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Abstract— We present a fast feature selection algorithm
suitable for object detection applications where the image
being tested must be scanned repeatedly to detected the object
of interest at different locations and scales. The algorithm
iteratively estimates the belongness probability of image pixels
to foreground of the image. To prove the validity of the
algorithm, we apply it to a human detection problem. The
edge map is filtered using a feature selection algorithm. The
filtered edge map is then projected onto an eigen space of
human shapes to determine if the image contains a human.
Since the edge maps are binary in nature, Logistic Principal
Component Analysis is used to obtain the eigen human shape
space. Experimental results illustrate the accuracy of the human
detector.

I. INTRODUCTION

Human detection has been an active research area for

almost a decade. In visual surveillance systems [2] and

automatic navigation systems [1][7], detecting human objects

is a prerequisite to applying higher level steps such as activity

recognition or path planning.

We present an algorithm for detecting humans in upright

postures from still images. Edge maps are first computed

for the test image. The edge map is then iteratively filtered

using a novel, fast feature selection algorithm. The feature

selection algorithm probabilistically assigns features to either

foreground or background clusters. Probabilities are updated

iteratively. The distance between the filtered edges and a

human-silhouette eigen shape-space is used to determine the

presence of humans. The eigen shapes are obtained using

Logistic Principal Component Analysis (LPCA) [11].

This paper is organized as follows. In Section II we

briefly summarize related human detection work. Section

III presents an iterative feature selection algorithm using

kernel density estimation. Building the human shape space

using Logistic Principal Component Analysis is presented in

Section IV. Experimental results are presented in Section V.

Finally, we conclude the paper in Section VI.

II. HUMAN DETECTION FROM UNMANNED GROUND

VEHICLES

Human detection algorithms can be broadly classified into

two main categories – (1) shape-based human detectors such
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as such as the work of Gavrila and Philomin [8], Gavrila

and Munder [7], Dalal and Triggs[5] and Zhu et al. [13],

and (2) the motion-based human detectors, such as the work

of Cutler and Davis [4], Ran et al. [10] and Abd-Almageed

et al. [1].

The shape-based methods aim to detect humans in still

images by extracting gradient-based (or edge-based) features

and either matching these features against a number of

human templates (e.g. [8]) or using a binary classifier to

decide if a human object exists (e.g. [5][13]). The motion-

based human detection methods depend on tracking an object

of interest for a short period of time (typically 2–4 seconds)

and analyzing the motion pattern of the object. A tracked

object is classified as a human if it exhibits a twin-pendulum-

like periodic motion (e.g. [1]).

The main limitation of shape-based detectors is the rela-

tively high false alarm rate since the entire image has to be

scanned (repeatedly at an arbitrary number of scales) to find

all human figures. On the other hand, the main advantage

of the motion-based methods is the low false detection rate

because they depends on tracking the object for a period

of time, which decreases the uncertainty about the object’s

nature. However, an object of interest must first be detected

in order to employ the motion-based methods. Also, the

object must be tracked successfully.

Hussein et al. in [9] have shown that a successful strategy

to reduce the overall false detection rate is to integrate

both shape-based and motion-based methods. Shape-based

methods are first used to detect potential human objects. An

object tracker is then used to track the object for a sufficient

period of time. Finally, the motion of the tracked object is

analyzed to verify if it resembles the motion of a human.

Since the algorithms presented in this paper mainly im-

prove the shape-based methods, we will briefly highlight the

previous work in this area.

Gavrila and Philomin in [8] introduced a fast human

detection algorithm based on the distance transform (chamfer

distance) [3]. They collected a database of silhouette images

of humans in different poses. During the training phase, K-

means is used to cluster the silhouette database based on the

pair-wise distance, into three clusters. K-means is repeatedly

applied to each cluster to further cluster it into three sub-

clusters. The process is repeated yielding a hierarchy of
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human silhouettes. To detect if a human exists in a given

image (of the same size as the training images), edges are

extracted from the test image and the distance is computed

between the edge map and silhouettes in the hierarchy. A

human is detected if the computed distance is smaller than

a pre-specified threshold across all levels of the hierarchy.

The main advantage of this algorithm is speed. However,

the algorithm is highly sensitive to image clutter and noise.

Recently, Gavrila and Munder [7] integrated the detection

algorithm with stereo vision to lower the false detections.

Dalal and Triggs in [5] introduced a learning-based algo-

rithm to detect humans from a single image. The image is

divided into 16×16 rectangular neighborhoods and a feature

vector called the Histogram of Oriented Gradients (HoG)

is computed for each neighborhood. The HoG represents

the probability distribution of gradient orientation (quantized

into a pre-defined number of histogram bins) over a specific

neighborhood. All HoGs from all image neighborhoods are

concatenated to form a larger feature vector describing

the image. A Support Vector Machine (SVM) is used to

determine if the given image contains a human. In general,

this method has a lower false alarm rate than Gavrila and

Philomin [8]. However, to check for humans at different

scales, computing the HoG feature vector and using the SVM

to classify it becomes very computationally expensive and

therefore the detector is relatively very slow. It was reported

in [5] that the algorithm runs at 1 frame per second if they

scan 800 detection windows in an 320×240 image.

In [13], Zhu et al. used a cascaded Adaboost algorithm

[6][12] to rapidly detect humans in static images using the

HoG feature vector. However, in order to improve the overall

performance, they used integral images [12] to compute the

feature vector. A Support Vector Machine classifier was used

as the weak classifier of the Adaboost algorithm.

The common limitation of all of these methods, when used

to detect humans from a UGV or a smart vehicle, is the high

false detection rate.

III. ITERATIVE FEATURE SELECTION

As we highlighted in Section II, the only low-level feature

that could be used to detect humans from a single frame is

the gradient (or edge map) of the gray levels of the image.

Consequently, the background clutter highly influences the

false detection rate. In this Section we present a method for

differentiating background features from foreground features.

Let e = (x,y) be a feature point at location (x,y). The

probabilities that e belongs to the foreground object or

the background clutter are P(F|e) and P(B|e), respectively,

where P(F|e) + P(B|e) = 1. Both P(F|e) and P(B|e)
represent the spatial distribution of feature points in the

foreground and the background, respectively. The probability

that a feature point e j belongs to the foreground, Pi(F|e j) can

be estimated using Equation (1)

Pi(F|e j)=
1

N |H|
Pi−1(F|e j)

N

∑
n=1

Pi−1(F|en) K(H−1(xen −xe j
))

(1)

where xe j
is a D-dimensional feature vector representing the

feature point e j, K(.) is a multivariate kernel function, H is

the kernel bandwidth and N is the number of feature points in

the image. We assume that the attributes of the feature vector

x are statistically uncorrelated. Therefore, H is a diagonal

matrix. The super script i represents the value of Pi(.) at

iteration i.

Many methods exist for evaluating the kernel function.

Here we use the classic product kernel as shown in Equation

(2)

K(H−1(xen −xe j
)) =

D

∏
d=1

h−1
d exp

(

−0.5
(xen(d)−xe j

(d))2

hd

)

(2)

where x(d) is the dth attribute of x and hd is the dth

element of the diagonal of H. Similarly, the probability that

a feature point ei belongs to the background, Pi(B|e j), can

be estimated using Equation (3).

Pi(B|e j)=
1

N |H|
Pi−1(B|e j)

N

∑
n=1

Pi−1(B|en) K(H−1(xen −xe j
))

(3)

Equations (1) and (3) are kernel density estimates of Pi(F|e j)
and Pi(B|e j), respectively, regularized by the probability of

finding the feature point e j at location (x,y).
To satisfy the stochastic condition that P(F|e)+P(B|e) =

1, the probabilities are normalized as shown in Equation (4).

Pi(F|e j) =
Pi(F|e j)

Pi(F|e j)+Pi(B|e j)

Pi(B|e j) =
Pi(B|e j)

Pi(F|e j)+Pi(B|e j)

(4)

The kernel values K(H−1(xen − xe j
)) are not dependent

on the iteration number i. Therefore, we can pre-compute an

N ×N symmetric matrix

K(n, j) = K(H−1(xen −xe j
)) and n, j = 1, . . . , N (5)

in O(N2−N
2

). By arranging the probabilities Pi(.) in N × 1

vectors, Equations (1) and (3) can now be rewritten in vector-

matrix product form as

Pi(F) =
1

N |H|
Pi−1(F).∗

(

Pi−1(F) K
)

(6)

and

Pi(B) =
1

N |H|
Pi−1(B).∗

(

Pi−1(B) K
)

(7)

where .∗ indicates element-by-element multiplication.

P0(F|e j) represent our a priori information about finding

a feature point at a certain location. In order to estimate the

initial probabilities P0(F|e j) and P0(B|e j), we use a training

database. A large number of human images is collected

from real-world images. The images are then segmented and

cleaned as shown in Figure 1.

Given the shape database, we can now estimate the prob-

ability of finding a feature point at a specific image location

by simply averaging the shape database. Figure 2 shows the
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(a) (b) (c) (d)

Fig. 1. Examples of the human silhouette database used for training

spatial probability density estimated from the shape database

and used to compute P0(F|e) and P0(B|e).

Fig. 2. Initial probability distribution of human silhouette features obtained
from a shape database

The vector xen encodes the characteristics of the image at

the feature point en. In our algorithm, we use a 5d feature

vector illustrated in Equation (8)

xen = [x1 x2 x3 x4 x5]
T (8)

where

x1 is the luminance value at en,

x2 is the a-component of CIE L*a*b* color space at en,

x3 is the b-component of CIE L*a*b* color space at en,

x4 is the entropy of the image in a 7×7 neighborhood

around en, and

x5 is the standard deviation of luminance in a 5×5

neighborhood around en.

Attributes x1, x2 and x3 encode the color information at

en while x4 and x5 encode the texture around en. Figure 3

illustrates an example of the used features for a real human

image.

By initializing the spatial probabilities and iteratively ap-

plying Equations (6), (7) and (4), the set of image features are

assigned to the foreground if Pfinal(F|e) > Pfinal(B|e). Figure

4 demonstrates the evolution of the feature probabilities when

applying the filtering algorithm to the image in Figure 3.a.

IV. LOGISTIC PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) has been proven a

very effective tool in many areas such as dimensionality

reduction, face detection and recognition, etc. PCA finds

linear projections (of the data) on which the projected data

(a) Color image (b) L-component (c) a-component

(d) b-component (e) Entropy (f) Std. deviation

Fig. 3. Original image and feature images used in the feature selection
algorithms. Figures 3.b, 3.c and 3.d represent the image in the CIE L*a*b*
color space. Figures 3.e and 3.f represent the entropy and standard deviation
features of the image using a 5×5 neighborhood

will have maximum variance. Therefore, the regular real-

valued PCA (i.e. linear PCA) is not suitable for data of binary

nature.

Using linear PCA with binary data have been addressed

in a number of papers. Schein et al. in [11] overcame this

shortcoming by relating binary-data PCA to linear PCA the

same way logistic regressions is related to linear regression.

The same approach was employed by Zivkovic and Verbeek

in [14]. However, they extended the binary-data PCA to

mixtures of binary PCA. We briefly overview the Logistic

PCA (LPCA) of [11].

A human silhouette image I (e.g. Figure 1) is transformed

into a M-dimensional column feature vector F by concate-

nating the rows of the image, where M = width×height. The

features of the vector are binary random variables such that

fi ∈ {0,1}. The feature vector is a sparse vector containing

mostly 0’s except for the pixels where edges exist. Each

feature can be modeled using a Bernoulli distribution as

shown in Equation (9)

P( fi|pi) = p
fi
i (1− pi)

1− fi (9)

where p is the distribution mean. The distribution can be

rewritten as

P( fi|pi) = σ(θi)
fiσ(−θi)

1− fi (10)

where θi = log( pi

1−pi
) is the log-odds parameter and σ(θi) =

(1+e−θi)−1 is the logistic function (hence the name Logistic

PCA).
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(a) Edge (b) Itr. 1 (c) Itr. 2 (d) Itr. 3

(e) Itr. 4 (f) Itr. 5 (g) Itr. 6 (h) Itr. 7

Fig. 4. An example of applying the feature selection algorithm on the
edge map of 3.a. The colors of 4.b-4.h represent the evolution of the feature
probability. Warmer colors represent higher probabilities

Given K training images, an observation matrix X is

constructed as

X = [F1 F2 . . . FK ]T (11)

yielding a K × M matrix. The probability distribution of

Equation (10) can now be generalized over the multivariate

observation matrix X by Equation (12).

P(X |Θ) = ∏
km

σ(Θkm)Xkmσ(−Θ)1−Xkm . (12)

The log-likelihood of of the data under Equation (12) is

L = ∑
km

{Xkm log(σ(Θkm))+(1−Xkm) log(σ(−Θkm))} .

(13)

The dimensionality of the log-odds matrix Θ can be

reduced by assuming a compact representation for Θ and

maximizing the log-likelihood of Equation (13) given the

compact representation. Let

Θkm = ∑
l

UklVlm (14)

where V and U are the projection matrix and projection

coefficients, respectively. The projection matrix V is L×M

(where L is user-defined and L << M.) Similarly, U is

K × L. Substituting Equation (14) into Equation (13) and

maximizing L with respect to U and V yields a compact

eigen representation for Θ. Schrein et al. in [11] used least

squares to find optimal values for U and V where they fixed

one parameter and maximized the likelihood with respect

to the other parameter and then alternate between the two

parameters. For more details about the optimization method,

the reader is referred to [11].

The rows of the projection matrix V represent the eigen

vectors of the shape space. On the other hand, the rows of

the coefficients matrix U represent the projections of the

K training examples onto the L eigen shapes. In order to

determine if a given window of an image contains a human,

the edge filtering algorithm of Section III is first applied to

the windows of interest. The resulting edge map E (in vector

form) is then projected into the shape space specified by U

and V . The projection coefficients vector Y is computed using

Equation (15)

Y = V (E − Ē) (15)

where Ē is the average edge image obtained from the training

shape database. The vector Y is an L dimensional vector

representing the location of the filtered edge map E in the

shape space V . The distance between E and the shape space

is then

ε
2 = min

i
||Y −Ui|| and i = 1, . . . , K (16)

where Ui is the ith row of U . In other words, the distance

between E and the shape space is the minimum distance

between the projection of E and projections of the training

shape data. A human exists in the test image if ε2 < δ and

δ is an imperially determined threshold.

V. EXPERIMENTAL RESULTS

Figure 5.a shows a human walking in front of a cluttered

background. The background produces too many unwanted

edges in the edge map as shown in Figure 5.b. By applying

the feature selection algorithm of Section III, most of the

unwanted edges have been filtered out, leaving only the

edges that belong to the foreground object (a human in this

case.) Figures 5.c-5.g demonstrate the evolution of the edge

probabilities and Figure 5.h shows the resulting edge map

where Pfinal(F|e) > Pfinal(B|e).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. A human image, the evolution of the edge probabilities and the
final edge assignment

If the image being filtered does not have a foreground

object or contains a non-human object, the remaining edges

1694



after applying the filtering algorithm will generally not take

the shape of a human because of the color and texture

features used. Figure 6.a is a typical cluttered image without

a foreground human. The final result of applying the filtering

algorithm, shown in Figure 6.h, does not resemble a human.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. A cluttered non-human image, the evolution of the edge probabilities
and the final edge assignment

The edge-filtered maps are projected onto the human shape

space obtained using LPCA constructed from a training data

database of 1000 human silhouettes, as shown in Figure 1.

We use L = 10 eigen shapes illustrated in Figure 7. Figure

8 shows the distance plots between human or non-human

objects from one side and the shape space from another. The

blue curve represents the distance between the projection of

the filtered edges of Figure 5.h and the projections of the

training database onto the shape space. The same distance

of 6.h is represented by the red curve. It is clear that a large

classification margin between the two curves exists. A simple

thresholding is then sufficient to determine the existence of

a human in the image of interest.

We used positive and negative test images from the

INRIA human detection database which was used in [5].

The images are of size 70×134. Humans are approximately

of size 96× 32 in the center of the image. Tables I and II

demonstrate the results of applying the detection algorithm to

a number of negative and positive test images, respectively.

The distance ε2 of the negative examples is at least one order

of magnitude larger than that of the positive examples. By

empirically setting the threshold δ = 800000, negative and

positive examples are correctly classified.

Applying the detector to images of different scale is

straightforward. Two pre-processing steps are required. The

spatial density function must be computed from the training

database and the eigen shapes must be reestimated. Normally,

with any shape-based detector, different detectors of an

arbitrary number of scales are trained offline before being

applied at run time.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7. An eigen human silhouette shape composed of 10 eigen shapes.
The compact shape space is computed by applying LPCA in a database of
human silhouettes such that of Figure 1

Fig. 8. Comparison between the distance of test projection vector and the
projection vector of the training database. The distance of a human image
(blue curve) is always smaller than that of a non-human image (red curve)

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new human detection

algorithm. The edge map of image of interest is filtered using

a novel probabilistic feature assignment algorithm based on

kernel density estimation. The algorithm assigns edge pixels

to the foreground or the background using a multidimen-

sional feature vector. The assignment probabilities of the

feature points are iteratively updated for a few number of

iterations.

The resulting edge map of the foreground object is pro-

jected onto a human-silhouette shape-space to measure the

similarity between the foreground object and the human

shape space. Since the shape space is based on binary data,

Logistic Principal Component Analysis is used to obtain the

eigen shapes of the human silhouettes.

The presented algorithm is used to detect humans in

video data acquired from a moving robot. Results prove the

effectiveness of the algorithm at finding humans at different
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Original Image Original Edges Filtered Edges ε2

1185949.097

2093075.204

1128784.317

2325075.309

1145388.299

TABLE I

EXAMPLE IMAGE WITHOUT A HUMAN ALONG WITH THE FILTERED EDGE

MAP. THE DISTANCE ε2
FROM THE HUMAN SHAPE SPACE IS VERY LARGE

scales.
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