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Abstract— For a differential-drive mobile robot equipped
with an on-board range sensor, there are six parameters to
calibrate: three for the odometry (radii and distance between
the wheels), and three for the pose of the sensor with respect to
the robot frame. This paper describes a method for calibrating
all six parameters at the same time, without the need for
external sensors or devices. Moreover, it is not necessary to
drive the robot along particular trajectories. The available data
are the measures of the angular velocities of the wheels and
the range sensor readings. The maximum-likelihood calibration
solution is found in a closed form.

I. INTRODUCTION

The problem of calibrating the odometry of mobile robots
has been studied since the 80’s. For the formalization and
theoretical analysis of the problem, we refer the reader to [1],
[2], [3], [4], [5].

As for practical methods used for calibration, there are
two main approaches. The first is to drive the robot along
especially crafted trajectories, take some sort of external
measurement on its pose, and then estimate/correct its param-
eters. A popular method of this sort is the UMBmark [2], in
which a differential-drive robot is driven along a square path
for multiple times, clockwise and anti-clockwise. In the same
spirit, in [6] there is a generalization to arbitrary trajectories
and different kinematics.

Another approach is called auto-calibration or SLAC
(Simultaneous Localization And Calibration), in which cal-
ibration is part of the normal activity of the robot and
happens without human intervention. A possibility is to use
an Extended Kalman Filter (EKF) that estimates both the
pose of the robot and the odometry parameters [7], [8],
[9]. In this case, there are observability issues to take into
account: this is considered in [10] for different combinations
of sensors and kinematics. In [11] the authors propose a
maximum-likelihood model-free approach that does not seek
a physical explanation of the odometry errors. In [12], the
authors use a maximum-likelihood method for estimating the
odometry parameters of a differential-drive robot, using the
absolute observations of an external camera. The method is
particularly simple because the problem is completely linear,
and therefore can be solved via linear least-squares.

A more difficult problem is to simultaneously estimate the
odometry parameters plus some other sensor parameters. A
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Fig. 1. A team of five Khepera robots. Each robot has an on-board Hokuyo
range-finder and associated battery pack.
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Fig. 2. The robot pose is qk with respect to the world frame. The sensor
pose is ` with respect to the robot frame. ok is the robot displacement
between poses, and sk is the sensor displacement.

first example of this is in [13], where calibration is performed
for odometry, a piezo-electric vibrating gyroscope, and a
flux-gate magnetic compass. Also in this case there are
observability issues: in [14] the authors show that, even
assuming the odometry already calibrated, the system is not
fully observable if one uses only a bearing sensor.

The present work is the first to consider the simultaneous
calibration of odometry and sensor pose (in [14], the sensor
pose is calibrated, assuming that odometry parameters are
known). Compared to [12], we consider a three-parameters
model for a differential-drive robot: we estimate the wheel
radii rL, rR and the distance b between the wheels. For the
sensor, we estimate its pose ` = (`x, `y, `θ) with respect
to the robot frame. We assume that the sensor is mounted
horizontally – an arbitrary orientation would need another
two parameters (tilt and yaw). We assume to know the
measured wheel velocities, and the output of the range finder.
The range readings are passed to a scan-matching algorithm
that provides an estimate of the roto-translation of the sensor.
We will not discuss the scan-matching algorithm as it is used
as a black-box. The method is easy to implement: the robot
drives autonomously along arbitrary trajectories, no external
measurement is necessary, no nominal parameters must be
measured beforehand.
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II. SIMULTANEOUS CALIBRATION
OF ROBOT AND SENSOR PARAMETERS

Consider the robot motion along an arbitrary configuration
trajectory q(t). Split the time axis in a number of intervals,
each delimited by two range finder readings, and each of
(possibly different) duration T k. In the k-th interval, the
robot moves from pose qk to pose qk+1, performing a roto-
translation

ok , qk+1 	 qk

Such roto-translation depends on the wheel velocities ωL(t),
ωR(t) through the odometry parameters rL, rR, b, therefore,
at first, ok is an unknown quantity. In the same interval, the
sensor motion is sk in the absolute frame:

sk ,
(
qk+1 ⊕ `

)
	

(
qk ⊕ `

)
Through scan matching, we have an estimate ŝk of sk.

In the following, for simplicity, we first assume that the
wheel velocities are constant over each interval. This leads
to simple formulas, an efficient implementation, and good
accuracy in our experimental setting. In section II-D we give
the equivalent formulas for arbitrary velocities.

A. Kinematic model

Consider the kinematic model of the unicycle:

d

dt

 qx(t)
qy(t)
qθ(t)

 =

 v(t) cos qθ(t)
v(t) sin qθ(t)

ω(t)

 (1)

The absolute velocities v(t), ω(t) depend on the wheel
velocities through a linear transformation J:[

v(t)
ω(t)

]
= J

[
ωL(t)
ωR(t)

]
Such transformation depends on the odometry parameters:

J =
[

J11 J12

J21 J22

]
=

[
+rL/2 +rR/2
−rL/b +rR/b

]
(2)

In this paper, we always consider each interval separately. Fix
t = 0 at the beginning of the interval, and let the starting pose
be qk = q(0) = 0. If we assume that the wheel velocities
are constant over one interval (ωL(t) = ωk

L , ωR(t) = ωk
R),

then the robot velocities are constant too:

v(t) = J11ω
k
L + J12ω

k
R = vk

0 (3)

ω(t) = J21ω
k
L + J22ω

k
R = ωk

0 (4)

and we can compute the roto-translation at the end of the
interval qk+1 = q(T k) = ok in closed form, by integrating
exactly the differential equation (1):

ok
x = vk

0T k
(
sinωk

0T k
)
/

(
ωk

0T k
)

(5)

ok
y = vk

0T k
(
1− cos ωk

0T k
)
/

(
ωk

0T k
)

(6)

ok
θ = ωk

0T k (7)

If the velocities ω(t), v(t) are not constant in the interval,
the solution can still be easily written, as the differential
equations are in cascade form.

SYMBOLS USED IN THIS PAPER

parameters (to be estimated)
rR, rL wheel radii (m)

b distance between wheels (m)
` laser pose (w.r.t. robot frame)

measurements
ŝk scan matching result

ω̂R , ω̂L measured wheel velocity (rad/s)

other symbols
⊕, 	 As defined in [15], the ⊕ operator is the composition

of transformations, and 	 is its inverse.24 ax

ay

aθ

35⊕
24 bx

by

bθ

35 ,

24 ax + bx cos aθ − by sin aθ

ay + bx sin aθ + by cos aθ

aθ + bθ

35
24 ax

ay

aθ

35	
24 bx

by

bθ

35 ,

24 ax

ay

aθ

35⊕
24 −bx cos bθ − by sin bθ

+bx sin bθ − by cos bθ

−bθ

35
qk robot pose (w.r.t. world frame)
T k time interval between qk and qk+1

ok robot displacement: ok , qk+1 	 qk

sk laser displacement: sk ,
`
qk+1 ⊕ `

´
	

`
qk ⊕ `

´
ωR(t), ωL(t) wheel velocities

v(t), ω(t) linear/angular robot velocities
J Linear transformation between wheel and robot ve-

locities.

J =

»
J11 J12

J21 J22

–
=

»
+rL/2 +rR/2
−rL/b +rR/b

–

B. Estimation of the parameters J21, J22

We first estimate J21 and J22 by using the scan-matching
estimate of the rotation. This part of the method is numeri-
cally equivalent to the estimation done in [12]. The difference
is that we are considering relative measurements instead of
absolute, and very short intervals instead of full trajectories.

If the robot rotates by an angle ok
θ , also the sensor will

rotate by the same angle: sk
θ = ok

θ . Therefore, through the
scan matching estimate ŝk

θ , we can observe ok
θ = ωk

0T k.
From (4) and (7) it follows that:

(J21ωL + J22ωR) T k = sk
θ

Rewrite this in matrix form with the measured quantities: ŝk
θ

being the estimate of sk
θ given by scan-matching, and ω̂L, ω̂R

being the measured wheel velocities:

[
ω̂k

L T k ω̂k
R T k

] [
J21

J22

]
= ŝk

θ + errors (8)

For simplicity, we do not write the details of the ‘errors’
terms. As for the terms ω̂k

L T k and ω̂k
R T k, note that they

are simply the encoder increments in the k-th interval; their
error is at most one encoder tick. The variance of ŝk

θ can be
taken into account in the least-squares solution, if the scan
matching algorithm provides such data (most do not; see [16]
for computing the covariance of ICP). Stack all the equations
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for each interval k:
...

...
ω̂k

L T k ω̂k
R T k

...
...

[
J21

J22

]
=


...

ŝk
θ
...

 + errors

From this, one can find an estimate Ĵ21, Ĵ22 by linear least-
squares. Observability of J21, J22 can be checked via the
condition number of the constraint system.

Note that, at this point, we only know an estimate of the
ratios J21 = −rL/b and J22 = +rR/b, but we do not know
the value of the single physical parameters rL, rR, b. In the
following, we will estimate the four parameters b, `x, `y , `θ;
then, the estimate of rL, rR will be given by r̂L = −b̂ Ĵ21

and r̂R = +b̂ Ĵ22.

C. Estimation of the other parameters b, `x, `y , `θ

From geometric inspection of Fig. 2, one obtains this
constraint for the values of `, ok and sk:

`⊕ sk = ok ⊕ ` (9)

Rewrite it in the extended form, for the x, y components:

`x +sk
x cos `θ −sk

y sin `θ = ok
x +`x cos ok

θ −`y sin ok
θ (10)

`y +sk
x sin `θ +sk

y cos `θ = ok
y +`x sin ok

θ +`y cos ok
θ (11)

At this point, we already have an estimate of ok
θ , therefore

we know an estimate for the terms cos ok
θ , sin ok

θ . Now we
give an expression for ok

x, ok
y that depends on the other

parameter b. Then, the relations (10)-(11) will contain all
four remaining parameters (b, `x, `y , `θ). From (2), note
that J11 and J12 can be written in terms of J21, J22 and b:

J11 = − b

2
J21 J12 =

b

2
J22

Therefore, the linear velocity vk
0 can be estimated as:

vk
0 = − b

2
J21ω

k
L +

b

2
J22ω

k
R (12)

By substituting (12) into (5)-(6), we find that ok
x, ok

y are
proportional to b through two constants cx and cy:

ok
x = cxb ok

y = cyb (13)

The constants cx and cy depend on quantities that have
already been estimated:

cx =
1
2
T k(−J21ω

k
L + J22ω

k
R)

sinωk
0T k

ωk
0T k

cy =
1
2
T k(−J21ω

k
L + J22ω

k
R)

1− cos ωk
0T k

ωk
0T k

If the velocities ωk
L , ωk

R are not constant, cx and cy have a
more complicated expression, discussed in section II-D.

Substitute (13) in (10), (11) to obtain the following rela-
tionships, which contain the 4 remaining unknowns:

`x+sk
x cos `θ−sk

y sin `θ = cxb+`x cos ok
θ−`y sin ok

θ (14)

`y+sk
x sin `θ+sk

y cos `θ = cyb+`x sin ok
θ +`y cos ok

θ (15)

Define the vector of the unknown parameters as x:

x =
[

b `x `y cos `θ sin `θ

]T

and treat cos `θ and sin `θ as two separate variables x4 and
x5, with the additional constraint x2

4 +x2
5 = 1. Rewrite (14)-

(15) in matrix form Lkx = 0:[
−cx

(
1− cos ôk

θ

)
+sin ôk

θ +̂sk
x −̂sk

x

−cy − sin ôk
θ

(
1− cos ôk

θ

)
+̂sk

y +̂sk
x

]
x =

[
0
0

]
(16)

The matrix Lk depends on known quantities. By defining
M =

∑
k LT

k Lk, the least-squares problem to solve is:

min xT Mx (17)

subject to x2
4 + x2

5 = 1 (18)

For this problem, for each solution x, also −x is a solution.
As an additional constraint, we impose that the distance b
must be positive:

x1 > 0 (19)

D. If velocities ωR(t) and ωL(t) are not constant

If ωR(t) and ωL(t) are not constant, change (8) to[ ∫ T k

0
ω̂L(t)dt

∫ T k

0
ω̂R(t)dt

] [
J21

J22

]
= ŝk

θ + errors

Once Ĵ21 and Ĵ22 have been estimated, one can estimate the
evolution of ok

θ(t) as:

ôk
θ(t) =

∫ t

0

(
Ĵ21ω̂L(τ) + Ĵ22ω̂R(τ)

)
dτ (20)

As before, v(t) is known up to a constant (the distance b):

v̂(t) = b
(
− 1

2
Ĵ21ω̂L(t) +

1
2
Ĵ22ω̂R(t)

)
Therefore, the value of ôk

x, ôk
y at time T k is given by

ok
x = cxb ok

y = cyb

where the two constants cx and cy can be estimated by:

cx =
∫ T k

0

(
− 1

2
Ĵ21ω̂L(t) +

1
2
Ĵ22ω̂R(t)

)
cos ôk

θ(t) dt

cy =
∫ T k

0

(
− 1

2
Ĵ21ω̂L(t) +

1
2
Ĵ22ω̂R(t)

)
sin ôk

θ(t) dt

From this point on, the computation is the same as in the
previous case.

E. Solving the constrained least-squares problem

We solve the constrained least-squares problem by using
Lagrange’s multipliers. The constraint (18) is written in
matrix form as

xT Wx = 1, with W,

[
03×3 03×2

02×3 I2×2

]
(21)

Constraint (19) is ignored for now: we will just flip the
solution if x̂1 happens to be negative.
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Using Lagrange’s multipliers method, a necessary condi-
tion for optimality is that

(M + λW) x = 0

One needs to find a λ such that the matrix (M + λW) is
singular, and then choose the solution x in the kernel of
such matrix. The value of λ can be found by solving the
equation

det (M + λW) = 0

In our problem, the matrix M has a particular structure, with
some zeros and repeated entries:

M =


m11 0 m13 m14 m15

∗ m22 0 m35 −m34

∗ ∗ m22 m34 m35

∗ ∗ ∗ m44 0
∗ ∗ ∗ ∗ m44


For this matrix, the determinant det (M + λW) is a second-
order polynomial

(
aλ2 + b λ + c

)
where the values of a, b,

and c are as follows:

a = m11m22
2 −m22m13

2 (22)
b = 2m13m22m35m15 −m22

2m15
2 − 2m11m22m35

2

+2m13m22m34m14 − 2m22m13
2m44 −m22

2m14
2

+2m11m22
2m44 + m13

2m35
2 − 2m11m22m34

2

+m13
2m34

2

c = −2m13m35
3m15 −m22m13

2m44
2 + m11m22

2m44
2

+m13
2m35

2m44 + 2m13m22m34m14m44

+m13
2m34

2m44 − 2m11m22m34
2m44

−2m13m34
3m14 − 2m11m22m35

2m44

+2m11m35
2m34

2 + m22m14
2m35

2

−2m13m35
2m34m14 − 2m13m34

2m35m15

+m11m34
4 + m22m15

2m34
2

+m22m35
2m15

2 + m11m35
4

−m22
2m14

2m44 + 2m13m22m35m15m44

+m22m34
2m14

2 −m22
2m15

2m44

The number λ, such that the matrix
(
M + λW

)
is singular,

can be found in closed form by using the well-known formula
for the roots of a second-order polynomial. After having
found λ, the choice of x is unique given the constraints (18)
and (19). Call v any vector in the kernel of

(
M + λW

)
.

To obtain the estimate x̂, scale v by
√

v2
4 + v2

5 to respect
constraint (18), then flip it by the sign of v1 to respect
constraint (19):

x̂ =
sign v1√
v2
4 + v2

5

v

Finally, all six parameters have been recovered:

b̂ = x̂1

r̂L = +x̂1Ĵ21

r̂R = −x̂1Ĵ22

ˆ̀
x = x̂2

ˆ̀
y = x̂3

ˆ̀
θ = atan2(x̂5, x̂4)

III. EXPERIMENTS

In this section, we present our experience in calibrat-
ing Khepera III mobile robots1 with on-board Hokuyos2.
A video attached to this submission shows the set-
ting used for the experiments. All the experimental
data and the software used is available for download
from http://purl.org/censi/2007/calib

A. Equipment

The Kheperas III, with respect to the Kheperas II used
in [17], have a better encoder resolution of about 7 ticks per
degree, therefore we could get good smooth estimates of the
velocities ωk

L , ωk
R .

The Hokuyo URG-04LX is a small lightweight range-
finder sensor. It is the new model with respect to the sensor
described in [18], but the under-lying technology is the
same. It provides 681 rays over a 240◦ field of view, with
a resolution of 1mm, and a standard deviation of about
3mm. It is not an ideal sensor. The measurements are
highly correlated, with every ray’s error being correlated
with its 3-4 neighbors: this is probably a symptom of some
post-processing (interpolation) to bump up the resolution to
the nominal 1024/360 rays/degrees. There is temporal bias:
readings change as much as 20mm over a period of 5 minutes
— this could be due to the battery power, or the change in
temperature. There is also a spatial bias which is a function
of the distance [18]: in practice, a rectangular environment
appears slightly curved to the sensor.

B. Problems

It is surprisingly challenging to gather the perfectly tidy
experimental data that one would expect for calibration.
We outline the main practical problems we faced, and the
solutions we tried.

Data synchronization: We experienced some problems in
interfacing with the sensor, probably due to the complicated
communication protocol and the not-so-reliable serial-to-
USB link. As a result, during the first period of experimenta-
tion, we were not able to retrieve the correct timestamp for
the scans (this affects datasets k06–k21). We figured that,
to mitigate this kind of problem, one should use trajectories

1http://www.k-team.com/
2http://www.hokuyo-aut.jp/

Fig. 3. Two configurations for the Hokuyo. In the first one, the sensor’s
pose is ` ' 0 with respect to the robot frame (approximately indicated by
the black lines on the white sheet). In the second, the sensor is translated
and rotated.
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TABLE I
FINAL CALIBRATION RESULTS

dataset(s) # samples b (m) rL (m) rR (m) `x (m) `y (m) `θ (rad) J11 J12 J21 J22

k07 766 0.09288 0.02057 0.02113 -0.00446 0.00000 -0.00209 0.01057 0.01028 -0.22752 0.22144
k08 350 0.08785 0.02008 0.01993 -0.00592 0.00020 -0.02371 0.00997 0.01004 -0.22692 0.22853
k12 540 0.08829 0.01987 0.02000 -0.00575 -0.00241 -0.00362 0.01000 0.00993 -0.22658 0.22501
k13 1032 0.08863 0.01958 0.01957 -0.00513 -0.00124 -0.01569 0.00979 0.00979 -0.22086 0.22088
k14 1172 0.08529 0.01868 0.01861 -0.00516 -0.00411 -0.00670 0.00931 0.00934 -0.21825 0.21905
k15 1585 0.07042 0.01519 0.01508 -0.00856 0.06416 0.04799 0.00754 0.00760 -0.21416 0.21578

k06–k15 5728 0.08586 0.01906 0.01901 -0.00441 0.00013 -0.01292 0.00951 0.00953 -0.22143 0.22196
k22 2243 0.09213 0.02109 0.02106 -0.00726 0.00286 -0.01298 0.01053 0.01055 -0.22861 0.22892
k23 2190 0.08543 0.01978 0.01978 -0.00659 0.00034 0.00692 0.00989 0.00989 -0.23159 0.23157
k27 2135 0.08822 0.02017 0.02016 -0.00403 0.00071 -0.01700 0.01008 0.01008 -0.22852 0.22860
k28 4184 0.08741 0.02002 0.01999 -0.00495 0.00223 -0.00816 0.01000 0.01001 -0.22870 0.22902
k29 229 0.08771 0.02020 0.02010 -0.00224 0.01104 -0.01830 0.01005 0.01010 -0.22918 0.23032

k22–k29 10987 0.08682 0.01999 0.01998 -0.00603 0.00125 -0.00156 0.00999 0.01000 -0.23012 0.23029
k40 3784 0.09018 0.02080 0.02074 0.02499 0.03859 0.35894 0.01037 0.01040 -0.22994 0.23066
k42 3516 0.08822 0.02033 0.02033 0.02538 0.03607 0.37073 0.01017 0.01016 -0.23048 0.23041
k43 1845 0.08742 0.02032 0.02026 0.02350 0.04180 0.35594 0.01013 0.01016 -0.23174 0.23242
k44 1335 0.08730 0.02039 0.02029 0.02307 0.04285 0.38065 0.01014 0.01019 -0.23241 0.23352
k45 3496 0.08924 0.02050 0.02047 0.02670 0.04435 0.30744 0.01024 0.01025 -0.22940 0.22974

k40–k45 16473 0.08790 0.02035 0.02029 0.02442 0.04087 0.36093 0.01015 0.01017 -0.23088 0.23146

TABLE II
FINAL CALIBRATION RESULTS (UMBMARK)

b (m) rL (m) rR (m) Eb Ed Emax J11 J12 J21 J22

nominal 0.090 0.021 0.021 1.0 1.0 17.8238 0.0105 0.0105 -0.23333 0.23333
1 0.08971 0.02100 0.02099 0.996854 0.99963 8.1993 0.010501 0.01050 -0.23411 0.23403
2 0.08970 0.02101 0.02099 0.996722 0.99883 6.5975 0.010506 0.01049 -0.23424 0.23396
3 0.08965 0.02102 0.02098 0.996180 0.99848 4.4295 0.010507 0.01049 -0.23441 0.23405
4 0.08962 0.02101 0.02099 0.995824 0.99868 3.8147 0.010506 0.01049 -0.23447 0.23416

with long tracts of constant speed. Only after installing the
new firmware, released in August 2007, we could get the
correct timestamps (datasets k22–k45).

Wheels slippage: From time to time, we observed severe
slip of the wheels. From the measured data, slip is evident
as the odometry typically gives an estimate of zero for the
rotation, while scan matching detects a non-zero rotation.
Slippage seriously impacts calibration. However, a simple
post-processing using trimming can eliminate outliers.

In the first step, the parameters are estimated using all
available measurement tuples

˙
ŝk, ω̂k

L , ω̂k
R

¸
. Then, the residu-

als are computed as:

ek , ˆ̀⊕ ŝk − ôk ⊕ ˆ̀

A fixed percentage of the samples having large residuals
are considered outliers and discarded; then, the parameters
are estimated again with the remaining samples. In our
implementation, we discarded the worst 5% for 3 times in a
row. Our method is convenient because we can compensate
the poor quality of the data with an extremely large quantity
of samples; compare, for example, with UMBmark, which
requires very precise observation of some small set of data.

C. Datasets

We consider three sets of logs:
• From log ‘k06’ to ‘k21’, we were still using the old

Hokuyo firmware, and we used the Khepera’s clock for
timestamping the laser data upon reception.

• From log ‘k22’ to ‘k30’: laser and odometry data are
properly synchronized. The laser is mounted at ` ' 0.

• From log ‘k40’ to ‘k45’: the laser is mounted
with a different pose (Fig. 3). We measured the
new pose of the laser and obtained approximately
(45mm, 35m, 0.40rad).

Note that some of the logs did not excite all parameters. For
example, dataset k06 consists of only identical turns, and the
linear least-squares problem is under-constrained. However,
such data can be used in conjunction with other logs. In
general, each log is seen by our method as just a large set
of measurements tuples

˙
ŝk, ω̂k

L , ω̂k
R

¸
; even the order of the

tuples is not important. Therefore a single log can be split
in multiple parts, or multiple logs can be joined together.

D. Results

The calibration results are shown in Table I. In general,
there is much variation in the estimate of the physical
parameters: the estimate of rL varies in the (0.087m, 0.092m)
interval, and b varies in the (0.019m, 0.021m) interval.
However, note that the ratio of such parameters (J21) varies
in a much smaller interval. This is because J21 is directly
observable, while the single parameters are not. A study of
the uncertainty of the estimate would clarify such matters,
however it is not trivial in this case because of the nonlin-
earity in the problem.

For the logs ‘k40’ to ‘k45’, the Hokuyo was mounted
in the second configuration (Fig. 3). The estimated pose
for the Hokuyo was slightly different than our measured
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pose. We were puzzled by these results, so we checked the
distribution of the residuals. The residuals are interesting
because they are the sum of all errors involved in the process:
the scan-matching error, the encoder measurements error, any
synchronization error, and the error due to the constant-speed
approximation. All three components are distributed along
the expected bell-shaped curves — the long tails are the very
few outliers that get ignored in the estimation. The x, y errors
are in the order of millimeters, and the θ errors are much
less than 1◦. Therefore, we can conclude that the estimation
is ‘healthy‘, and the final estimation errors are due to the
limited information contained in the data. It could be that
the logs we used did not excite enough the ` parameter: this
could be clarified by doing an in-depth observability analysis
of the problem.

E. Comparisons

This method is the first to calibrate both odometry and
sensor parameters, therefore any comparison can only be
qualitative. The method described in [12] estimates the
matrix J as 4 independent numbers, here instead we use
the three physical parameters (rL, rR, b) — this is actually
harder, as there is one constraint more to consider. Anyway,
their method could be easily extended to add one constraint
to J, and our method could easily use independent elements.
It is unclear which approach is the best.

We report here an anecdote about our use of the UMB-
mark. Before even thinking about the method described
in this paper, we needed to calibrate our robots, and we
chose the UMBmark, using a ceiling-mounted camera as the
external sensor. The nominal parameters, and the updated
parameters after each trial, are reported in Table II. We used
21mm as the nominal radius. One problem with UMBmark is
that it constrains the radii average to be fixed at the nominal
radius. After running our method, we see that in reality the
radii should be slightly less than 21mm, and therefore the
UMBmark estimate we used is biased.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we presented a simple and practical method
for simultaneous calibration of the odometry and sensor
parameters. The method has some interesting characteristics:

• It can run unattended, with no human intervention.
• No apparatus has to be calibrated a priori.
• There is no need for nominal parameters.
• Trajectories can be freely chosen.

Future work concerns characterizing the uncertainty of the
estimate. In [12], the author could obtain an estimate of
the covariance because they were facing a completely linear
problem. Here, two things differ: we use a 3 parameter
model, instead of estimating an arbitrary 4-element matrix,
and, of course, the other three parameters introduce a non-
linearity (cos `θ, sin `θ). Hence it is not trivial to compute
the uncertainty.

We have also concerns about different forms of bias. The
sensor that we use suffers of both temporal and spatial
bias. Moreover, the ICP algorithm used for scan-matching is

biased, and its bias is hard to measure. Even if the sensor and
the scan-matching algorithm were unbiased, the maximum-
likelihood minimization we use is biased itself. Our intuition
is that these four (independent!) sources of bias constitute a
non-negligible part of the final error, and should be object
of further study.
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