that explores the full range of actions

and states, the algorithm is able to learn an accurate action

and sensor model for a mobile robot starting with no action

model and a very poor sensor model. A robot’s ability to

learn accurate models starting with such little knowledge is

a key factor in its overall autonomy and versatility.

The robot’s action and sensor models are learned as

probabilistic functions. For the sensor model, a polynomial

function is learned that maps landmark distances to the

means of the corresponding observation distributions. Addi-

tionally, two variance parameters are learned: one for those

distance-based observations, and another for the observed

horizontal angle to the landmark. For the action model, a

table-based function is learned, with each of a set of 40
actions being mapped to the robot’s corresponding actual

velocities (forward, sideways, and turning). These results

could additionally be interpolated for intermediate actions,

as in [?], [?]. Notably, there are many different possible

sets of parameters that could be learned. The derivations of

the action and sensor learning procedures in Section III are

specific to this one, but the principles used could be applied

to learning a wide range of parameter sets, including settings

with a continuous range of actions.

The above functions and variances are learned within the

frameworks of Kalman Filtering [?] and the Expectation-

Maximization (EM) algorithm [?]. The adaptation of the

E-step to the problem described above is achieved by an

extended Kalman filter and smoother (EKFS) [?], described

in Section II. However, the adaptation of the M-step in

Section III is a contribution of this paper. The resulting

technique has been empirically validated both on a Sony

Aibo ERS-7 and in simulation. These results are described

in Section ??. Section ?? discusses previous related work

and Section ?? discusses future work and concludes.

II. BACKGROUND

A mobile robot can be modeled by a hidden Markov model

(HMM) with a continuous state space. The method presented

in this paper applies the EM algorithm to such an HMM

to learn the robot’s action and sensor models, which are

parameterized functions describing a nonlinear dynamical

system. This section presents notation (adapted from that

used in [?] and [?]) for discussing HMMs in a continuous

domain, the EM algorithm, and the EKFS.

At time steps 0 through T , the robot’s state vector is

its pose, st = (xt, yt, θt)
⊤. At time steps 1 through T ,

an observation vector ot is recorded by the robot. The

parameters of the HMM consist of transition probability

distribution functions, a(st, st+1) = p(st+1|st, c(t)), where

c(t) is the action command being executed at time t,1 the

emission probabilities, b(st, ot) = p(ot|st), and the initial

state distribution: π(s) = p(s0). We denote the complete

sequence of observations, o1 through oT , as O, and the

complete set of HMM parameters as λ = (a, b, π). Since

1The dependence of a on c(t) is omitted for the sake of brevity.
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the HMM represents the robot’s state over time, the function

a can be thought of as a model of the robot’s actions, while

b is a model of its sensations. The goal of this work is to

find the parameters λ with the maximum overall likelihood

given the observations, namely p(O|λ). This maximization is

achieved by the EM algorithm, where the hidden variables

are the HMM states over time (the robot’s pose), and the

parameters being estimated are the HMM parameters, λ.

EM alternates between two steps, expectation (E) and

maximization (M). In the E-step, a probability distribution

over the hidden variables is determined assuming the current

parameter estimate is correct. The M-step uses the hidden

variable distribution computed in the E-step to compute a

new set of parameter estimates. The new parameters are

defined to be those that maximize the expected log likelihood

of the observed data (in our case the robot’s observations),

where the expectation is taken over the probability distribu-

tion computed in the E-step. The adaptation of the M-step

to learning the robot’s action and sensor models, presented

in Section III, is a primary contribution of this paper.

The goal of the E-step is to compute the a posteriori

probability distribution of s at each time step, denoted as

γt(st), given O and λ. In this paper, all state distributions are

approximated as multivariate Gaussians. In linear systems,

the E-step then amounts to an optimal smoother such as the

forward-backward smoother [?]. In the nonlinear case, taking

a first-order approximation results in an EKFS.

The EKFS algorithm can be understood in terms

of the distributions αt(st) = p(o1, . . . , ot, st|λ) and

βt(st) = p(ot+1, . . . , oT |st, λ). Bayes’ Law yields: γt(st) =
αt(st)βt(st)/p(O|λ). The distributions α and β are repre-

sented as multivariate Gaussians, with means denoted by

µα,t and µβ,t and covariance matrices denoted by Σα,t and

Σβ,t. This factorization of γt is useful because αt and βt

can both be computed through an extended Kalman filter

as follows [?]. The values of µα,t and Σα,t are computed

by running the standard EKF forwards in time, starting with

µα,0 and Σα,0 equal to µπ and Σπ, the mean and covariance

of the initial distribution π(s). Similarly, the values of µβ,t

and Σβt
are computed by running the EKF backwards in

time, starting with Σβ,T = ∞. After α and β have been

computed for each time step, µγ,t and Σγ,t are given by:

µγ,t =µα,t + Σα,t(Σα,t + Σβ,t)
−1(µβ,t − µα,t) (1)

Σγ,t =(Σ−1
α,t + Σ−1

β,t
)−1 (2)

The computed means and variances of αt, βt, γt are

used in the following section as the inputs to the M-step.

Additionally, to learn an action model the joint distribution

over two consecutive time steps is needed: p(st, st+1|O, λ).
This distribution is discussed further in Section III-A.

Finally, it is also valuable to be able to compute p(O|λ),
the overall likelihood of λ, which is what we are trying to

maximize. This likelihood is the product of the likelihood

of each observation, given all of the ones that preceded it.

Each such observation likelihood can be computed from the

state distribution given the preceding observations, namely

αt−1. Denoting the linearized sensation function as o =
Js + k gives us that ot ∼ N(Jµα,t−1 + k, JΣα,t−1J

⊤).
The likelihood of ot according to this distribution can be

multiplied into a running overall parameter likelihood as the

successive values of αt are computed.

III. THE M-STEP

We wish to determine the value of λ that maximizes the

expected log likelihood of the observation sequence. Writing

the total sequence of states as S = (s0, . . . , sT ) and using p̂
to refer to probabilities according to the E-step distribution,

this expected log likelihood is given by:

Ep̂[log p(O|λ)]

=

Z

S

p̂(S) log p(S, O|λ) dS

=

Z

S

p̂(S) log

"

π(s0)
T
Y

t=1

p(st|st−1, λ)p(ot|st, λ)

#

dS

=

Z

S

p̂(S)

"

log π(s0) +
T
X

t=1

(log p(st|st−1, λ) + log p(ot|st, λ))

#

dS

=

Z

S

p̂(S) log π(s0) dS +
T
X

t=1

Z

S

p̂(S) log p(st|st−1, a) dS

+
T
X

t=1

Z

S

p̂(S) log p(ot|st, b) dS (3)

This expression decomposes the expected log likelihood

into a sum of three terms that are functions of the three

components of λ: π, a, and b, respectively. Maximizing

this expression with respect to λ consists of maximizing

each term with respect to the corresponding component. The

distribution π that maximizes the first term is equal to the

distribution of s0 according to p̂, namely γ0(s), as in [?].

Maximizing the other two terms corresponds to learning the

action and sensor model, discussed in the next two sections.

A. Learning the Action Model

For a mobile robot, the action model is a function from

action commands to combinations of forwards, sideways, and

turning velocities. During each time step, these velocities

cause a relative displacement between st and st+1. This

displacement is given by R(−θt)(st+1 − st), where R
represents a counterclockwise rotation around the z-axis

through a specified angle, putting the displacement in the

reference frame of st. Additionally, the relative displacement

is assumed to be normally distributed, so that (st+1|st) ∼
N(st+R(θt)µc(t), R(θt)Σc(t)R(θt)

⊤), where µc(t) and Σc(t)

are the mean and covariance of the relative displacement

of the action taken at time t, c(t). In this paper, a fixed,

constant value is used for Σc(t).
2 The action model function,

a, is therefore determined by the mean relative displacement,

µc(t), for each action c(t). A closed form expression for these

displacements is derived as follows.

The maximum likelihood action model a is the one that

maximizes the second term in (3). For each action A, let

Q(A) = {t : c(t) = A}, the set of time steps at which

2The value used for Σ corresponded to standard deviations of 10 mm in
each direction and 0.1 radians, at each time step. In preliminary experiments,
the algorithm was robust to these values being at least doubled or halved.
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action A occurred. Then, the portion of the second term in

(3) affected by action A is given by:

X

t∈Q(A)

Z

S

p̂(S) log p(st|st−1, a) dS

=
X

t∈Q(A)

Z

st−1,st

p̂(st−1, st) log p(st|st−1, a) dst−1dst

=
X

t∈Q(A)

Z

st−1,st

p̂(st−1, st) log fA(d(st−1, st)) dst−1dst

=
X

t∈Q(A)

Z

st−1,st

p̂(st−1, st)[C−

1

2
(d(st−1, st) − µA)⊤Σ−1

A (d(st−1, st) − µA)] dst−1dst

where d(st−1, st) is the relative displacement,

R(−θt−1)(st − st−1), fA is the probability density

function (pdf) of the normal distribution with mean µA

and covariance ΣA, and C is a constant with respect to

µA. Completing the M-step requires finding the value of

µA that maximizes this expression, µ∗

A. This value is the

one that minimizes the sum of the weighted integral of

(d(st−1, st) − µA)⊤Σ−1
A (d(st−1, st) − µA), where the

weights are the p̂(st−1, st) distributions. Taking the gradient

with respect to µA and setting it equal to zero, we get that

µ∗

A is the correspondingly weighted mean of d(st−1, st):

µ∗
A =

P

t∈Q(A)

R

st−1,st
p̂(st−1, st)d(st−1, st)

P

t∈Q(A)

R

st−1,st
p̂(st−1, st)

(4)

=
1

|Q(A)|

X

t∈Q(A)

Z

st−1,st

p̂(st−1, st)d(st−1, st) (5)

The expression p̂(st−1, st) represents the probability of

going through the two states st−1 and st at those times,

according to the E-step distribution over S. To complete

the computation of µ∗

A, note that the integral in (5) is the

expected value of d(st−1, st) with respect to p̂.

In order to compute this expected value, we

use the factorization [?] of p̂(st−1, st|O, λ̂) as

αt−1(st−1)b̂(st, ot)βt(st)â(st−1, st)/p̂(O|λ̂), where

λ̂ = (â, b̂, π̂) are the parameter values from the previous

iteration of the EM algorithm. This factorization is useful

because αt−1(st−1) is already known from the forwards

sweep of the forward-backward smoother (see Section II),

and b̂(st, ot)βt(st) is a normal distribution over st that

was computed in the backwards sweep (in between the

observation and time updates). We denote the mean and

variance of b̂(st, ot)βt(st) as µδ and Σδ and store them for

each t as they are computed.

Denoting the product αt−1(st−1)b̂(st, ot)βt(st)
as fα,δ(st−1, st), we get that p̂(st−1, st) ∝
fα,δ(st−1, st)â(st−1, st). When the function fα,δ is thought

of as a probability distribution over the (6-dimensional)

joint state (st−1, st), we denote its mean and variance as

µα,δ and Σα,δ . These quantities can be expressed as:

µα,δ =

„

µα,t−1

µδ,t

«

and Σα,δ =

„

Σα,t−1 0
0 Σδ,t

«

(6)

Once we compute the expected value and variance of

d(st−1, st) with respect to fα,δ , this distribution is multiplied

by â(st−1, st), which is equal to f̂A(d(st−1, st)), where

f̂A is specified by the mean and variance of action A in

the previous iteration of EM, µ̂A and Σ̂A. If the first-order

approximation of d is Lst−1,t + m, then the mean and

variance of d(st−1, st) with respect to f̂α,δ are Lµα,δ+m and

LΣα,δL
⊤ respectively. Multiplying this distribution by f̂A

and substituting the resulting mean into Equation 5 yields:3

µ∗
A =

1

|Q(A)|

X

t∈Q(A)

µ̂A +Σ̂A(Σ̂A +LΣα,δL⊤)−1(Lµα,δ +m− µ̂A)

Averaging over the |Q(A)| relevant frames yields a value

for µ∗

A, the new estimate for µA.

B. Learning a Sensor Model

The robot’s observations correspond to sightings of the

landmarks in the environment, which are assumed to be

visually distinguishable. Each observation vector ot has two

components, o1,t and o2,t. These are assumed to be generated

by o1,t ∼ N(f(dist(st)), σ
2
1) and o2,t ∼ N(ang(st), σ

2
2),

where the functions dist(s) and ang(s) represent the distance

and horizontal angle respectively from a robot at state s to

the landmark that is observed. The function f maps the actual

landmark distance onto the mean of the distribution for o1,

while there is no such function for the angle; the mean of o2

is the angle itself. The sensor model that is learned consists

of the function f plus the variances σ2
1 and σ2

2 .

To learn this sensor model, we maximize the third term

in (3) with respect to overall transition distribution b:

T
X

t=1

Z

S

p̂(S) log p(ot|st, b) dS

=
T
X

t=1

Z

st

γt(st) log b(st, ot) dst

=
T
X

t=1

Z

st

γt(st)

"

C −
1

2

 

log σ2
1σ2

2 +

„

f(dist(st)) − o1,t

σ1

«2

+

„

ang(st) − o2,t

σ2

«2
!#

dst

Maximizing the above expression is equivalent to mini-

mizing both

T
X

t=1

Z

st

γt(st)

 

log σ2
1 +

„

f(dist(st)) − o1,t

σ1

«2
!

dst (7)

and

T
X

t=1

Z

st

γt(st)

 

log σ2
2 +

„

ang(st) − o2,t

σ2

«2
!

dst (8)

Minimizing the first expression with respect to f amounts

to minimizing
∑

t

∫
st

γt(st)(f(dist(st)) − o1,t)
2. The func-

tion f is represented as a polynomial and therefore is learned

via weighted polynomial regression, where the γ distribu-

tions act as a weighting function. Instead of attempting to

analytically compute the regression weighted by a series of

γt’s, we approximate this weighting by drawing a number

3The expression for the mean of the product of two normal distributions
also appears in Equation 1.
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of samples from each γ distribution, and fit the polynomial

to the resulting (dist(s), o1) pairs.

The value of σ1 that minimizes (7) can be determined

by differentiating with respect to σ1 and setting the result

equal to 0. The result is σ2
1 =

∑
t

∫
st

γt(st)(f̂(dist(st)) −

o1,t)
2, where f̂ is the optimal value of f computed above

(which does not depend on σ1). Similarly, minimizing (8)

with respect to σ2 yields σ2
2 =

∑
t

∫
st

γt(st)(ang(st)−o2,t)
2.

In both cases, the integral is again approximated by sampling

from the γt distributions. In the experiments reported in this

paper, because of the large number of frames in the data set,

only one sample was taken from each frame. The degree of

the polynomial used for regression was three.

IV. EMPIRICAL VALIDATION

The technique described in this paper was validated both

on a physical mobile robot and in simulation. In both cases,

accurate sensor and action models were learned, starting with

no action model and a very poor sensor model. On the real

robot, the learned translational velocities were not evaluated

due to the difficulty in measuring the ground truth for these

velocities. All of the other aspects of the action and sensor

models were measured and compared to the learned models.

In simulation, ground truth is known, and all components of

the learned models were evaluated.

A. Real Robot Results

Experiments were performed on a Sony Aibo ERS-7. The

robot is roughly 280 mm tall and 320 mm long. Its four legs

each have three degrees of freedom, as does its neck. Its

primary sensor is a color camera at the tip of its nose. The

robot’s field of operation, depicted in Figure ??a), measures

5.4m × 3.6m. The landmarks used in this experiment were

four distinct cylindrical beacons in fixed, known locations.

The robot’s action commands correspond to attempted

velocities in the x, y and θ directions. These attempted

velocities determine the robot’s step sizes and directions.

However, they are often significantly inaccurate because

of inaccuracies in the robot’s joint movement and its feet

slipping against the ground. The action model learned by

the robot maps these action commands onto actual velocity

combinations. A set of 40 action commands was used,

determined as follows. The action commands are specified by

their x, y, and θ velocities (vx, vy, vθ), where each velocity

component is normalized to the range [−1, 1].

The velocity combinations were all chosen to walk as

fast as possible in a given direction (including turning as

a component of the direction). Such combinations satisfy

the equation v2
x + v2

y + v2
θ = 1. The velocities are de-

termined by the combination of this equation, an angu-

lar velocity a ∈ {− 1
2 ,− 1

6 , 0, 1
6 , 1

2}, and a direction b ∈
{0,±π

4 ,±π
2 ,± 3π

4 , π}. Specifically, a = vθ and b is the angu-

lar direction of (vx, vy). For each of the 40 combinations of

a and b, these constraints uniquely specify a set of attempted

velocities (vx, vy, vθ). This set of motions was designed to

cover the range of possible motions, excluding ones that have

a very high angular velocity, which all effectively just cause

the robot to spin in place. This parameterization is based on

the one used in [?].

As the robot walked, it scanned its head from side to side

to see as many beacons as possible. The two components of

each observation are derived from the robot’s camera image.

The first component is the height of the beacon in pixels in

the image, as shown in Figure ??b). The other component is

the robot’s estimate of the landmark’s horizontal angle from

the center of its body. This angle depends on the robot’s head

pan angle and the position of the landmark in the image. To

attenuate the effect of false positives in object recognition,

outlier observations were pruned in the first iteration of EM

by discarding observations that represented too large of an

innovation in the forward Kalman filter. The robot’s acting

and sensing abilities were developed as part of a previous

project, and they are described fully in a technical report [?].

a) b)

Fig. 1. a) The Sony Aibo ERS-7 in its field of operation. The landmarks
used are the four distinct color-coded cylindrical beacons. b) A robot’s-eye
view of a beacon. Its height in the image in pixels is one component of
each observation.

At each time step, the action command executed and

any observation made was recorded. In some frames, no

observation was made. When these frames were processed

in the algorithm, no EKF observation updates are made, and

those frames are omitted in the sensor model reestimation.

The training run lasted for 15 minutes, with each of the 40
actions being executed roughly four times for five seconds

at a time. As mentioned in the introduction, a control policy

is needed that enables the robot to explore the full range of

actions and states. To meet this constraint, after every five

seconds a new action was selected randomly, with priorities

being placed on staying on the field and on distributing

the executed actions evenly. As a matter of convenience, a

previously developed accurate localization module was used

to help keep the robot on the field. This measure would not

be necessary if a larger field were used.

The parameter estimation algorithm was run on the re-

sulting data set until convergence, defined as follows. In an

ideal setting, EM is guaranteed to converge with the overall

likelihood increasing with every iteration. However, approx-

imations in the algorithm cause the likelihood, p(O|λ), to

fluctuate after a time. The learning is considered finished

when 50 iterations pass without a new highest likelihood,

indicating that these fluctuations have started to overshadow

the learning. On the data collected by the robot, the algorithm

took 152 iterations to converge. The entire process took 15
minutes of data-collection plus about 10 minutes of offline

processing on a 2.79GHz Pentium 4 processor.
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The sensor model consists of a polynomial function from

distances to beacon heights, variances for those beacon

heights, and a variance for the observed landmarks’ hori-

zontal angles. For each quantity, a starting value was used

that was very inaccurate and the learned value was compared

to the measured actual value. The actual sensor model was

measured as follows. The robot was placed at distances

from the beacon every 100 mm from 1275 to 4175 mm,

the range of distances at which the robot can recognize the

beacon. At each distance, 100 observations were made, and

the mean and variance of the beacon heights and angles were

computed. The actual beacon height means are shown as the

measured sensor model in Figure 2, along with the starting

polynomial (a very poor linear model) and the learned model.
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Fig. 2. The starting, learned, and measured sensor
models. For comparison, an analytical sensor model
is also shown, derived from the specifications of
the camera. The learned model successfully approx-
imates the measured one.

To obtain

the measured

beacon height

and angle

variances, the

variances

at each

distance were

averaged, each

weighted by

the frequency

with which

that beacon

distance

occurred

during the learning. The starting, measured, and learned

standard deviations for the beacon height were 10, 1.59,

and 1.69 pixels respectively, an error of 6.3% in the learned

value. The starting, measured, and learned angle standard

deviations were 0.2, 0.0267, and 0.0116 radians, an error of

a factor of 2.3. This error was likely due to the very small

magnitude of the actual angle variances being dwarfed by

the uncertainty in the robot’s orientation at any time. This

hypothesis is supported by the simulation results, in which

a much larger angle variance was learned accurately.

For the action model, the starting velocity estimates were

all zero. Rotational velocities were measured for each of

the 40 actions by allowing the robot to execute that action

for 30 seconds and measuring the total angular change.

The RMS difference between the measured and learned

angular velocities was 0.135 rad/s, a relative error of 3.2%
of the measured range of angular velocities, 4.21 rad/s. By

contrast, the original “attempted” angular velocities, which

were manually calibrated (and not used by the robot), had

an RMS error of 0.331 rad/s, a relative error of 7.9%.

B. Simulated Results

The above experiment was also run in the exact same

way in simulation, using the same starting action and sensor

models. The simulation engine models the robot’s pose and

observation vectors, but not its physical joint angles or

camera image. This experiment verified that the method was

able to learn accurate action and sensor models, including the

translational velocities of the action model. The observations

were computed by applying a simulated “actual” sensor

model to the distances and adding gaussian noise to yield

beacon height and angle observations. Random noise was

additionally added to the robot’s motion.

The algorithm converged on the simulated data after 959

iterations; the learning curve is shown in Figure ??a). Each

action’s learned velocities were compared to the ground truth.

The final RMS errors in vx, vy , and vθ were 23.06 mm/s,

18.34 mm/s, and 0.086 rad/s, relative errors of 3.2%, 2.2%,

and 2.7%, respectively, with respect to the total range of

velocities in those three directions, namely 710 mm/s, 840
mm/s and π rad/s. The x and y velocity RMS errors are

shown decreasing over the course of the EM iterations in

Figure ??b). Note that this RMS error improvement mirrors

the overall log likelihood improvement shown in Figure ??a).

This similarity provides confirmation that the log likelihood

is a useful measure of the accuracy of the learned models.
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Fig. 3. a) The log likelihood improves over the course of 1000 iterations
of EM. b) As the action model estimates converge, the average velocity
errors decrease. The angular velocities (not pictured) converge within the
first 100 iterations.

Additionally, the standard deviations of the Gaussian noise

added to the two observation components in the simulator

were 1 pixel for the beacon height and 0.5 radians for

the observed horizontal angles. The learned values of these

standard deviations were 0.980 pixels and 0.474 radians,

errors of 2.0% and 5.3% respectively. The RMS error of the

learned sensor model, over the range of observed distances,

was 0.35 pixels, compared to an RMS error for the starting

model of 12.71 pixels.

V. RELATED WORK

This section situates the above approach to learning action

and sensor model functions within the context of related

previous work. First, work in developmental robotics aims

to enable a robot to learn about its sensors and effectors,

starting from as little innate knowledge as possible. For

example, it is possible for the robot to start with out any

knowlege about the structure of its own body [?], [?], or

even the dimensionality of the outside world [?]. By contrast,

the approach taken in this paper assumes that the robot has

implicit innate knowledge about the structure of its body and

state space. It instead aims to correlate the raw sensory input

with the state of the world and learn how each of a set of

actions effects that world state.

Learning a robot’s action and sensor model functions in

the context of the robot’s unknown state over time is also a
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form of dual estimation. Other approaches to dual estimation

for a nonlinear dynamical system include the dual extended

Kalman filter [?], the joint extended Kalman filter [?], [?],

and discrimative training [?].

In this paper, the EM algorithm is used to learn a robot’s

action and sensor models. Ghahramani and Roweis discuss

a number of advantages of using the EM algorithm for

dual nonlinear estimation over the joint and dual EKF

methods [?]. In particular, EM generalizes well to learning

complex models or parameter combinations. This property

makes it well-suited to learning the action and sensor model

functions for a mobile robot.

When the EM algorithm is applied to dual estimation in a

linear system, the E-step is an optimal smoother such as

forward-backward smoothing [?]. The M-step yields new

parameter settings that can be computed from summary

statistics of the E-step distributions [?], [?]. In a nonlinear

system, an EKFS can be used for the E-step, as in [?],

[?], [?]. However, the methods used for the M-step vary as

required by the domain. This paper contributes an adaptation

of the M-step that enables learning a robot’s action and

sensor model functions. For the sensor model, sampling

(a technique used in [?]) is combined with polynomial

regression. For the action model, a closed form expression

is derived for the mean relative displacements of each of a

discrete set of actions.

Additionally, there is a wide range of previous work

learning models of a robot’s actions and sensors. A number

of methods have been proposed for learning models of

various sensors for a mobile robot [?], [?], [?], although these

methods rely on the presence of an accurate action model.

Conversely, a number of approaches have been taken to

learning action models, assuming knowledge of an accurate

sensor model, including [?], [?], [?], and adaptations of

EM [?], [?], [?]. These applications of EM are specific to

learning an action model.

There is little previous work that address the problem of

learning an action and sensor model simultaneously. The

authors have previously developed a bootstrapping method

restricted to a one-dimensional domain [?], while Kaboli et

al. present a Markov chain Monte Carlo method to learn

four variance parameters of a probabilistic action and sensor

model [?]. Compared to all of the above-mentioned work,

the technique presented in this paper is unique in both the

complexity of the model learned and the paucity of the

knowledge with which the robot starts.

VI. CONCLUSION AND FUTURE WORK

This paper introduces a technique that enables a mobile

robot to simultaneously learn an accurate model of its action

and sensors, starting with no action model and a very poor

sensor model. The technique is an adaptation of the EM

algorithm to a nonlinear dual estimation problem. The robot

learns a table-based action model function, a polynomial

sensor model function, and variances of the noise in the

observation components. The technique presented in this

paper is implemented and validated on data from a mobile

robot traversing its environment. In both real robot and

simulated experiments, the learned models match closely

with the ground truth properties of the sensors and actions.

In this work, all of the probability distributions involved

are multivariate Gaussians. One important area for future

work is to extend the method to other distributions, such as

combinations of Gaussians or histogram-based distributions.

This enhancement would make the method more robust to

multimodal state distributions. Another important area for

future work is to combine the technique presented here with

those used in SLAM, so that the robot can learn the layout

of novel domains, as well as model its sensors and actions in

them. Continued progress along these directions promises to

greatly improve the autonomy and utility of mobile robots.
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