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Abstract— Faces play a major role in many HCI systems,
because they represent a rich source of information. Being able
to estimate the 3D face pose in real-time, we can get a clue about
user’s intentions or to assess which object become his/her focus
of attention. This paper has two main contributions. First, we
propose an automatic 3D face pose initialization scheme for
our real-time tracker by adopting a 2D face detector and an
eigenface system. Second, we use the proposed methods - the
initialization and tracking - for controlling the orientation of
an AIBO camera. We show how the changes in user’s face
movement can be imitated by the robot’s camera and how it
can be applied to map an indoor scene.

Keywords: face detection, 3D face pose estimation, real time
3D face pose tracking, human-robot interaction, AIBO robot

I. INTRODUCTION

The ability to detect and track human faces and facial

features in video sequences is useful in a great number of

applications, such as human-computer interaction and gesture

recognition [1], [2]. Vision-based tracking systems represent

an attractive solution since vision sensors are not an invasive

technology. To this end many systems and methods have been

developed. Of particular interest are vision-based markerless

head and/or face trackers. Since these trackers do not require

any artificial markers to be placed on the face, comfortable

and natural movements can be achieved. On the other hand,

building robust and real-time markerless trackers for face and

facial features is a difficult task due to the high variability

of the face and the facial features in videos.

In general, there are two main approaches for face-pose es-

timation: feature-based approaches and view-based (holistic)

approaches. Feature-based approaches refer to the extraction

of salient facial characteristics (eyes, nose, mouth) which

are used to compute the face pose based on their spatial

relations. In the past, many feature-based approaches have

been proposed (e.g, [3], [4], [5], [6]).

The main drawback of the feature-based approaches is that

it could happen that not all the points are visible during a

video sequence. Moreover, reliable feature tracking is often

difficult, since minor changes between frames can lead to

very different segmentation in consecutive frames—the drift

problem.

A solution to overcome the drawbacks of feature-based

approaches is given by view-based approaches (appearance-

based approaches), which try to analyze the whole facial

*This work is supported in part by MEC Grant TIN2006-15308-C02 and
CONSOLIDER-INGENIO 2010 (CSD2007-00018), and the Ramon y Cajal
research program.

appearance in order to infer the 3D face pose. To over-

come the problem of appearance changes recent works on

faces adopted statistical facial textures. For example, Active

Appearance Models received a lot of attention recently.

The Active Appearance Models have been proposed as a

powerful tool for analyzing facial images [7]. Deterministic

and statistical appearance-based tracking methods have been

proposed [8], [9], [10]. These methods can successfully

tackle the image variability and drift problems by using

deterministic or statistical models for the global appearance

of a special object class: the face.

Recently, we have developed a face and facial fea-

ture tracking method based on Online Appearance Models

(OAMs) [11]. Unlike the Active Appearance Models, the

OAMs offer a lot of flexibility and efficiency since they do

not require any facial texture model that should be computed

beforehand. Instead the texture model is built online from the

tracked sequence.

This paper extends our previous work [11] in two di-

rections. First, we propose a method for the automatic

initialization of the 3D face pose. In [11], the initialization

is performed manually. Second, we use the proposed tracker

in a human-robot interaction application in which the gaze

of a robotics vision sensor is controlled by the user’s gaze.

The proposed scheme for estimating and tracking the 3D

face pose methods are automatic. The remainder of the

paper is organized as follows. Section II briefly describes

the deformable 3D face model that we use to create shape-

free facial patches from input images. Section III states

the problem we propose to solve. Section IV describes the

proposed automatic 3D face pose initialization from one

single image. Section V presents the real-time face and facial

action tracker. Section VI describes the proposed human-

robot interaction scenario that is based on controlling the

AIBO camera orientation through the use of the tracked

user’s face pose parameters. Section VII concludes the paper.

II. MODELING FACES

a) A deformable 3D model: In our study, we use the

3D face model Candide [12]. This 3D deformable wireframe

model was first developed for the purpose of model-based

image coding and computer animation. The 3D shape of this

wireframe model is directly recorded in coordinate form. It is

given by the coordinates of the 3D vertices Pi, i = 1, . . . , n
where n is the number of vertices. Thus, the shape up to a

global scale can be fully described by the 3n-vector g; the

concatenation of the 3D coordinates of all vertices Pi. The
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vector g is written as:

g = gs + A τa (1)

where gs is the static shape of the model, τa the animation

control vector, and the columns of A are the Animation

Units. In this study, we use seven modes for the facial Ani-

mation Units (AUs) matrix A. We have chosen the following

AUs: lower lip depressor, lip stretcher, lip corner depressor,

upper lip raiser, eyebrow lowerer, outer eyebrow raiser. These

AUs are enough to cover most common facial animations.

Moreover, they are essential for conveying emotions.

In equation (1), the 3D shape is expressed in a local

coordinate system. However, one should relate the 3D co-

ordinates to the image coordinate system. To this end, we

adopt the weak perspective projection model. We neglect the

perspective effects since the depth variation of the face can

be considered as small compared to its absolute depth. Thus,

the state of the 3D wireframe model is given by the 3D face

pose parameters (three rotations and three translations) and

the internal face animation control vector τa. This is given

by the 12-dimensional vector b:

b = [θx, θy, θz, tx, ty, tz, τa

T ]T (2)

Note that if only the aspect ratio of the camera is known,

then the component tz is replaced by a scale factor having

the same mapping role between 3D and 2D. In this case, the

state vector is given by (s denotes the scale factor):

b = [θx, θy, θz, tx, ty, s, τa

T ]T (3)

b) Shape-free facial patches: A facial patch is repre-

sented as a shape-free image (geometrically normalized raw-

brightness image). The geometry of this image is obtained by

projecting the static shape gs (neutral shape) using a centered

frontal 3D pose onto an image with a given resolution. The

texture of this geometrically normalized image is obtained

by texture mapping from the triangular 2D mesh in the input

image (see figure 1) using a piece-wise affine transform, W
(see [12] for more details). The warping process applied to

an input image y is denoted by:

x(b) = W(y, b) (4)

where x denotes the shape-free patch and b denotes the

geometrical parameters. Several resolution levels can be

chosen for the shape-free patches. Regarding photometric

transformations, a zero-mean unit-variance normalization is

used to partially compensate for contrast variations.

(a) (b)

Fig. 1. (a) an input image with correct adaptation. (b) the corresponding
shape-free facial patch.

III. PROBLEM FORMULATION

Given a video sequence depicting a moving face, we

would like to recover, for each frame, the 3D face pose and

the facial actions encoded by the control vector τa. In other

words, we would like to estimate the vector bt (3) at time

t given all the observed data until time t, denoted y
1:t ≡

{y
1
, . . . , yt}. In a tracking context, the model parameters

associated with the current frame will be carried over to

the next frame. For each input frame yt, the observation

is the shape-free facial patch associated with the geometric

parameters bt. We use the HAT symbol for the tracked

parameters and patches. For a given frame t, b̂t represents

the computed geometric parameters and x̂t the corresponding

shape-free patch, that is,

x̂t = x(b̂t) = W(yt, b̂t) (5)

The estimation of the initial parameters b̂1 corresponding

to the first frame will be described in Section IV—3D face

pose initialization. The estimation of the current parameters

b̂t from the previous ones b̂t−1 and from the sequence of

images will be presented in Section V—simultaneous face

and facial action tracking.

Figure 2 depicts our proposed 3D face tracker. The initial-

ization part relies on a 2D face detector and on a statistical

facial texture. The tracking part relies on image registration

based on the principles of Online Appearance Models.

Fig. 2. A full automatic 3D face and facial feature tracker.

IV. 3D FACE POSE INITIALIZATION

As can be seen, the tracker requires the knowledge of

the state vector (the 3D face pose parameters and the facial

actions) associated with the first frame in the monocular

video sequence. Note that even though the static shape of

the user’s face model is known inferring its 3D pose (face

pose parameters) with respect to the camera using a single

image is a challenging task since there is no correspondence

between the 3D wireframe model and the raw image. Previ-

ous works adopted a simple scheme where the user is asked

to align his/her face position and orientation with respect to

the camera such that the actual 3D face pose becomes equal

to a predefined face pose. The alignment can be controlled

and assessed by the projection of some facial features (nose
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tip, eye corners) on their predefined locations corresponding

to the predefined 3D face pose.

In our work, we relax the use of a predefined 3D face pose

in order to get a very flexible 3D face tracker. In order to

compute the 3D face pose parameters associated with the first

frame, we will use a statistical facial texture model which is

built offline. The 3D face pose parameters are then estimated

by minimizing the distance between the input image texture

and a learned face space—eigenface system. Reaching a

global minimum can be achieved through the use of the dif-

ferential evolution algorithm. In the current implementation,

we assume that the first frame in the video captures a face

with a neutral configuration1. Therefore, the state vector will

reduce to six parameters describing the 3D face pose, that

is, bt = [θx, θy, θz, tx, ty, s, 0T ]T = [hT , 0T ]T . The vector h

encodes the six 3D face pose parameters.

The use of a statistical facial texture model has already

been used by some works in order to track the face pose pa-

rameters in monocular video sequences (e.g. [12]). However,

in [12], estimating the 3D face pose parameters for the first

frame is performed manually. In our work, those parameters

are automatically estimated whereas most of the proposed

tracking methods use a manual initialization.

A. Statistical facial texture

To build a statistical facial texture model we use our

appearance based tracker [11] (outlined in Section 5). This

tracker provides the time-varying 3D face pose and facial

actions together with the corresponding shape-free patches x̂.

Using these training patches one can easily build a statistical

facial texture model. We assume that we have K shape-free

patches. Applying a classical Principal Components Analysis

(PCA) on the training patches we can compute the mean and

the principal modes of variations. Thus, the parameters of the

facial texture model will be given by the average texture x

and the M principal texture modes encoded by a d × M

matrix denoted by X. The columns of X (whose size is

d) represent the principal modes. The number of principal

modes M is set such that their corresponding variation is

equal to a high percentage of the total variation. Note that

each training patch has undergone a zero-mean unit-variance

normalization.

If the model instance, h, is a good fit to the input image

(i.e., the 3D mesh is aligned with the actual 3D face pose),

then the residual error between the shape-free patch x and its

projection onto the PCA space x̃ is small since the remapped

texture will be consistent with the statistical model of a face

texture. Thus, a reliable measure of the goodness of any fit,

h, can be given by the norm of the associated residual image

between the shape-free patch and its PCA approximation:

e(h) = ‖r‖2 = ‖x(h) − x̃(h)‖2 (6)

The projection of the texture x(h) onto the space spanned

by the texture modes is given by:

x̃(h) = x + X XT (x(h) − x)

1This assumption is very realistic since the neutral state is usually the
user’s emotion state.

In the literature, the error (6) is known under the name of the

reconstruction error or DFFS (Distance From Feature Space).

Figure 3 illustrates the principle of the technique. Fig-

ure 3.a displays a good model adaptation. Both the input

image and the corresponding shape-free patch are shown. In

this case, the residual error (6) corresponds to a minimum.

Figure 3.b displays a bad model adaptation. In this case, the

error (6) does not correspond to the minimum. Thus, the

basic idea is to estimate the 3D face pose parameters, i.e.

the vector h, such that the associated shape-free patch will

be as close as possible to a facial texture.

(a)

(b)

Fig. 3. Example of model fitting. (a) corresponds to correct 3D face pose
parameters h. (b) corresponds to bad 3D face pose parameters h.

B. 3D face pose initialization using the Differential Evolu-

tion algorithm and a face detector

As we have mentioned above, the initial 3D face pose

parameters, h, are recovered by minimizing the residual

error (6):

h = arg min
h

e(h)

To this end, we use the Differential Evolution (DE) algo-

rithm [13], [14] in order to minimize the error (6) with

respect to the 3D face pose parameters. The DE algorithm

is a practical approach to global numerical optimization that

is easy to implement, reliable and fast [15].

This is carried out using generations of solutions—

population. The population of the first generation is ran-

domly chosen around a rough solution h⋆. Thus, the first

population is centered on a solution formed by h⋆ =
(0, 0, 0, t⋆x, t⋆y, s⋆)T . The 2D translation (t⋆x, t⋆y) is set to

the center of the rectangle found by Viola & Jones face

detector [16]. The scale s⋆ is directly related to the size of

the detected rectangle.
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The optimization adopted by the DE algorithm is based on

a population of N solution candidates hn,i (n = 1, . . . , N )

at iteration (generation) i where each candidate has six

components. Initially, the solution candidates hn,0 are ran-

domly generated within the provided intervals of the search

space. The population improves by generating new solutions

iteratively for each candidate.

We stress the fact that the use of the face detector can be

relaxed on the expense of a very large range for the solutions

belonging to the first population.

Fig. 4. The mean texture associated with 500 training images.

Fig. 5. Automatic 3D face pose initialization. Left column: Three unseen
images together with the 2D face detector results. Right column: The
corresponding 3D face pose using the Differential Evolution algorithm.

C. Results

The general scheme adopted for building a facial texture

model is to use training images belonging to several sub-

jects. However, since we are interested in a specific-user

interface application, we will adopt a more flexible scheme.

Within this scheme, each subject will have his/her own

facial texture model. Thus, every subject is asked to perform

face movements together with some facial expressions. The

appearance-based tracker is then run to get the training

shape-free facial patches associated with each image in the

training video (the first frame in this video is manually

adapted). Figure 4 illustrates the average texture obtained

with a sequence of 500 training patches. In this example, we

found that the first 10 principal modes corresponds to 87%
of the total variation associated with the training images.

The first 20 principal modes correspond to 93% of the total

variation.

Figure 5 illustrates the automatic 3D face pose initializa-

tion associated with three unseen images. The PCA space

was built using 500 training images. The number of principal

modes was set to 20. The left column displays the original

image together with the 2D face detector results. The right

column displays the corresponding estimated 3D face pose

using the DE algorithm. The 3D mesh is projected according

to the estimated 3D face pose. As can be seen, even though

the face was not in a frontal view the corresponding 3D

pose parameters are correctly estimated using the Differential

Evolution algorithm. Recall that the recovered parameters are

richer than those provided by the 2D face detector since they

depicts the 3D pose of the face with respect to the camera.

Figure 6 illustrates the evolution of the best error obtained

by the Differential Evolution algorithm associated with the

image shown in Figure 5 (top). The DE algorithm was run

with three population sizes: N = 60, N = 120, and N =
180. Figure 7 illustrates the estimated 3D face pose obtained

at convergence when the population size is set to 60, 120,

and 180 (from left to right). As can be seen, the best fitting

results were obtained when the population size was 180.

The CPU time associated with the automatic initialization

ranges from one second to a few seconds. This computing

time depends on many factors such as the number of gen-

erations and the number of texture modes used. It is worth

noting that this initialization does not prohibit the real-time

performance of the 3D face tracker (presented in Section V)

since this initialization is performed only on the first video

frame as the subject lets the system captures the 3D pose of

his/her face.
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Fig. 6. The evolution of the best error obtained by the Differential Evolution
algorithm associated with the image shown in Figure 5 (top). The DE
algorithm was run with three population sizes: 60, 120, and 180.

V. SIMULTANEOUS FACE AND FACIAL ACTION

TRACKING

In the previous section, we have addressed the initializa-

tion problem, i.e., the estimation of the state vector (the 3D

face pose) for the first video frame. In this section, we will

describe the tracking process, i.e., the estimation of the state

vector (the 3D face pose and the facial actions) for every
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Fig. 7. Automatic 3D face pose initialization using the Differential
Evolution algorithm associated with the image shown in Figure 5 (top).
The estimated 3D face pose obtained at convergence when the population
size is set to 60, 120, and 180 (from left to right).

subsequent video frame. Certainly, one can use the same

initialization process for estimating the state vector for every

frame in the video. However, using this scheme has three

major disadvantages: (i) it cannot run in real-time, (ii) the

2D face detector may fail when the face undergoes under

significant out-of-plane movements, and (iii) the statistical

facial texture model is fixed in the sense that it does not take

into account possible appearance changes during the whole

video sequence. For these reasons, we will use our tracker

based on Online Appearance Models [11]. This appearance-

based tracker aims at computing the 3D face pose and the

facial actions, i.e. the vector b, by minimizing a distance

between the incoming warped frame and the current shape-

free appearance of the face. This minimization is carried out

using a gradient descent method. The statistics of the shape-

free appearance as well as the gradient matrix are updated

every frame. This scheme leads to a fast and robust tracking

algorithm. On a 3.2 GHz PC, a non-optimized C code of the

approach computes the 3D face pose and the facial actions

in 50 ms.

VI. A HUMAN-ROBOT INTERACTION SCENARIO

The proposed methods for estimating the user’s face pose

(described in sections IV and V) are applied in a human-robot

interaction scenario, for mapping an indoor environment. By

mimicking user’s face movement, a robot’s camera can take

periodically snapshots of the current perceived region. At

the end of the process, the panoramic image of the region

of interest is built, from the extracted snapshots by applying

an image mosaicking technique [17].

The experimental setup is depicted in Figure 8. The input

to the system consists of a video stream capturing user’s

face from a fixed camera. The corresponding pitch and yaw

angles of the user’s face are encoded and sent to the robot

using a wireless network. Without any loss of generality, we

used in our experiments Sony’s AIBO robot, which has the

advantage of being especially designed for interaction with

persons. Thus, our application can be considered as a natural

extension of AIBO’s built-in behaviours. The orientation of

robot’s head (the robot’s camera) is updated online according

to the desired direction imposed by the user’s face pose.

Due to the motors response (as well the communication

through the wireless network), there is a very small delay

between the desired orientation and robot’s response. The

inertia associated with the motors is most visible when a

change in direction has to be performed. However, if user’s

movement is reasonably slow, but continuous, a real-time

response from the robot can be expected.

Figure 9 depicts the data flow between the real-time 3D

face pose tracker and AIBO. Figure 10 illustrates the results

of face movement imitation associated with a 691-frame

sequence. In this video, the person looks around without

any restriction. Only eight frames are shown in the figure.

The left column displays the user’s face pose and the right

column shows the corresponding snapshot of the scene as

seen by the AIBO’s camera. Figure 11 illustrates a panoramic

image computed from the captured individual snapshots. For

this purpose, we used the AutoStitchTM application [17],

developed by M. Brown and D. Lowe from UBC, Canada. In

a broader context, the user and the robot can be very distant

from each other. This case corresponds to a telepresence

application where the user is exploring a remote (dangerous

or inaccessible) spot by only changing his face pose. This is

the case, for instance, for rescue robots, which can be sent to

areas affected by earthquakes or fires in order to perform an

exhaustive search of the environment to find survivors. The

use of a special display device that visualizes the scene as it

is viewed by the remote camera will boost the telepresence

feeling. If we assume that the orientation of the fixed camera

is aligned with that of the robot camera (in its reference

position) then its gaze direction will be equivalent to that of

the user.

Fig. 8. The experimental setup.

VII. CONCLUSION

This paper described two main contributions. First, we

proposed an automatic 3D face pose initialization scheme

for a real-time appearance-based tracker by adopting a 2D

face detector and an eigenface system. Second, we used

the proposed methods—the initialization and tracking—for

controlling the movements of AIBO’s camera. Applications

such as telepresence, virtual reality can directly use the

proposed techniques.
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