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Abstract— We are developing a mobile robot capable of em-
ulating general 6-degree-of-freedom spacecraft relative motion.
The omni-directional base uses a trio of active split offset castor
drive modules to provide smooth, holonomic, precise control of
its motion. Encoders measure the rotations of the six wheels
and the three castor pivots. We present a generic odometric
algorithm using a least squares framework which is applicable
to vehicles with two or more castors and apply it to our unique
vehicle configuration. As the accuracy of odometry algorithms
depends on the accuracy to which the model parameters
are known, a method to perform calibration on the physical
robot is needed. We present a geometric calibration method
based solely on internal sensor measurements. We present a
range of simulation results comparing our odometry results to
other algorithms under various systematic and non-systematic
errors. We evaluate the ability of our calibration method to
accurately determine the true values of our system parameters.
The odometry algorithm was also implemented and tested in
hardware on our robotic platform. The results presented in the
paper validate the calibration and odometry algorithms in both
simulation and hardware.

I. INTRODUCTION

Multi-vehicle proximity operations of spacecraft, from

formation flying to automated rendezvous and docking,

represent an extremely active area of current research as

industry moves toward smaller, cheaper satellites. Ground-

based testing of the autonomous control algorithms for

multiple vehicles with sensors or docking hardware in-the-

loop provides significant risk reduction for such missions. We

are developing a relative motion emulator based on multiple

mobile platforms, termed Relative Motion Vehicles (RMVs),

consisting of an omni-directional base with a Stewart plat-

form mounted atop [1]. The base provides large motions in

3-degrees-of-freedom (DOF), whereas the Stewart platform

provides smaller motion in all 6-DOF to a high degree of

precision, so it can be used to “clean-up” the less precise

motion of the base.

The mobile platform approach provides several distinct

advantages over existing facilities like NRL’s Proximity Op-

erations Testbed [2] and NASA’s Flight Robotics Facility [3]:

1) Allows for un-tethered circumnavigation of two or

more vehicles.

2) Mobile nature enables testing or demonstration at any

location with a large enough workspace.

3) Provides a low-cost alternative to larger installations

while maintaining high fidelity.

4) Supports testing of non-spacecraft multi-vehicle sys-

tems, such as autonomous aerial refueling.

While Stewart platforms meeting the needs of this project

are commercially available, the omni-directional base must

meet motion requirements exceeding typical mobile robot

designs. For instance, conventional robots have undesirable

coupling between translation and rotation due to steering dy-

namics. We have designed an omni-directional base utilizing

a trio of active split offset castors (ASOCs) to achieve the

desired motion.

Current methods of odometry focus primarily on a stan-

dard two-wheeled differentially-steered vehicle. The odom-

etry equations for these drive types are well known and

widely used. Borenstein presents a method called Internal

Position Error Correction (IPEC), which uses a vehicle with

two castors to achieve an order of magnitude improvement

in odometry performance over a single-castored vehicle [4].

In this paper, we generalize and extend the ideas of IPEC to

vehicles with two or more castors, with specific application

to our three-castored ASOC vehicle.

Critical to the odometry process is precise knowledge

of many internal geometric parameters. Whereas multiple

calibration methods exist for the standard two-wheeled robot,

the process is much more difficult for multi-castored robots.

We address the problem by providing a geometric solution to

parameter determination using the robot’s internal sensors.

This paper presents details of algorithms to perform cal-

ibration and odometry on an omni-directional mobile base

for use in emulating on-orbit proximity operation dynamics.

Drive train selection and design is discussed in Section II.

Algorithmic details of both the odometry and calibration

methods necessary to achieve the high precision positional

knowledge through internal angle encoders are discussed

in Section III, with simulation results being presented in

Section IV. Results from testing these algorithms using a one-

third scale prototype are discussed in Section V. Section VI

presents conclusions and recommendations for future work.

II. DESIGN CONFIGURATION

This section overviews key aspects of the physical design

of the RMVs and the associated design decisions.

A. Defined Requirements

True holonomic omni-directional motion of the base must

be achieved with strict motion and sensing requirements as

discussed in [1]. Since the errors in the base position can

be corrected using the Stewart platform, the base control

accuracy is an order of magnitude lower than the desired
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Fig. 1. Active Split Offset Castor (ASOC)

position knowledge. We set a target mass of 300 kg for the

mobile base - an order of magnitude heavier than the Stewart

platform - so that the motion of the Stewart platform and

payload can be treated as a minor disturbance when con-

trolling the RMV. Developing an omni-directional robot of

such proportions with such stringent tracking and knowledge

requirements results in a unique design configuration.

B. Drive Mechanism

The key design consideration of the mobile base is the

drive configuration. In order to accurately model the dy-

namics of a spacecraft docking maneuver, the overall RMV

must be able to accurately follow the desired trajectory.

Several different drive mechanisms were considered for

the mobile base, including individually steerable wheels,

Mecanum wheels, and steerable offset castors [1]. We have

adopted an attractive alternate drive method that uses drive

modules consisting of a configuration known as an active

split offset castor [5][6].

The ASOC design consists of two independently driven

motors mounted along a common axis on a castor that is

attached to the mobile base by a freely rotating vertical pivot.

The axis of the wheels is offset in the horizontal plane from

the pivot point in the direction perpendicular to the wheel

axis. This creates a physical design such that any planar

velocity of the pivot point can be achieved by driving the

two independent wheels. The general concept is depicted in

Fig. 1. A vehicle driven with at least two of these castors can

achieve true holonomic motion with no steering dynamics,

thus achieving the same advantages as the single offset

castor while reducing the scrubbing torque. Though there

are six motorized wheels, the total number of motors is the

same as the steerable wheels considered previously. Unlike

steerable wheels, however, all of the motors can be exactly

the same, an advantage in terms of motor characterization,

maintenance, and supportability.

C. Drive Module Layout

A minimum of three wheel modules are required for

stability, and at least two of the castors must be powered.

The third wheel module can be either passive or driven. We

selected the option of having all three castor modules being

driven and controlled, as it allows a more even distribution of

motor torques between the motors throughout the envelope of
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Fig. 2. Relative Motion Vehicle

allowable trajectories. The distribution of the three powered

castors can be seen in Fig. 2.

We define the locations of the pivots using polar co-

ordinates (Ri,φi) with respect to the body-fixed B-frame.

Note that the choice of the location and orientation of the

body-fixed frame is completely arbitrary. For simplicity, we

designate the center of the three pivots as the origin of the

B-frame and select castor 1 to lie along the b̂bb1 axis (φ1 = 0).

D. Kinematics and Control

We have developed the kinematics using a body-fixed

B frame, that is fixed to the base of the robot and three

castor-fixed Ci frames as seen in Fig. 2. The angle the

B frame makes with the inertial N frame is denoted ψ ,

whereas the angle each castor makes with respect to the B-

frame is denoted θi. By assuming no wheel slippage and by

measuring the castor angles, the body-axis linear and angular

velocities uniquely map into the six wheel velocities. Control

is accomplished through a kinematics-based controller using

feedback of wheel velocities and measurements of θi from

angular encoders mounted on each pivot [1][7].

III. ALGORITHMS

The overall system will incorporate a combination of

“dead-reckoning”, or internal position feedback, and a peri-

odic external inertial update. This section describes a method

for highly accurate calibration as well as a multi-castor

odometry algorithm for internal position measurement.

A. Calibration

Since odometry methods inherently rely on geometric

paramters, pose estimates from odometry can only be as

accurate as the calibration allows. Borenstein has developed

a calibration method using the results of the University of

Michigan Benchmark (UMBmark) test for a two-wheeled

robot [8], and other researchers have put forth a variety of

other methods improving on the UMBmark calibration for

a differentially driven robot [9][10]. For any multi-castored

vehicle, however, calibration methods are non-existent in
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Fig. 3. Calibration set-up and definition of parameters

the literature, and the calibration problem is an order of

magnitude more challenging.

As described in the previous section, each motor/wheel

assembly is equipped with an incremental encoder to record

wheel rotations, and each vertical pivot is equipped with

an absolute encoder to measure castor angles. We have

developed a geometric approach for calibrating our three

castor mobile robot that relies entirely on these internal

sensor measurements, though this method could be applied

to any vehicle with more than one powered castor.

We make only two assumptions about the configuration

for this approach. First, the distance between any two castor

pivots, D, is assumed to be known. This parameter is easily

measured prior to attaching castors to the pivot shafts.

Second, we assume that the two wheel axles on a given

castor are colinear, something that can be assured if the wheel

bearings on a castor are mounted with a single shaft passing

through all of them. This second assumption is one implicitly

assumed in all two-wheeled robot calibration methods.

The parameters to be estimated are

• rc - the length of the line perpendicular to the wheel

axles passing through the pivot,

• rwi - the wheel radii,

• di - the distance from the wheels to the pivot along the

axle, and

• β - the difference between the true castor angle θ , and

the measured castor angle γ

as shown in Fig. 3. Note from the left side of the figure that

an angular misalignment of the wheel axis of 90◦−α can be

transformed into a pivot angle misalignment β and a new set

of rc and di parameters. The β term not only handles this

angular misalignment of the wheels, but also compensates

for any pivot encoder angle bias.

The reference motion for calibration is simply to hold one

of the castors stationary while applying a small constant

voltage to the remaining wheels. By aligning the active

castors in one direction or another, the robot will revolve

about the pivot of the stationary castor in either a clockwise

(CW) or counter-clockwise (CCW) manner. The angular

distance traveled by each wheel, ci, is recorded, as is the

angular distance through which the stationary castor pivot

rotates, ∆θ .

The path angle Γ can be calculated from the angles

reported by the pivot encoders, γ , from the runs in both CW

and CCW directions as follows:

Γ =
180◦− (γCCW − γCW)

2
(1)

We define θ⊥ to be the angle that should be measured

by the castor encoder when the castor is aligned with the

direction of travel in the CW maneuver. Note that θ⊥ is

defined geometrically by the choice of the B-frame with

respect to the pivots. Combined with the measured castor

angles, γ , the pivot encoder bias, β , is found using:

β =
γCCW + γCW −180◦

2
−θ⊥ (2)

Additionally, a simple geometric relationship provides rc:

rc = DsinΓ (3)

Both the CW and CCW runs provide information in the

following form regarding the relationship between wheel

radius, wheel base, and the measured quantities.

∆θCW (DcosΓ+d1) = cCW1rw1 (4)

∆θCW (DcosΓ−d2) = cCW2rw2 (5)

∆θCCW (DcosΓ−d1) = cCCW1rw1 (6)

∆θCCW (DcosΓ+d2) = cCCW2rw2 (7)

Solving these equations for rw produces:

rwi =
2DcosΓ(∆θCCW∆θCW)

∆θCCWcCWi +∆θCWcCCWi

(8)

And solving for d leaves the equation:

di =
siDcosΓ(∆θCCWcCWi −∆θCWcCCWi)

∆θCCWcCWi +∆θCWcCCWi

, s1 = 1, s2 = −1

(9)

Thus, all parameters of a given castor can be estimated

from a single run CW and CCW about a stationary castor.

In our case, with three castors, executing rotations about all

three castors provides two estimates for each castor’s param-

eters that we can average to provide improved accuracy. It

is important to note that this procedure merely requires the

active wheels to be commanded a voltage low enough that

no wheel slippage occurs - no additional rigs or measuring

apparatus are required.

B. Odometry

The internal encoders can be used to integrate the motion

of the wheels to form an inertial position estimate, a process

referred to as odometry. As with all dead-reckoning schemes,

odometry is subject to accumulation of error, and estimates

based on encoders must be updated with an external measure-

ment or landmark recognition. Odometry is subject to both

systematic errors, such as errors in wheel radii estimates,
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and non-systematic errors, such as floor irregularities, wheel

slippage, or typical random measurement error. It is impor-

tant to note that in odometry, unlike IMU integration, error

accumulates as a function of distance traveled rather than as

a function of time. Borenstein provides a detailed discussion

of odometry methods and sources of error [11][12].

Of particular interest is the OmniMate Mobile Robot - an

omni-directional platform that uses two powered split castors

with additional free castors for stability. Using the Internal

Position Error Correction (IPEC) algorithm he developed,

Borenstein was able to reduce the dead-reckoning uncertainty

of OmniMate by an order of magnitude compared to con-

ventional wheeled robots [4]. This is intuitive, since each

castor could provide its own inertial position estimate and

with the relationship - angles and distance - between the

two castors measured, the position of the vehicle is known

with improved accuracy. This result applies to the mobile

platform developed here with three independent castors, and

should allow for further improvement on the 0.1% average

accumulation error seen with OmniMate [8].

The IPEC algorithm is built on the premise that errors in

heading angle lead to pose estimate errors that are orders

of magnitude larger than the small translational errors intro-

duced at a given update. IPEC utilizes each castor’s position

estimate to compute the heading angle of the vehicle through

the geometric relationship

ψ = arctan

(

y2 − y1

x2 − x1

)

(10)

where ψ is the heading angle of the vehicle and (xi,yi) are the

coordinates of the center of each castor. Whereas the heading

angle of each castor could be computed independently, this

use of each castors translational information - which suffers

minimally from systematic and non-systematic errors over a

single step - reduces heading estimate errors. This vehicle

heading estimate is combined with the measured castor

angles to update the heading estimate of each castor, and

the position of the second castor is updated to be consistent

with the pose of the first castor.

The IPEC method can be applied to any two castors on

our platform by using the positions of the pivot points rather

than those of the castors in the above equations - a distinction

unique to having an offset castor. We have developed a

method based on the ideas of IPEC that can be used for

more than two castors to take advantage of all information

available.

First, we note that the inertial position of a pivot (x+
i ,y+

i )
at time t+ relates to the inertial position of the center of the

robot (x+
c ,y+

c ) by the following relationship

x+
i = x+

c +Ri cos(ψ+ +φi), y+
i = y+

c +Ri sin(ψ+ +φi) (11)

x−i = x−c +Ri cos(ψ− +φi), y−i = y−c +Ri sin(ψ− +φi) (12)

where Ri and φi describe the position of the pivot with respect

to the center of the robot. The corresponding relationship at

t− is also shown. Subtracting these two equations and making

a small angle assumption about the change in heading angle,

∆ψ , results in the following equations which are linear in the

unknowns (∆xc,∆yc,∆ψ):

∆xi = ∆xc −∆ψRi sin(ψ− +φi) (13)

∆yi = ∆yc +∆ψRi cos(ψ− +φi) (14)

Standard odometry equations as given by Borenstein [11]

are adapted to compensate for the offset of the pivot from the

wheel axis to generate the (∆xi,∆yi) from the wheel encoder

readings. Thus, as in IPEC, we utilize only the information

regarding translational motion of each castor to inform our

heading estimate rather than the heading information from

each castor. Equations 13 and 14 can be used in a linear least

squares algorithm employing n castors.

The validity of the small angle assumption depends on the

angular rate of the vehicle and position update frequency. In

practice, the low complexity of this algorithm allows high

update frequencies to ensure the validity of this assumption.

Even a robot rotating at 90◦/sec with position updates at 20

Hz would see a ∆ψ of less than 5◦ at each update step.

When applying such algorithms to hardware, algorithmic

complexity must be considered. Given a measurement model

of Y = HX with all measurements weighted equally, the

linear least squares solution is given by

X = (HT H)−1HTY (15)

where

X =





∆xc

∆yc

∆ψ



 ,Y =





















∆x1

∆x2

...

∆y1

∆y2

...





















(16)

and,

H =





















1 0 −R1 sin(ψ− +φ1)
1 0 −R2 sin(ψ− +φ2)
...

...
...

0 1 R1 cos(ψ− +φ1)
0 1 R2 cos(ψ− +φ2)
...

...
...





















(17)

Significant computational savings can be achieved by pre-

computing the required matrix inverse which takes the form

(HT H)−1 =
1

n(b2 + c2 −nd)





c2
−nd −bc nb

−bc b2
−nd nc

nb nc −n2





(18)

where

b = −n(my cosψ− +mx sinψ−) (19)

c = n(mx cosψ−
−my sinψ−) (20)

d =
n

∑
i=1

R2
i (21)
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TABLE I

MEAN PARAMETRIC ERRORS OVER 1000 SIMULATIONS

Parameter Uncalibrated Calibrated

rc 0.21% 0.09%
rw 2.07% 0.04%
d 0.89% 0.04%
β 7.98◦ 0.01◦

and mx and my are the x− y coordinates in the body frame

describing the “center of mass” of the pivots with respect to

the center of the vehicle. Note that defining the center of the

robot to be the center of the three pivots results in b = c = 0,

and Eq. 15 simplifies to

X =





∆xc

∆yc

∆ψ



 =

1
n ∑n

i=1





∆xi

∆yi
1
R

(∆yi cos(ψ− +φi)−∆xi sin(ψ− +φi))



(22)

In this special case, the translation of the center of the base

is simply the average of the motion measured by each castor.

Just as in IPEC, the final, critical, step is to update

the heading angle of each castor with the newly computed

vehicle heading and the measured castor angles.

It should be noted that in the case with more than two

castors, the redundant information could be used to detect

when a castor has been subjected to large non-systematic

errors. Once detected, this invalid information could be

disregarded from the final odometric position estimate in

order to increase robustness to these errors. This extension

is not the focus of this paper and is left for future study.

IV. SIMULATION

In order to test the validity of both algorithms, we per-

formed simulations using 1000 different sets of randomly

varied parameters. The mean errors of each parameter from

the true value are listed as the uncalibrated values in Table I.

A. Calibration

As discussed earlier, accurate calibration is required for the

odometry to achieve the accuracies required for our system.

To evaluate our approach, we ran 1000 different sets of

parameters through the calibration algorithm. We compare

the mean absolute error of the calibrated numbers over all

1000 runs to the mean parametric errors prior to calibration.

Orders of magnitude improvement in the parameter estimates

can be seen in Table I.

B. Odometry

The UMBmark test consists of the robot traversing a

square both clockwise and counterclockwise five times and

measuring the position estimate error at the end of each

circuit [8]. The magnitude of the average position error

for both clockwise (rCW) and counterclockwise (rCCW) is

TABLE II

UMBMARK TEST SIMULATION RESULTS

Algorithm Uncalibrated Emax Calibrated Emax

IPEC-1 394.6 mm 6.89% 71.7 mm 1.25%
CAST-1 394.1 mm 6.88% 71.6 mm 1.25%
CAST-0 311.0 mm 5.43% 39.0 mm 0.68%

computed, and the maximum of these two values provides a

measure of the accuracy of the odometry, Emax.

We simulated a robot based on the dimensions of our pro-

totype traversing a 1.5 meter square with random parametric

errors consistent with the measurement uncertainties of our

uncalibrated prototype shown in Table I, with the exception

of β , which we assumed to be zero. All encoder readings

were produced with quantization errors and an update rate

of 20 Hz. We simulated the UMBmark test on 1000 different

sets of parameters and computed the average value of Emax

over those runs for several different algorithms.

We first implemented IPEC, considering only two castors,

and then implemented our least squares solution using the

same two castors as well as all three castors. We denote these

combinations as IPEC-i and CAST-i, where i represents the

castor not used. Following this notation, CAST-0 represents

the solution with no castor excluded: the least squares solu-

tion using all three castors. Table II shows the results of the

UMBmark test simulation using the uncalibrated parameters,

including the error as a percent of distance traveled.

The large numbers shown for the uncalibrated cases in

Table II are a result of large parametric uncertainties - up to

4% in some cases - but this has no effect on the comparison

of one algorithm to another. The two-castor least squares

provides nearly the same solution as IPEC, whereas the

three-castor solution shows a 20% improvement.

After calibration, the odometry simulation was rerun with

the calibrated parameters, and the pose estimation errors

reduced by a factor of 5-8 as seen in the calibrated results of

Table II. The three-castor least squares improves the estimate

by almost a factor of 2 over either two-castor estimate.

V. HARDWARE-BASED IMPLEMENTATION

In this section, we discuss a one-third scale prototype that

was used to demonstrate design feasibility and for use in

testing and development of data fusion techniques, control

laws, and a dynamics model of the full-scale platform.

The actuator and sensor configurations of the full-scale

platform were implemented on the prototype to accurately

evaluate state estimation and control methods. The prototype

presented here possesses all of the required sensors, but at

lower precisions than the full-size mobile platform.

The prototype has optical encoders on the wheels and on

the pivots, so that data can be used in feedback control

laws just like the full scale implementation. The wheel

encoders can measure in increments of 0.3◦, whereas the

pivot encoders can measure in increments of 0.07◦. Fig. 4

shows a picture of the one-third scale prototype.
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Fig. 4. Prototype mobile base with joystick controller
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The one-third scale hardware platform has been completed

and can be controlled using either a joystick or pre-defined

trajectories which it follows open-loop. We present here

the results of a slightly modified UMBmark test using the

prototype to evaluate the wheel odometry position estimation

algorithms discussed earlier. To complete this test, the data

was collected for four runs in each direction along a 1.5 m

square and then run through each of the algorithms offline.

Fig. 5 shows the final errors for each run for each algorithm,

and Table III shows the average error, Emax. We show the

results for IPEC by using only two of the three castors at a

time, in all three combinations since parametric errors lead

to different results for different combinations of castors. We

also present our corresponding least squares solutions. As

in the simulation, the two-castor least squares results very

nearly match the IPEC results, and the three castor result

(CAST-0) provides the best solution. As in the odometry

simulation, these errors are large overall and have meaning

only for comparisons of algorithms until the calibration

methods have been employed.

TABLE III

PROTOTYPE TEST RESULTS

Algorithm Emax

IPEC-1 540 mm 9.5%
IPEC-2 511 mm 9.0%
IPEC-3 458 mm 8.0%
CAST-1 544 mm 9.5%
CAST-2 459 mm 8.0%
CAST-3 432 mm 7.6%
CAST-0 191 mm 3.3%

VI. CONCLUSIONS AND FUTURE WORK

Algorithms for multi-castor calibration and odometry have

been presented. Simulation results verify both approaches

when compared to the true parameters and IPEC, and the

tests in hardware using our prototype further validate the

algorithms. The next step is to test these algorithms on

another platform and implement the least squares odometry

algorithm as realtime feedback for control purposes. We are

currently designing the full-scale version of our prototype to

complete this testing.
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